27 research outputs found

    Distributed Diagnosis of Actuator and Sensor Faults in HVAC Systems

    Get PDF
    This paper presents a model-based methodology for diagnosing actuator and sensor faults affecting the temperature dynamics of a multi-zone heating, ventilating and air-conditioning (HVAC) system. By considering the temperature dynamics of the HVAC system as a network of interconnected subsystems, a distributed fault diagnosis architecture is proposed. For every subsystem, we design a monitoring agent that combines local and transmitted information from its neighboring agents in order to provide a decision on the type, number and location of the faults. The diagnosis process of each agent is realized in three steps. Firstly, the agent performs fault detection using a distributed nonlinear estimator. After the detection, the local fault identification is activated to infer the type of the fault using two distributed adaptive estimation schemes and a combinatorial decision logic. In order to distinguish between multiple local faults and propagated sensor faults, a distributed fault isolation is applied using the decisions of the neighboring agents. Simulation results of a 5-zone HVAC system are used to illustrate the effectiveness of the proposed methodology

    Observer-based sensor fault detectability: about robust positive invariance approach and residual sensitivity

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper considers detectability of deviation of sensors from their nominal behavior for a class of linear time-invariant discrete-time systems in the presence of bounded additive uncertainties. Detectable sensor faults using interval observers are analyzed considering two distinct approaches: invariant-sets and classical fault-sensitivity method. It can be inferred from this analysis that both approaches derive distinct formulations for minimum detectable fault magnitude, though qualitatively similar. The core difference lies in the method of construction of the invariant set offline in the former method and the reachable approximation of the convergence set using forward iterative techniques in the latter. This paper also contributes in giving a formulation for minimum fault magnitudes with invariant sets using an observer-based approach. Finally, an illustrative example is used to compare both approaches.Peer ReviewedPostprint (author's final draft

    Fault diagnosis for uncertain networked systems

    Get PDF
    Fault diagnosis has been at the forefront of technological developments for several decades. Recent advances in many engineering fields have led to the networked interconnection of various systems. The increased complexity of modern systems leads to a larger number of sources of uncertainty which must be taken into consideration and addressed properly in the design of monitoring and fault diagnosis architectures. This chapter reviews a model-based distributed fault diagnosis approach for uncertain nonlinear large-scale networked systems to specifically address: (a) the presence of measurement noise by devising a filtering scheme for dampening the effect of noise; (b) the modeling of uncertainty by developing an adaptive learning scheme; (c) the uncertainty issues emerging when considering networked systems such as the presence of delays and packet dropouts in the communication networks. The proposed architecture considers in an integrated way the various components of complex distributed systems such as the physical environment, the sensor level, the fault diagnosers, and the communication networks. Finally, some actions taken after the detection of a fault, such as the identification of the fault location and its magnitude or the learning of the fault function, are illustrated

    Contaminant event monitoring in intelligent buildings using a multi-zone formulation

    No full text
    The dispersion of contaminants from sources (events) inside a building can compromise the indoor air quality and influence the occupants' comfort, health, productivity and safety. These events could be the result of an accident, faulty equipment or a planned attack. Under these safety-critical conditions, immediate event detection should be guaranteed and the proper actions should be taken to ensure the safety of the people. In this paper, we consider an event as a fault in the process that disturbs the normal system operation. Furthermore, we demonstrate how the problem of monitoring the indoor air quality in intelligent buildings against the presence of contaminant sources fits the usual framework of fault detection, isolation, identification and accommodation. Specifically, we develop a multi-zone formulation using state space equations that enables the use of fault diagnosis and fault tolerant control techniques for monitoring contaminant events inside the building environment. We demonstrate our proposed formulation for the problem of isolating multiple contaminant sources using an estimation scheme in a nine zone building settin

    Structural Detectability Analysis of a Distributed Sensor Fault Diagnosis Scheme for a Class of Nonlinear Systems

    No full text
    International audienceThe objective of this work is to analyze the performance of the local monitoring modules of a distributed diagnosis scheme tailored to detect multiple sensor faults in a class f nonlinear systems. The local modules monitor the healthy operation of subsets of sensors (local sensor sets). Every module is designed to detect the occurrence of faults in the local sensor sets when some analytical redundancy relations (ARRs) are violated. The set of ARRsis formulated using structured residuals and adaptive thresholds based on a nonlinear observer. In order to characterize the sensitivity of every monitoring module to local sensor faults, we obtain structural fault detectability conditions based on adaptive thresholds, and strong fault detectability conditions based on ultimate robust positively invariant sets. These conditions correspond to explicit relationships between the local sensor faults, the worst-case bounds on modeling uncertainties and the design parameters of the local monitoring module
    corecore