24 research outputs found

    Physiological and Morphological Correlates of Presynaptic Inhibition in Primary Afferents of the Lamprey Spinal Cord

    Get PDF
    Patch-clamp recordings in a whole-cell mode were performed on dorsal sensory cells enzymatically isolated from the spinal cord of two lamprey species, Ichthyomyzon unicuspis and Lampetra fluviatilis. The voltage-activated currents through calcium channels were analysed. GABA and the specific GABAB receptor agonist baclofen reduced the peak amplitude of inward Ba2+ current, as a robust alternate charge carrier through voltage-dependent Ca2+ channels. These effects were dose-dependent and reversible. GABAB receptor antagonists, 2-hydroxysaclofen and δ-amino-n-valeric acid, blocked the reduction of Ba2+ currents by GABA and baclofen, while bicuculline, a GABAA receptor antagonist, had no blocking action. GABA and baclofen did not modify the dorsal sensory cell membrane conductance, indicating that they did not activate ligand-gated channels. However, GABA, but not baclofen, considerably increased membrane conductance and induced Cl- currents in isolated multipolar neurons (presumably interneurons and/or motoneurons). These findings suggest that GABA and baclofen action on lamprey dorsal sensory cells is mediated by GABAB receptors. We concluded that GABA-mediated presynaptic inhibition of lamprey dorsal sensory cell fibers results from GABAB receptor activation followed by a decrease of inward voltage-activated calcium currents. Appositions of GABA-immunoreactive boutons to horseradish peroxidase-labeled fibers from the dorsal root were observed at the ultrastructural level in the dorsal column using postembedding immunogold cytochemistry. It seems likely that these appositions represent the morphological substrate of dorsal sensory cell fiber presynaptic inhibition. In very rare cases, ultrastructural features were observed which could be interpreted as synaptic specializations between the GABA-immunoreactive boutons and the primary afferent fibers. The extrasynaptic action of GABA as a basis of presynaptic inhibition of this population of primary afferent neurons is discussed

    Evolutionary Changes in the Complexity of the Tectum of Nontetrapods: A Cladistic Approach

    Get PDF
    Background: The tectum is a structure localized in the roof of the midbrain in vertebrates, and is taken to be highly conserved in evolution. The present article assessed three hypotheses concerning the evolution of lamination and citoarchitecture of the tectum of nontetrapod animals: 1) There is a significant degree of phylogenetic inertia in both traits studied (number of cellular layers and number of cell classes in tectum); 2) Both traits are positively correlated accross evolution after correction for phylogeny; and 3) Different developmental pathways should generate different patterns of lamination and cytoarchitecture. Methodology/Principal Findings: The hypotheses were tested using analytical-computational tools for phylogenetic hypothesis testing. Both traits presented a considerably large phylogenetic signal and were positively associated. However, no difference was found between two clades classified as per the general developmental pathways of their brains. Conclusions/Significance: The evidence amassed points to more variation in the tectum than would be expected by phylogeny in three species from the taxa analysed; this variation is not better explained by differences in the main course of development, as would be predicted by the developmental clade hypothesis. Those findings shed new light on th

    Melanopsin-Driven Light Adaptation in Mouse Vision

    Get PDF
    Background In bright light, mammals use a distinct photopigment (melanopsin) to measure irradiance for centrally mediated responses such as circadian entrainment. We aimed to determine whether the information generated by melanopsin is also used by the visual system as a signal for light adaptation. To this end, we compared retinal and thalamic responses to a range of artificial and natural visual stimuli presented using spectral compositions that either approximate the mouse’s experience of natural daylight (“daylight”) or are selectively depleted of wavelengths to which melanopsin is most sensitive (“mel-low”). Results We found reproducible and reversible changes in the flash electroretinogram between daylight and mel-low. Simultaneous recording in the dorsal lateral geniculate nucleus (dLGN) revealed that these reflect changes in feature selectivity of visual circuits in both temporal and spatial dimensions. A substantial fraction of units preferred finer spatial patterns in the daylight condition, while the population of direction-sensitive units became tuned to faster motion. The dLGN contained a richer, more reliable encoding of natural scenes in the daylight condition. These effects were absent in mice lacking melanopsin. Conclusions The feature selectivity of many neurons in the mouse dLGN is adjusted according to a melanopsin-dependent measure of environmental brightness. These changes originate, at least in part, within the retina. Melanopsin performs a role analogous to a photographer’s light meter, providing an independent measure of irradiance that determines optimal setting for visual circuits

    Serotonergic retinopetal projections from the dorsal raphe nucleus in the mouse demonstrated by combined [(3)H] 5-HT retrograde tracing and immunolabeling of endogenous 5-HT.

    No full text
    The present study demonstrated a direct serotonergic retinopetal projection in the mouse stemming from the lateral portion of the dorsal raphe nucleus bilaterally. A double-labeling technique was employed combining: (1) radioautography and retrograde axonal tracing following intraocular injection of [(3)H] 5-HT and (2) immunocytochemical identification of endogenous 5-HT. Radiolabeled neurons were only observed within the dorsal raphe nucleus and were always double-labeled with the 5-HT antibody. The radiolabeling appeared to be specific resulting from the retrograde transport of a radioactive 5-HT derivative product following uptake of the neurotransmitter by intraretinal terminals

    Immunohistochemical localization of calbindin-D28K and calretinin in the lamprey retina.

    No full text
    Calbindin-D28K and calretinin are homologous cytosolic calcium binding proteins localized in many retinal neurons from different species. In this report, location of cells immunoreactive to both proteins was investigated in the retina of the lamprey, Lampetra fluviatilis. This organism constitutes one of the older representative vertebrates and possesses a peculiar organization, probably unique: two-thirds of the ganglion cells are in the classical amacrine cell layer and the nerve fiber layer is located in the scleral part of the inner plexiform layer. Calbindin-like immunoreactivity was demonstrated in large bipolar cells and in cell bodies located in the inner retina. Although the distinction between labelled ganglion cells and labelled amacrine cells was rendered difficult, we hypothesized that the majority of calbindin-immunoreactive cells observed in the inner retina are ganglion cells, because of the high number of labelled fibers in the nerve fiber layer. Calretinin-like immunoreactivity was detected in both large and small bipolar cells, and also in cells located in the inner retina. Since few calretinin-immunoreactive fibers were observed in the nerve fiber layer, we assume that the latter category of cells are amacrine cells. Horizontal cells were both negative for calbindin and calretin-like immunoreactivities. Calbindin and calretinin, which are present in cones from many species, could not be detected in the photoreceptor layer favouring the rod-dominated lamprey retina. Although their distribution differs from those observed in most vertebrates, the present results indicate the good conservation of both calcium binding proteins in the retina during the vertebrate evolution.Journal ArticleResearch Support, Non-U.S. Gov'tFLWNASCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Recoverin and hippocalcin distribution in the lamprey (Lampreta fluviatilis) retina.

    No full text
    Recoverin is a calcium-sensing protein which is involved in the transduction of light in vertebrate photoreceptors. It is also detected in other retina cell types in which its function is not yet elucidated, and is an autoantigen in a cancer-associated degenerative disease of the retina. Recently, hippocalcin, an homologous protein of recoverin, belonging to the same family of fatty acylated EF-hand calcium binding proteins was described in mammals. The immunohistochemical studies presented in this paper demonstrate, that, in the retina of the lamprey, an Agnathan considered the living ancestor of actual jawed vertebrates, recoverin was present in all photoreceptors and, to a lesser extent in subpopulations of amacrine and ganglion cells whereas hippocalcin was detected in numerous amacrine and ganglion cells and in the inner segments of long photoreceptors. The existence of these calcium-binding proteins shows that they have a high degree of conservation during evolution. Their presence in the same cells that in jawed vertebrates (photoreceptors and ganglion cells for recoverin; amacrine and ganglion cells for hippocalcin) suggests that some retinal functions are well conserved but because they were also found in different cell types than in other species (amacrine for recoverin; photoreceptors for hippocalcin), they may have functions more specific to the lamprey retina.Comparative StudyJournal Articleinfo:eu-repo/semantics/publishe

    Behavioral and serotonergic consequences of decreasing or increasing hippocampus brain-derived neurotrophic factor protein levels in mice.

    No full text
    Antidepressants such as Selective Serotonin Reuptake Inhibitors (SSRI) act as indirect agonists of serotonin (5-HT) receptors. Although these drugs produce a rapid blockade of serotonin transporters (SERTs) in vitro, several weeks of treatment are necessary to observe clinical benefits. This paradox has not been solved yet. Recent studies have identified modifications of intracellular signaling proteins and target genes that could contribute to antidepressant-like activity of SSRI (e.g., increases in neurogenesis and BDNF protein levels), and may explain, at least in part, their long delay of action. Although these data suggest a positive regulation of 5-HT on the expression of the gene coding for BDNF, the reciprocal effects of BDNF on brain 5-HT neurotransmission remains poorly documented. To study the impact of BDNF on serotonergic activity, a dual experimental strategy was used to analyze neurochemical and behavioral consequences of its decrease (strategy 1) or increase (strategy 2) in the brain of adult male mice. (1) In heterozygous BDNF+/- mice in which brain BDNF protein levels were decreased by half, an enhancement of basal extracellular 5-HT levels (5-HText) that induced a down-regulation of SERT, i.e., a decrease in its capacity to reuptake 5-HT, was found in the hippocampus. In addition, the SSRI, paroxetine, failed to increase hippocampal 5-HText in BDNF+/- mice, while it produces robust effects in wild-type littermates. Thus, BDNF+/- mice can be viewed as an animal model of genetic resistance to serotonergic antidepressant drugs. (2) In wild-type BDNF+/+ mice, the effects of intra-hippocampal (vHi) injection of BDNF (100 ng) in combination with a SSRI was examined by using intracerebral microdialysis and behavioral paradigms that predict an antidepressant- and anxiolytic-like activity of a molecule [the forced swim test (FST) and the open field paradigm (OF) respectively]. BDNF induced a rapid and transient increase in paroxetine response on 5-HText in the adult hippocampus, which was correlated with a potentiation of its antidepressant-like activity in the FST. The effects of BDNF were selectively blocked by K252a, an antagonist of its high-affinity TrkB receptor. Such a correlation between neurochemical and behavioral effects of [BDNF+SSRI] co-administration suggests that its antidepressant-like activity is linked to the activation of 5-HT neurotransmission in the adult hippocampus. BDNF also had a facilitatory effect on anxiety-like behavior in the OF test, and paroxetine prevented this anxiogenesis. What was the mechanism by which BDNF exerted these latter effects? Surprisingly, by using zero net flux method of quantitative microdialysis in vivo, we found that an intra-hippocampal BDNF injection in wild-type mice decreased the functional activity of SERT as observed in BDNF+/- mice. However, the decreased capacity of SERT to reuptake 5-HT was not associated to an increase in basal 5-HText in the hippocampus of WT mice. Interestingly, using in situ hybridization experiments indicated that TrkB receptor mRNA was expressed in the hippocampus and dorsal raphe nucleus in adult mice suggesting that the neurochemical and behavioral effects of intra-hippocampal BDNF injection can mobilize both pre- and post-synaptic elements of the brain 5-HT neurotransmission. Taken together, these set of experiments unveiled a relative opposition of neurochemical and behavioral responses following either a decrease (in BDNF+/- mutant mice) or an increase in brain BDNF levels (bilateral intra-hippocampal injection) in adult mice. In view of developing new antidepressant drug strategy, a poly-therapy combining BDNF with a chronic SSRI treatment could thus improve the efficacy of current medications

    An in vitro

    No full text
    corecore