2,396 research outputs found

    Negative-energy perturbations in cylindrical equilibria with a radial electric field

    Get PDF
    The impact of an equilibrium radial electric field EE on negative-energy perturbations (NEPs) (which are potentially dangerous because they can lead to either linear or nonlinear explosive instabilities) in cylindrical equilibria of magnetically confined plasmas is investigated within the framework of Maxwell-drift kinetic theory. It turns out that for wave vectors with a non-vanishing component parallel to the magnetic field the conditions for the existence of NEPs in equilibria with E=0 [G. N. Throumoulopoulos and D. Pfirsch, Phys. Rev. E 53, 2767 (1996)] remain valid, while the condition for the existence of perpendicular NEPs, which are found to be the most important perturbations, is modified. For eiϕTi|e_i\phi|\approx T_i (ϕ\phi is the electrostatic potential) and Ti/Te>βcP/(B2/8π)T_i/T_e > \beta_c\approx P/(B^2/8\pi) (PP is the total plasma pressure), a case which is of operational interest in magnetic confinement systems, the existence of perpendicular NEPs depends on eνEe_\nu E, where eνe_\nu is the charge of the particle species ν\nu. In this case the electric field can reduce the NEPs activity in the edge region of tokamaklike and stellaratorlike equilibria with identical parabolic pressure profiles, the reduction of electron NEPs being more pronounced than that of ion NEPs.Comment: 30 pages, late

    Negative-Energy Perturbations in Circularly Cylindrical Equilibria within the Framework of Maxwell-Drift Kinetic Theory

    Full text link
    The conditions for the existence of negative-energy perturbations (which could be nonlinearly unstable and cause anomalous transport) are investigated in the framework of linearized collisionless Maxwell-drift kinetic theory for the case of equilibria of magnetically confined, circularly cylindrical plasmas and vanishing initial field perturbations. For wave vectors with a non-vanishing component parallel to the magnetic field, the plane equilibrium conditions (derived by Throumoulopoulos and Pfirsch [Phys Rev. E {\bf 49}, 3290 (1994)]) are shown to remain valid, while the condition for perpendicular perturbations (which are found to be the most important modes) is modified. Consequently, besides the tokamak equilibrium regime in which the existence of negative-energy perturbations is related to the threshold value of 2/3 of the quantity ην=lnTνlnNν\eta_\nu = \frac {\partial \ln T_\nu} {\partial \ln N_\nu}, a new regime appears, not present in plane equilibria, in which negative-energy perturbations exist for {\em any} value of ην\eta_\nu. For various analytic cold-ion tokamak equilibria a substantial fraction of thermal electrons are associated with negative-energy perturbations (active particles). In particular, for linearly stable equilibria of a paramagnetic plasma with flat electron temperature profile (ηe=0\eta_e=0), the entire velocity space is occupied by active electrons. The part of the velocity space occupied by active particles increases from the center to the plasma edge and is larger in a paramagnetic plasma than in a diamagnetic plasma with the same pressure profile. It is also shown that, unlike in plane equilibria, negative-energy perturbations exist in force-free reversed-field pinch equilibria with a substantial fraction of active particles.Comment: 31 pages, late

    Neutralino Phenomenology at LEP2 in Supersymmetry with Bilinear Breaking of R-parity

    Get PDF
    We discuss the phenomenology of the lightest neutralino in models where an effective bilinear term in the superpotential parametrizes the explicit breaking of R-parity. We consider supergravity scenarios where the lightest supersymmetric particle (LSP) is the lightest neutralino and which can be explored at LEP2. We present a detailed study of the LSP decay properties and general features of the corresponding signals expected at LEP2. We also contrast our model with gauge mediated supersymmetry breaking.Comment: 21 pages, Latex, uses axodraw.sty (included), 13 figures included as ps- and eps-files, figures slightly changed after bug-fixing, comparison with GMSB and a few references added, version to appear in NP

    On the connection of Gamma-rays, Dark Matter and Higgs searches at LHC

    Get PDF
    Motivated by the upcoming Higgs analyzes we investigate the importance of the complementarity of the Higgs boson chase on the low mass WIMP search in direct detection experiments and the gamma-ray emission from the Galactic Center measured by the Fermi-LAT telescope in the context of the SU(3)cSU(3)LU(1)NSU(3)_c\otimes SU(3)_L\otimes U(1)_N. We obtain the relic abundance, thermal cross section, the WIMP-nucleon cross section in the low mass regime and network them with the branching ratios of the Higgs boson in the model. We conclude that the Higgs boson search has a profound connection to the dark matter problem in our model, in particular for the case that (MWIMP<60M_{WIMP} < 60 GeV) the BR(H2H \rightarrow 2 WIMPs) 90\gtrsim 90%. This scenario could explain this plateau of any mild excess regarding the Higgs search as well as explain the gamma-ray emission from the galactic center through the bbˉb\bar{b} channel with a WIMP in the mass range of 25-45 GeV, while still being consistent with the current limits from XENON100 and CDMSII. However, if the recent modest excesses measured at LHC and TEVATRON are confirmed and consistent with a standard model Higgs boson this would imply that MWIMP>60 M_{WIMP} > 60 GeV, consequently ruling out any attempt to explain the Fermi-LAT observations.Comment: 8 pages, 9 figure

    Performance of two transferred modules in the Lagunera Region: Water relations

    Get PDF
    Water policy / Performance / Privatization / Irrigation systems / Operations / Maintenance / Irrigation efficiency / Water users' associations / Water rights / Water allocation / Water supply / Water distribution

    Context-Based Defading of Archive Photographs

    Get PDF
    We present an algorithm for the enhancement of contrast in digitized archive photographic prints. It aims at producing an adaptive enhancement based on the local context of each pixel and is able to operate without direct user's intervention. A relation between the variation of contrast at different resolutions and the local Lipschitz regularity of the image is exploited. In this way, each pixel is defaded according to its nature: noise, edge, or smooth region. This strategy provides for an algorithm that drastically reduces typical, annoying artifacts like halo effects and noise amplification

    Light Stop: MSSM versus R-parity violation

    Get PDF
    We discuss the phenomenology of the lightest stops in models where R-parity is broken by bilinear terms. In this class of models we consider scenarios where the R-parity breaking two-body decay stop_1 -> tau + b competes with the leading three-body decays stop_1 -> W^+ + b + neutralino_1, H^+ + b + neutralino_1, b slepton^+_i neutrino_l, b sneutrino_l l^+ (l=e, mu, tau). We demonstrate that the R-parity violating decay can be the dominant one. In particular we focus on the implications for a future electron posistion Linear Collider
    corecore