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We present an algorithm for the enhancement of contrast in digitized archive photographic prints. It aims at producing an adaptive
enhancement based on the local context of each pixel and is able to operate without direct user’s intervention. A relation between
the variation of contrast at different resolutions and the local Lipschitz regularity of the image is exploited. In this way, each pixel
is defaded according to its nature: noise, edge, or smooth region. This strategy provides for an algorithm that drastically reduces
typical, annoying artifacts like halo effects and noise amplification.
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1. Introduction

Antique photographic prints are very often subject to fading.
Two typical examples of faded images are shown in Figure 1.
Fading can be described using a model based on silver
oxidation. The intensity and speed of this process are
extremely variable and depend on the technology used to get
the print as well as on the way the print under consideration
was processed. Indeed, several factors influence the stability
of a print. In the oldest salted papers, fading can be traced
to the presence of sulphur. Its source may be intrinsic,
due to hyposulphites left in the paper, or extrinsic, from
the atmosphere [1]. A proper storage environment with
controlled temperature and humidity is of course essential in
order to preserve the quality of the original art. In particular,
humidity is the prime factor to be considered for black and
white prints. The lowest possible temperature that keeps the
relative humidity (RH) under 30 percent should then be
chosen [2]. However, in many cases the prints may have been
placed in such an environment only recently, after the fading
itself has manifested. Moreover, items exposed at exhibitions,
or handled often, are particularly subject to degradations.

In order to enable the researcher or the public at
large to visualize an image of the faded photograph as
similar as possible to the original one, digital acquisition
and processing is the only possible approach. Photographic

archives acquire their images using professional scanning
equipment and create digital versions of their art. The latter
can then undergo a process of “virtual” restoration, for
example, through a proper contrast enhancement algorithm.

Contrast enhancement is a well-known and challenging
problem in image processing. In general, it aims at a recovery
of the original vividness of images having a suboptimal
contrast. A wide range of approaches have been proposed in
literature in both the spatial and transform domains. Exam-
ples in the transform domain are alpha-rooting techniques,
and techniques based on scaling the DCT coefficients. Alpha-
rooting was first presented in [3], and it has been successively
modified in [4-6], since it can be combined with different
transforms. A recent version of alpha-rooting is described
in [7]; it is based on properties of a tensor representation
of the DFT. A DCT-domain operation is suggested in [8],
where all the three attributes of brightness, contrast, and
color of an image are addressed. It is based on a simple
and computationally efficient algorithm, that only requires
scaling of the DCT coefficients—mostly by a factor which
remains constant in a block.

In the spatial domain, in addition to the use of simple
linear techniques which emphasize the high-frequency con-
tents of an image (the so-called unsharp masking approach),
the most famous approaches are probably the Retinex model,
based on Land’s studies [9], and histogram equalization



FIGURE 1: Two typical examples of faded photographic print: Horse
rider (a) and Arena di Pola (b).

[10]. A set of modifications has been proposed for the
improvement of these methods. In particular, it is interesting
to note that both methods have evolved to include a mul-
tiscale (i.e., multiresolution) version, based on convolution
with smoothing kernels. The evolution of the methods
has incorporated the estimation of a context, based on a
global measure in a suitable neighborhood, allowing adaptive
enhancement [11-14]. In fact, there is a general agreement
about the fact that these two factors greatly improve the
performance of any contrast-enhancement framework [15].
However, they are also responsible for unavoidable undesired
artifacts like oversmoothing (with a loss of details) or exces-
sive enhancement (with a resulting amplification of noise
and/or halo effects) [16]. Even though some sophisticated
approaches have been proposed for their reduction [17, 18],
these artifacts remain an aspect to be considered in the design
of any contrast-enhancement framework. The situation is
even more difficult when scanned antique photographic
prints are processed. In this case, the presence of defects in
the original art may introduce specific artifacts in the digital
item, which in turn produce particularly annoying effects if
conventional enhancement techniques are applied.

In this paper we present an adaptive enhancement tool
that tries to overcome the above-mentioned problems. It
is based on a multiscale approach that exploits the local
context. In particular, it exploits the link between the change
of contrast (as the resolution is increased) and the local
Lipschitz regularity of the image [19, 20]. Such a link can be
used for asserting the (possibly) noisy nature of each pixel,
avoiding convolutions with kernels that would introduce the
aforementioned artifacts. On the other hand, a measure of
contrast at different resolutions allows to exploit visibility
laws, such as the Weber-Fechner law; they are used in the
assessment of the importance, and then the enhancement of
each pixel of the image under study.

After the pixels have been classified (edge, noise, or
smooth region), their contrast is changed appropriately.
Then, at a successive stage, an optimal (global) gamma
correction tool that exploits the results in [21] is performed.
The proposed framework has been tested on various dig-
itized historical photographic prints subjected to fading.
Experimental results show good results in terms of subjective
quality and a good efficiency even in critical cases. To make a
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more objective evaluation of the results, comparisons with
representative contrast enhancement methods have been
introduced. Moreover, several quality measures have been
used to quantify the visual appearance of the restored images.

The paper is organized as follows. Section 2 presents the
proposed model; it includes the detailed algorithm and a
description of each of its three phases. Section 3 contains
some experimental results and comparative studies. Finally,
some discussions, conclusions, and guidelines for future
research are the topic of Section 4.

2. The Proposed Model

The proposed method, initially explored in [22], consists of
three main stages. In the first one, the image is preprocessed
and its pixels are classified according to the inferred type of
damage suffered. In particular, we check if a pixel belongs to
a blotch (a common fault in antique photos) in the image.
This operation allows for a more appropriate estimation
of the parameters in the two remaining stages. In the
second stage, the link between the local Lipschitz regularity
and the change of contrast of the image across scales is
exploited; after this stage, adaptive contrast enhancement can
be performed on the faded image. The aim of the second
stage is to differentiate the type of defading to be applied
to each pixel according to its nature (edge, noise, or flat
region). In the third stage, the image is defaded using a
contrast-enhancement tool that is based on the classical
characteristic curve z%, with & > 1 (as in gamma correction).
In order to automatically estimate an optimal value of «,
we exploit the results presented in [21] that are based on
the following observation: visually pleasant images show a
sort of orthogonality between the local first moment and
the local second central moment of the distribution of the
luminance values. It is interesting to note that [23] reports
a statistical independence between luminance and contrast
in natural images. (Mante et al. use the weighted sums

S wi(L; — L)*/L2 and L = 5 w;L; to measure local contrast

and luminance, resp., where L; is the pixelwise luminance,
and the weights w; decrease with the distance from the center
of the context.) In the following, the aforementioned stages
are described in detail.

2.1. Deblotching. In the first stage, roughly called deblotching,
the regions with a color that is stronger than the more
common (faded) colors in the remaining parts of the image
are detected. We use the term “strong” here since, for
achromatic images, to say that a region is saturated black or
white is perhaps misleading. Observing such dark and bright
blotches in Figure 1, it can be seen that there are two main
reasons for performing deblotching. First, blotches would
increase their appearance after any contrast enhancement
operation with the result that the defaded image would
be conspicuously spotted, compromising its global visual
quality. The second reason is that blotch pixels have statistical
properties that are different from those in the rest of the
image. Hence, to ignore blotch pixels allows an improved
estimation of the parameters in the remaining stages.
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F1GuURre 2: Contrast matrices of the images in Figure 1.

The detection of blotches is usually difficult because of
their variability in shape and intensity. However, it is a bit
easier in the case of faded images because blotches are more
evident in a faded context. It is then better to detect blotches
using the (local) contrast rather than the plain pixel intensity.
In fact, the blotches have a stressed appearance in the contrast
domain, as shown in Figure 2. We define the scale-dependent
contrast C(x, y,s) as follows:

I(x,y) — M(x, y,5)
M(x, y,s) ’

C(x, p,5) = (1)

where I(x, y) is our faded image, M(x, y, s) is the mean of the
intensity I in a region €, , centered in x, y, and s is a scale
(or resolution) parameter. With this definition, which pretty
much agrees with Weber’s law, blotches become outliers
and can be easily detected by straightforward thresholding
applied on C(x, y,s). The threshold t can be either tuned
manually or set at t = 30, where ¢ is the standard deviation
of C(x, y,s). The latter choice is robust under the hypothesis
that blotches are evident on this kind of images, as shown
in Figure 1. Even though the detection method we propose
may seem blunt, it is perfectly acceptable in the context in
which it is used. In other words, it is mainly a preprocessing
tool which makes the successive computation of the Lipschitz
factor more correct—see Figure 3. It is worth noticing that
the contrast C in (1) is considered with its sign. This
enable us to distinguish between pixels that are darker or
brighter than their background and then to apply a proper
enhancement.

2.2. Lipschitz-Based Contrast Enhancement. The phenom-
enon of fading is often accompanied by noise resulting from
a chemical degradation of the photographic emulsion. The
aim of this stage is then to produce an image where the
contrast of each pixel is changed depending on whether it is
part of a noisy, an edge, or a flat region. The analysis carried
out in this section is local; global corrections are addressed
in the third phase. We are interested here in analyzing
the link between the pointwise Lipschitz regularity and the
variation of contrast of the image. It is well-known that the
Lipschitz coefficient gives information about the (possibly)
noisy nature as well as the regularity of each point [19].

(a) (b)

F1GURE 3: Map of blotches of images in Figure 1.

In particular, bearing in mind the definition given in
(1), we compute the variation of contrast with scale (i.e.,
changing the resolution) at a generic pixel (xo, yo) as

_IM(s) B
M2(s)

M(s)
M(s)

Cls) = —(1+C(s)) (2)

We assume that in a neighborhood of the pixel (xo, yo)
the image I is locally smooth. This means that it can be locally
approximated by a polynomial P)(x, y) of degree y in the
variable x, y. It turns out that the local background of the pixel
at (xo, o) is still a polynomial function. In fact, it is the mean
value of I in the region Q(s) = [xo — (H/2)s,xo + (H/2)s] X
[yo — (H/2)s, yo + (H/2)s]. More precisely,

M(s) =

1

H?2s2 JJQ(S)Py(x,y)dxdy, )
where the integral is a polynomial function whose degree
does not exceed y + 2, as proved in the appendix. It turns
out that M(s) is a polynomial function P with respect to
s: M(s) = Py_», where j < y + 2, while M(s) = (y — 2)Py_s.
Hence M(s)/M(s) = (y —2)0(s™") < yO(s™") (f = O(g)
means that f has the same order of g).

As a result, the contrast variation can be linked to the
Lipschitz regularity as

M(s)
M(s)

C(s) = —=(1+C(s) —(1+C(s))yO(s ). (4)

Integrating by separation of variables,

J €W C(s)

[
o Tt 0 Losds, 5)

we get In[(1 + C(s5))/(1 + C(sp))| e —yIn|s/sol, where oc
indicates the linear dependence, so that

1+ C(x0, y0,5)
1+ C(x0, Y0 50)

N

/In

\vd (xo, yo)
(6)

¥ (%0, yo) o< —ln‘
S0

It is important to notice that the result above permits to
impose some constraints on choices usually made by hand in
other methods proposed in literature. First of all, only two
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FIGURE 4: Representative curves of the z’*! correction in the 2nd
phase: y = —0.5 dotted, y = 0.2 solid, and y = 0.6 dashed.

scale levels are required for the discrimination between noisy
and uncorrupted points of the faded image. Indeed, taking
into account the pointwise nature of the noise, two levels
among all the possible ones can be selected. Furthermore,
no additional thresholding is required for discriminating
the nature of each pixel and selecting the corresponding
enhancement function. Finally, the size of the context Q(s)
used for the computation of the contrast coincides with
the support of the regularizing function, and the mean
can be seen as the convolution between the image and
a Haar basis function at a given scale. It is obvious that
the aforementioned considerations are valid just in case
of contrast enhancement under noise and not in general.
In the latter case, the parameters above have to take into
account the local frequency information of the image as well;
consider, for example, textures. This would imply the use of a
more sophisticated measure of contrast that would take into
account not only the spatial information (local mean) but
also the frequency (in terms of dominant frequency values)
in the same region.

Coming back to (6), the value of y(xo, y9) can be used
in a power-law correction. In fact, considering the contrast
enhancement map Z1t76030) we have the effects shown in
Figure 4: alower enhancement for noisy pixels (y(xo, yo) < 0)
than for uncorrupted points (y(xo, yo) > 0). Moreover, where
the regularity is higher (larger ys), a stronger enhancement
is performed. In other words, the contrast of flat regions is
increased, giving the image the vividness characteristic of
natural images [24]. On the contrary, edges (characterized
by smaller but still positive ys) are slightly less enhanced,
avoiding the halo effect which is common to many contrast
enhancement approaches. It is worth highlighting that the
aforementioned effects are based on the hypothesis that the
gray levels of a faded image are located in the highest portion
of the intensity range.

Summing up, this phase permits to obtain an image that,
even if still faded, has been changed in a space-varying way
in agreement with its local regularity. As a result, its noisy
pixels are less emphasized while the contrast of uncorrupted
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F1GURE 5: Output of Phase 2 for the images in Figure 1.

points is increased accounting for their context, as it is shown
in Figure 5.

2.3. Defading and Image-Quality Measure. To complete the
defading process, a global (i.e., uniform in the image)
luminance mapping is applied. It is based again on a power-
law function, z*. This mapping depends on the choice of the
parameter « which is made using an image quality measure.
The distribution of the local standard deviation o4 with
respect to the local average yy of the luminance has been
recently used in order to define a figure of merit that was
used in a restoration algorithm applied to faded images [21].
It has been shown that these two statistical parameters live
constrained in a bell-shaped region of the plane (u4, 04) [25].
We use here the same approach, in order to get an estimate
of the optimal values of the parameters used in the algorithm
described above.

Let us suppose that we acquire a digital image from
a given real-world scene using an ideal linear device and
consider only its luminance values for simplicity. We subdi-
vide the image into #n X n adjacent blocks, and calculate the
standard deviation oy and the average pg of the luminance or
gray level within each block. In the (4, 04) plane each block
is then represented by a point. If we imagine to repeat this
procedure for a huge set of scenes with all sorts of conceivable
contents, and to display the corresponding values (y4, 04)
in a single plane, we will probably get a cloud of points
showing no correlation between p4 and g4. There is no reason
indeed why the average of the luminance of an object in
the real world should influence the standard deviation of
the same luminance. Notice that this consideration does not
contradict Weber’s law, which is related to our perception
of the scene, and is not a property of the scene itself. The
situation is different if, as it happens in practice, the dynamic
range of the acquisition device is limited; in this case, very
dark and very bright blocks present a limited deviation. In
fact, it can be demonstrated that the values of oy lie now in
a limited range bounded above by a bell-shaped function of
the average; the function takes its maximum value when the
average is half the available range and falls to zero when the
average corresponds to the minimum or the maximum of the
luminance range [25].
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FIGURE 6: p(0y, 1q) values obtained as a function of « and corresponding average values of the output image for Horse Rider (a) and Arena

di Pola (b).

A proper distribution of the points in the (¢4, 04) plane,
and more precisely in the well-defined region mentioned
above, can be taken as an indicator of image quality (see
also [26].) However, no particular distribution can be used
as a requirement for image quality in general because good-
looking images exist with all sorts of distributions; thus,
more indicators are needed. However, it makes sense to speak
of a proper distribution in the case of restored images of
faded photographic prints. This category of images indeed
shows a degradation which brings the luminance averages
near the higher portion of the range of y and, hence, the
corresponding values of ¢ are constrained to be relatively
small. The effectiveness of the enhancement process of the
digitally acquired version of the print can thus be evaluated
based on the obtained increment in the value of ¢;. More
specifically, the correlation coefficient between py and oy,
which can be estimated via

Sn0a = a) (pa — By

VS 00— 00 (e~ )

p0a> pa) = s (7)

tends to assume negative values for the degraded picture.
After the processing, the shape of the cloud of points in the
(pd> 04) plane corresponds to values of p close or equal to
zero. Thus, we use closeness of p to 0 as a quality criterion for
the choice of the parameter in Phase 3, as it will be shown in
the following section and in Figure 6.

It is worth outlining that image quality measurement is of
course a complex subject. The total amount of contrast in an
image is sometimes considered as a measure of image quality
since, quite often, the larger the total contrast, the better the
image. In fact, for the restoration of faded prints, gamma
correction increases the average value of g4. In addition to
our Weber-related definition of contrast, and that in [23],

one further definition is the well-known Michelson contrast
[28]:

MC = max—m.in’ (8)

max + min

where max and min are the maximum and the minimum
of the intensities in the context. For the measurement of
contrast, the use of the plain local range (i.e., max — min)
[26] or the range of the logarithm of intensities is also inter-
esting. Both the standard deviation (also called rms contrast
[28]) and the range are measures of statistical dispersion.
Other quality measures are based on LIP arithmetic [29]. Its
use allowed Agaian et al. [5, 30] to propose a set of quality
parameters that measure total contrast; they are based on
LIP and LIP-entropy versions of Michelson (local) contrast.
After adding local contrast (again, using LIP arithmetic), the
quality measures AME1 and AME2 can be written:

ki k .
1 1 max;, © mingk
AME1 := —— — In————=
kik, ®Z:Zk:] k:zk] 20 ® max; @ mingk
1 bk max;x © mingx 9)
AME2 := — —_—
kik, ®I:Zk:1kzzkl max; @ mingg

maxj i © minl,k
x (Rln DXLk © MinL
maxj, @ ming

In LIP arithmetic (assuming the bounded range [0, 1]
for the intensity magnitude) one has, for f and g intensity
values and A a real scalar, f @ g 1= f +g¢g — fg of :=
“fiL-figef = geof = (g- L=
and A ® f := 1 - (1 — f)". LIP arithmetic has the
important advantage of respecting the bounded luminance
range, for example, [0, 1], of an image; also, Weber’s law
can be expressed in LIP arithmetic. Thus, LIP arithmetic is
advisable when the result of the operation is to be used as an



F1GURE 7: Output images of Phase 3 for the test images in Figure 1.

intensity value, and perhaps also in the present case since LIP
arithmetic is related to human visual perception issues. The
entropy version AME2 stresses the importance of uniformly
distributed local contrast. The mentioned quality indicators
will be considered in the experiments described in Section 3.

2.4. The Algorithm

Phase 1. (i) For each pixel I(x,y), compute the contrast
matrix C(x, y,s) at a given scale s, as in (1).

(ii) Compute the standard deviation ¢ of C(x;, y,s).

(iii) Hard threshold C(x, y, s) using as threshold value t =
30.Let B = {(x,y) : |C(x, y,s)| > th}.

Phase 2. (i) Compute C(x, y,s;) at another scale level s;.

(ii) Estimate y(x, y) using (6) if (x, y) € B, else y(x, y) =
0.

(iii) Pointwise y correct I(x, y) through the function

I(x, y) = P& (x, ).

Phase 3. Let min(IN ) and max(f ), respectively, be the mini-
mum and maximum value of I, where the points in B have
been neglected. For each & € [amin, Amax]>

(1) stretcll T as follows: (I - min(IN))/(max(T) -
min(l)))%

(ii) compute p, using (7) and select @ = miny|pq|.

Then, stretch T using the optimal @.

It is worth stressing that sepia images are the input of the
proposed algorithm. For this reason, only their luminance
component has been processed and is shown; the two
chrominance components can be kept unchanged if desired.

3. Experimental Results

The proposed framework has been tested on various images
coming from the Fratelli Alinari Archive in Florence, Italy. In
this paper we consider the two images shown in Figure 1 and
the ones on the left side of Figure 8.

All the images show evident opaque blotches. Using
blocks €, of size 3 x 3 pixels as the context for computing
the local contrast in 1, the maps of blotches achieved in
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TABLE 1: a values and quality metrics of the corresponding «
corrected image, as depicted in Figure 9.

o EME AME RHO

7 50.0478 —0.2887 —0.3740
9 52.5176 —0.2796 —0.1750
1.1 54.9874 —-0.2703 0.0267
1.3 57.4571 -0.2618 0.1368
1.5 59.9264 —0.2542 0.2373

the first phase are quite satisfactory: almost all the blotches
are detected, as shown in Figure 3. In the second phase,
the estimate of the pointwise y requires the computation
of the contrast at two different resolutions. Along with
the size 3 x 3 already used in the first stage, a square
window of size 15 X 15 is used here. It is worth emphasizing
that very similar values of the corresponding y(x, y) are
obtained for different choices of the window size. This is
encouraging since the estimate of the pointwise y in (6)
does not consider the constants. Performing the correction
through the characteristic curve z'™ we achieve the result
in Figure 5. It can be noted that the resulting images are
still faded but with a drastic reduction of the relative noise
contribution. The output coming from the second phase is
finally enhanced via a z* curve in the third phase. a is a global
parameter (one for all image pixels) and in our experiments
it assumed the following values « = 1.1, &« = 1.2, « = 1.1,
a = 1 and o = 1.4, respectively, for the Horse rider, Arena
di Pola, View, Woman Face, and full size Horse Rider images.
They have been selected in correspondence to p(0y, fq) since
a good matching exists with the perceived image quality.
Figure 6 shows the p(oy, pq) values obtained as a function of
a for the two test images Horse Rider (left) and Arena di Pola
(right). They exhibit a smooth and monotonic behaviour;
the optimal values of « are indicated as those for which p = 0.
The final results for the adopted images are shown in Figures
7 and 8 (right).

To test the visual quality of the results, we use four of
the quality measures proposed in [5], as alternative measures
to the (o4,uq) distribution. They, respectively, are EME,
EME with entropy, EME using the contrast of Michelson,
and AME, and they have been evaluated in the third phase
of the algorithm for each value of « (global enhancement
parameter). As depicted in Figure 9, they increase with a—
see also Table 1. The problem is now to define some critical
points in these curves that could be related to the quality of
the image. To this aim, for simplicity we analyse the AME
measure that, as we saw in Section 2.3, is an entropy-based
measure related to the Michelson contrast. An interesting
aspect concerns its curvature. In fact, its second derivative
shows a minimum (a “good point”) that corresponds to a
main change of curvature. It is interesting to note that it
occurs also in correspondence to the optimal value of «, as
selected with the (04, 4a) scheme (see Figure 9).

It is important to stress that all the involved parameters
in the proposed model are automatically tuned. In particular,
this is true for the adaptive enhancement based on Lipschitz
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» €

(f)

FIGURE 8: “View”, “Woman Face” and full size “Horse” faded images (left) and corresponding defaded images using the proposed model

(right).

regularity and for the estimation of the global enhancement
factor. In fact, the main property of the latter approach as a
quality measure is the fact that the good point is univocally
determined for each image. On the contrary, conventional
multiscale methods often require to tune more than one
threshold—depending on the adopted nonlinear contrast-
enhancement function, the allowed level of noise, and the
employed quality measure. Figure 10 shows the enhanced
images obtained using the wavelet-based method in [27]
(left), a simple linear contrast stretching (right), and the a-
rooting method in [5]. Neither is satisfactory: in the first
case, noise is still visible, in the second one highly detailed
regions are excessively smoothed, and in the third one the
image is grayish with emphasized bright details. On the
contrary, as Figure 11 shows, the defaded image using the
proposed approach has vivid colors, well enhanced edges,
and no oversmoothed regions.

The restoration application we address is not char-
acterized by real-time needs; nonetheless, the operations
performed by the proposed algorithm are very simple and the

required computing time is comparable to the ones required
by the mentioned competing approaches.

4. Discussion and Conclusions

In this paper we have presented a framework aimed at giving
faded images their original vividness. After the application
of an adaptive technique of contrast enhancement that
exploits the link between local Lipschitz image regularity
and the change of contrast, a global power-law correction
is performed. The proposed model allows for a gradual
enhancement of the image that avoids drawbacks like halo
and noise amplification. In a forthcoming paper we explore
further the theoretical framework presented in Section 2.2,
using more sophisticated bases such as those in [31]. For the
specific usage on faded photographic prints, the experiments
we have performed indicate that the proposed method gives
a satisfactory performance. However, a few issues should
be addressed in future works. First of all we observe that



8 EURASIP Journal on Image and Video Processing

%1012
70 ; ; ~ 2 ; ; . 5 . .
& 3
g &
65 f 1 £ 15¢ 5 -10F
L)
© g E
S 60f {1 = 1f { S -15¢
m Q o
2 3
=] <
55 1 gos} 1 'ED —20 +
= s3]
50 : : 0 : : -25
0.5 1 1.5 2 0.5 1 1.5 2 0.5
o o o
(b) (c) (d)
x107*
-0.23 ; ; o 4 gup————————————
—0.24 5 3r 1 03} b
R
(e} L 4 - 4
—-0.25 | o 2 0.2
m B 1t . 0.1r 1
S -0.26f £ A S
< 5 oF 1 .
-0.27 | Z ot -0.1f ! 1
~028 | s Lt Y ] -0z} : 1
Q 1
9% =03 p \ 1
-0.29 -3 : : R —
0.5 0.5 1 1.5 2 08 1 12 14 16 18 2
o o o

(e) () ()

FIGUrEg 9: Top to bottom, left to right: faded Horse Rider image; EME, EME with entropy, EME using the Michelson contrast, and AME
quality measures, as defined in [5]; second derivative of AME with respect to a; p(0dy, 4a) values obtained as a function of «; defaded Horse
Rider image obtained using the optimal « value. It is worth noticing that the AME measure has an interesting point in correspondence to
the main change of curvature (minimum of its second derivative with respect to «), which coincides with the optimal « value selected by the
(04, pta) scheme.
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(e)

FiGure 10: From top to bottom: defaded Horse rider (left) and View images (right) using the adaptive multiresolution method in [27], a

linear contrast stretching and the a-rooting approach in [5].

the estimate we use for the Lipschitz regularity is slightly
noisy; this affects in particular quasihomogeneous areas
where the contrast is very low. An improved definition of
contrast that permits a stronger dependence of the power-
term correction on the local characteristics of smooth image
areas should be devised. Finally, it would be convenient if an
optimum balance between the local and the global correction
stages could be automatically attained, since the (ug4, 04)
method does not yield a satisfactory input for this purpose.
For pictures having a nonuniform exposure to light, it would
be more reasonable to differently treat two or more portions
of the image itself. In this case, some user intervention would
be required.

Appendix

The aim of this appendix is to show that the local background
M(s), defined in (3), of a polynomial image P, (x, y) of degree
y is still a polynomial function Py ,(x, y) of degree y -2, with
y<y+2

Let n and m be two real numbers such that n + m = y
and let us consider the monomial with the highest degree of
Py(x, y), that is, x"y™. Its contribution in M(s) is

1 xo+Hs ryo+Hs
J x"y"dx dy

H?2s? ) x,-Hs) yo-Hs
1

1
TH2 i+ )(m+1)

X to Xo — 1S
[( 0+HS)n+ ( H )n+1]

X [(yo +Hs)™" — (yy — Hs)mﬂ].
(A1)

The numerator is a polynomial function with respect to
s. If p is its degree, then the function is a polynomial of degree
y — 2. Moreover,

if neven, meven, theny=n+m+2=y+2,

ifnodd, meven, theny=n+m+1=yp+1, R
2
if neven, modd, theny=n+m+1=yp+1, (A2)

if nodd, modd, theny=n+m=y.
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FIGURE 11: Left: Zoom of Horse rider, defaded with the proposed scheme. No halo effects appear, and there is neither oversmoothing nor
excessive noise enhancement. Right: Zoom of Horse rider, defaded with the adaptive multiresolution method in [27] (fop), and with linear
contrast stretching (bottom).

It turns out that the local background M(s) is a

polynomial function whose degree does not exceed y.
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