1,102 research outputs found

    Creating E-Textile Activities in a Textile Design Course to Engage Female Middle School Students in STEM Learning: An Undergraduate Design Experience

    Get PDF
    Widespread agreement exists that the United States faces a serious challenge in the areas of science, technology, engineering, and mathematics (STEM). There is a particular deficit of females (Watt, 2010) and members of underserved groups like rural populations (Smith, Nelson, Trygstad, & Banilower, 2013) who are interested in STEM topics and qualified to pursue STEM careers. Initiatives are needed to encourage more students, especially females and rural students, to go into STEM fields. In this project, e-textile activities were designed by a senior level undergraduate textile design class to engage female middle-school students in STEM learning. E-textile activities have the potential to increase enjoyment of and interest in STEM activities, taking STEM courses, consideration of STEM careers, and confidence in STEM ability

    Metastability in Spin-Polarized Fermi Gases

    Full text link
    We study the role of particle transport and evaporation on the phase separation of an ultracold, spin-polarized atomic Fermi gas. We show that the previously observed deformation of the superfluid paired core is a result of evaporative depolarization of the superfluid due to a combination of enhanced evaporation at the center of the trap and the inhibition of spin transport at the normal-superfluid phase boundary. These factors contribute to a nonequilibrium jump in the chemical potentials at the phase boundary. Once formed, the deformed state is highly metastable, persisting for times of up to 2 s.Comment: 4 pages, 6 figure

    Shoot growth of woody trees and shrubs is predicted by maximum plant height and associated traits

    No full text
    1. The rate of elongation and thickening of individual branches (shoots) varies across plant species. This variation is important for the outcome of competition and other plant-plant interactions. Here we compared rates of shoot growth across 44 species from tropical, warm temperate, and cool temperate forests of eastern Australia.2. Shoot growth rate was found to correlate with a suite of traits including the potential height of the species, xylem-specific conductivity, leaf size, leaf area per xylem cross-section, twig diameter (at 40 cm length), wood density and modulus of elasticity.3. Within this suite of traits, maximum plant height was the clearest correlate of growth rates, explaining 50 to 67% of the variation in growth overall (p p 4. Growth rates were not strongly correlated with leaf nitrogen or leaf mass per unit leaf area.5. Correlations between growth and maximum height arose both across latitude (47%, p p p p < 0.0001), reflecting intrinsic differences across species and sites

    Global production and free access to Landsat-scale Evapotranspiration with EEFlux and eeMETRIC

    Get PDF
    EEFlux (Earth Engine Evapotranspiration Flux) is a version of the METRIC (mapping evapotranspiration at high resolution with internal calibration) application that operates on the Google Earth Engine (EE). EEFlux has a web-based interface and provides free public access to transform Landsat images into 30 m spatial evapotranspiration (ET) data for terrestrial land areas around the globe. EE holds the entire Landsat archive to power EEFlux along with NLDAS/CFSV2 gridded weather data for estimating reference ET. EEFlux is a part of the upcoming OpenET platform (https://openetdata.org/ ) that has leveraged nonprofit funding to provide ET information to all of the lower 48 states for free, as a means to foster water exchange between agriculture, cities and environment (Melton et al., 2020). The METRIC version in OpenET is named eeMETRIC, and includes cloud detection and time integration of ET snapshots into monthly ET estimates. EEFlux and eeMETRIC employ METRIC’s “mountain” algorithms for estimating aerodynamics and solar radiation in complex terrain. Calibration is automated and ET images are computed for download in seconds using EE’s large computational capacity

    Evidence of strong stabilizing effects on the evolution of boreoeutherian (Mammalia) dental proportions.

    Get PDF
    The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals

    Moderated Network Models

    Full text link
    Pairwise network models such as the Gaussian Graphical Model (GGM) are a powerful and intuitive way to analyze dependencies in multivariate data. A key assumption of the GGM is that each pairwise interaction is independent of the values of all other variables. However, in psychological research this is often implausible. In this paper, we extend the GGM by allowing each pairwise interaction between two variables to be moderated by (a subset of) all other variables in the model, and thereby introduce a Moderated Network Model (MNM). We show how to construct the MNM and propose an L1-regularized nodewise regression approach to estimate it. We provide performance results in a simulation study and show that MNMs outperform the split-sample based methods Network Comparison Test (NCT) and Fused Graphical Lasso (FGL) in detecting moderation effects. Finally, we provide a fully reproducible tutorial on how to estimate MNMs with the R-package mgm and discuss possible issues with model misspecification

    Coordination of Mobile Mules via Facility Location Strategies

    Full text link
    In this paper, we study the problem of wireless sensor network (WSN) maintenance using mobile entities called mules. The mules are deployed in the area of the WSN in such a way that would minimize the time it takes them to reach a failed sensor and fix it. The mules must constantly optimize their collective deployment to account for occupied mules. The objective is to define the optimal deployment and task allocation strategy for the mules, so that the sensors' downtime and the mules' traveling distance are minimized. Our solutions are inspired by research in the field of computational geometry and the design of our algorithms is based on state of the art approximation algorithms for the classical problem of facility location. Our empirical results demonstrate how cooperation enhances the team's performance, and indicate that a combination of k-Median based deployment with closest-available task allocation provides the best results in terms of minimizing the sensors' downtime but is inefficient in terms of the mules' travel distance. A k-Centroid based deployment produces good results in both criteria.Comment: 12 pages, 6 figures, conferenc
    corecore