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Abstract 
Patch-clamp recordings in a whole-cell mode were performed on dorsal sensory cells enzymatically isolated 

from the spinal cord of two lamprey species, Ichthyomyzon unicuspis and Lampetra fluviatilis. The voltage-

activated currents through calcium channels were analysed. GABA and the specific GABAB receptor 

agonist baclofen reduced the peak amplitude of inward Ba2+ current, as a robust alternate charge carrier 

through voltage-dependent Ca2+ channels. These effects were dose-dependent and reversible. GABAB receptor 

antagonists, 2-hydroxysaclofen and δ-amino-n-valeric acid, blocked the reduction of Ba2+ currents by GABA and 

baclofen, while bicuculline, a GABAA receptor antagonist, had no blocking action. GABA and baclofen did not 

modify the dorsal sensory cell membrane conductance, indicating that they did not activate ligand-gated 

channels. However, GABA, but not baclofen, considerably increased membrane conductance and induced 

Cl− currents in isolated multipolar neurons (presumably interneurons and/or motoneurons). These findings 

suggest that GABA and baclofen action on lamprey dorsal sensory cells is mediated by GABAB receptors. We 

concluded that GABA-mediated presynaptic inhibition of lamprey dorsal sensory cell fibers results from 

GABAB receptor activation followed by a decrease of inward voltage-activated calcium currents. Appositions of 

GABA-immunoreactive boutons to horseradish peroxidase-labelled fibers from the dorsal root were observed at 

the ultrastructural level in the dorsal column using postembedding immunogold cytochemistry. It seems likely 

that these appositions represent the morphological substrate of dorsal sensory cell fiber presynaptic inhibition. 

In very rare cases, ultrastructural features were observed which could be interpreted as synaptic specializations 

between the GABA-immunoreactive boutons and the primary afferent fibers. 

The extrasynaptic action of GABA as a basis of presynaptic inhibition of this population of primary afferent 

neurons is discussed. 

Keywords 
calcium channels, GABAB receptors, presynaptic inhibition, GABA immunogold cytochemistry, lamprey spinal 

cord 
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Presynaptic inhibition plays an important role in the coordinating mechanisms of the spinal cord. It has been 

studied in detail in primary afferent fibers of the mammalian spinal cord, and its main features consist of (i) 

depression of the synaptic response of the postsynaptic neuron without modifying its membrane electrical 

parameters, (ii) primary afferent depolarization, and (iii) axoaxonal contacts with GABA used as a 

neurotransmitter.14, 29, 30, 45Presynaptic inhibition has also been found in the central nervous systems of 

invertebrates[25]and of several non-mammalian vertebrate groups: cyclostomes,[5]amphibians,34, 64and 

reptiles,[61]thus indicating the widespread character of this phenomenon. 

Two mechanisms have been considered as the possible basis for GABA-mediated presynaptic inhibition. 

According to the first mechanism, presynaptic inhibition is the result of primary afferent depolarization 

produced by GABA.21, 29, 45, 58In this case, the action potential amplitude decreases as a result of membrane 

resistance shunting following Cl− current activation induced by GABA action on GABAA receptors.[3]A second 

mechanism has been proposed recently. It has been shown that GABA application reduces voltage-dependent 

Ca2+ current through the nerve cell membrane.23, 26, 47In this case, the GABA effect is mediated by activation 

of GABAB receptors of the presynaptic neuron membrane. Activation of GABAB receptors reduces 

Ca2+ presynaptic influx and thereby decreases transmitter release from the presynaptic 

neuron.11, 13, 15, 28, 35, 39, 43, 46 

Physiological studies of presynaptic inhibition in the lamprey have shown that it is an important component of 

the lamprey spinal cord locomotor system.3, 4, 5In the spinal cord in vitro preparation, GABA modified the 

frequency of ventral root motor bursts during fictive swimming without changing the electrical parameters of 

the motoneurons, and these effects persisted in the presence of bicuculline, a GABAA receptor antagonist.[5]It 

has been concluded that in the lamprey spinal cord, GABA-mediated presynaptic inhibition occurs both in 

interneuron axons[3]and in primary afferent fibers.[17]GABA and the GABAB receptor agonist reduced the 

monosynaptic excitatory postsynaptic potentials (EPSPs) produced in spinal interneurons by primary afferent 

neuron stimulation. Baclofen alone or GABA in the presence of bicuculline did not alter the input resistance or 

membrane potential of the postsynaptic neurons.[17]More recently, Matsushima et al.[47]demonstrated using 

single-electrode current-clamp and voltage-clamp that baclofen reduced the peak amplitude of Ca2+ (Ba2+) 

currents in lamprey spinal motoneurons and interneurons. However, direct analysis of GABAergic actions on the 

ionic currents of primary sensory neurons has been lacking. 

Several studies have investigated the morphological substrates of primary afferent presynaptic inhibition in the 

lamprey. GABA-immunopositive terminals apposed to labelled axons of different functional properties have 

been demonstrated using light microscopy.[16]GABA-immunopositive terminals apposed to unlabelled fibers 

located in the dorsal columns and in the ventrolateral aspect of the spinal cord have also been observed using 

an ultrastructural analysis.[20]Recently, we have demonstrated that GABA-immunopositive cells are 

concentrated in the dorsal part of the lamprey spinal cord in the vicinity of primary afferent neurons, called 

dorsal sensory cells (DSCs), and their fibers.[8] 

In the present work, we have obtained additional evidence concerning the ionic mechanisms and the 

morphological substrates of presynaptic inhibition in the lamprey spinal cord. Physiologically, we have 

demonstrated that GABA and baclofen modulate Ba2+ current in DSCs and that GABAB receptor antagonists 

eliminate this effect. Morphologically using immunogold and horseradish peroxidase (HRP) methods, we have 



demonstrated that GABA-immunoreactive boutons make appositions to HRP-labelled fibers from the dorsal 

roots. Preliminary results have been reported previously.66, 67 

1. Experimental procedures 

1.1. Physiological investigations 
Patch-clamp recordings in a whole-cell mode were performed on DSCs from the spinal cord of two lamprey 

species, Ichthyomyzon unicuspis (30–36 cm long) and Lampetra fluviatilis (29–33 cm long). Prior to the 

experiments, the animals were maintained in the laboratory in well-aerated tanks (5–10°C). After anesthesia by 

immersion of the lamprey in tricaine, 3–4 cm lengths of spinal cord were removed and cut into 1–1.5-mm-long 

pieces. Individual cells were isolated by gentle trituration of these pieces of spinal cord after pretreatment with 

collagenase (1.6 mg/ml) and pronase (0.5 mg/ml). All procedures have been previously described in 

detail.[9]After dissociation, the cells were stored in a larger part of the recording chamber mounted on the stage 

of an inverted microscope (BIOLAM-1, LOMO, Russia). This larger part had a volume of 2 ml, and the volume of a 

well-isolated smaller part used for recordings was 0.5 ml. Solution N° 1, used for cell storage, consisted of the 

following (in mM): NaCl 92.0, KCl 2.5, CaCl2 2.6, MgCl2 2.4, HEPES (Na-salt) 20.0, EGTA 0.3, NaHCO3 3.0, 

NaH2PO4 0.75, Na2HPO4 0.25, glucose 10.0, pH 7.4. Solution N° 2, used for recording calcium channel currents, 

consisted of the following (in mM): BaCl2 60.0, tetraethylammonium (TEA)-Cl 40.5, EGTA 0.1, MgCl2 2.4, HEPES 

15.0, tetrodotoxin (TTX) 0.001, pH 7.3. Both solutions were aerated with O2 and kept cooled (10°C). Isolated 

DSCs could be clearly distinguished by their morphological features: they were bipolar cells with a round-shaped 

soma with a diameter of 35–60 μm and one or two branches from 30 up to 200 μm length. Pipettes having tip 

diameters of 2–3 μm and resistances of 2–5 MOhms were pulled from Micro-Haematocrit capillary tubes 

(Labcraft Brand). The intrapipette solution consisted of the following (in mM): Cs-glutamate 100.0, 

CsMeSO4 20.0, MgCl2 4.0, TEA-acetate 8.0, HEPES 10.0, EGTA 8.5, ATP 5.0, GTP 1.0, creatine phosphate (CP) 

14.0, CP kinase 50 U/ml, leupeptin 0.01, glucose 10.0, pH 7.3. For a whole-cell recording the classical pressure 

rupture of the membrane inside the pipette and the equilibration of the intrapipette solution with the 

cytoplasm was used. After obtaining a whole-cell recording, the membrane potential was voltage-clamped at 

−60 mV. The pipette with the attached cell was then moved to the smaller part of the recording chamber. 

Voltage-dependent inward current was evoked by a series of depolarizations from holding potentials of −60 or 

−80 mV up to +30 mV using 10 mV steps of 500 ms duration. Macroscopic currents through calcium channels 

were isolated from voltage-dependent sodium and potassium channel currents as described by others.36, 48It is 

known that Ba2+ ions pass through the calcium channels and Ba2+ was used here as a charge carrier to provide a 

large, stable current and to remove Ca2+-dependent effects due to changes in intracellular Ca2+ concentration. 

This approach is widely used for isolating calcium channel currents.[10]Drugs were applied to within 200 μm of 

the neuron using a Hamilton microsyringe. Whole-cell recordings were performed using the AXOPATCH-1D 

amplifier (Axon Instruments, U.S.A.) with the CV-4 headstage (Axon Instruments). The recordings were digitized 

with a DigiData-1200 (Axon Instruments) and stored on the hard disk of the computer IBM-PC-486. The program 

CLAMPEX of the pCLAMP 6.2 software package was used for data acquisition. For data analysis, the CLAMPFIT 

program of the same package was used. Leakage currents and capacitative currents were not subtracted. 

Membrane conductance was evaluated from the transmembrane current changes in response to a series of 

small voltage steps applied to the cell. 

1.2. Morphological investigations 
Six adult lampreys Lampetra fluviatilis 29–33-cm-long were used for postembedding immunogold cytochemistry 

with GABA antibodies. After anesthesia by immersion in tricaine, a 5–6 segment length of spinal cord from the 

dorsal fin region was dissected in aerated (98% O2+2% CO2) physiological solution consisting of the following (in 

mM): 115 NaCl, 0.8 NaH2PO4, 0.2 Na2HPO4, 2.0 KCl, 2.0 CaCl2, 0.9 MgCl2, 8.0 NaHCO3, 5.5 glucose, pH 7.3–7.4. 



HRP (Boehringer) was applied to the central stump of a cut dorsal root from a suction pipette using 

iontophoresis. The pipette contained a 5–10% solution of HRP in 0.1 M phosphate buffer, pH 8.4. Positive 

current (3–5 nA) was applied to the pipette during the first 0.5 h, then the spinal cord piece was allowed to 

survive for 10–24 h with the HRP pipette remaining in place. The spinal cord piece was then fixed for 3–4 h with 

1% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M phosphate buffer, pH 7.4. The spinal cord piece was 

processed for HRP with the Adams' technique,[1]cut into 2-mm-long pieces and Epon-embedded for 

conventional electron microscopy. Ultrathin sections were mounted on nickel grids and processed according to 

the standard immunogold procedure using polyclonal anti-GABA antisera, raised in rabbit (Immunotech) and 

diluted 1:2 000 in Tris-buffered saline (pH 7.6) and goat anti-rabbit immunoglobulin coupled to colloidal gold 

particles, mean diameter 15 nm (Janssen) and diluted 1:75. Profiles were considered to be immunopositive if the 

density of gold particles exceeded that of the surrounding tissue by five-fold. 

Control sections of lamprey spinal cord tissue, were reacted with fixative in the presence of GABA, l-glutamate, 

glycine, taurine, or l-aspartate, as described by Ottersen,[53]and then incubated with the anti-GABA antiserum. 

A high specificity of antiserum has been observed in most tests, though a weak cross-reactivity was found when 

the GABA antibody was used in the aspartate immunoconjugate. Another control test consisted of omitting the 

first antibody, which resulted in no labelling. 

To evaluate the size and shape of synaptic vesicles, their diameters were measured and an index of vesicle 

ellipticity, e, was calculated according to the equation 

𝑒 = 𝑎2 − 𝑏2𝑎 

where a and b represent the longest and shortest diameters of the synaptic vesicles, respectively (0≤e<1, for 

round-shaped vesicles e=0).[50]Values throughout the text are presented as mean±S.E.M. 

1.3. Materials 
δ-Amino-n-valeric acid (AVA), l-aspartate, baclofen, (−)bicuculline methiodide, GABA, glycine, l-glutamate, 

muscimol, taurine, TEA, tricaine (MS 222), and TTX were obtained from Sigma Chemical Co., St. Louis, MO, U.S.A. 

2-Hydroxysaclofen was obtained from Research Biochemicals International, Natick, MA, U.S.A. 

2. Results 
Fig. 1 is a schematic drawing of lamprey spinal cord sensory input. Primary afferent neurons of the lamprey 

spinal cord consist of two populations. One of them, as in other vertebrates, is the spinal ganglion cells, and the 

second consists of the DSCs which have a large soma (30–60 μm) located in the dorsal part of the spinal cord just 

below the dorsal fiber column. The DSCs are homologous to the Rohon-Beard cells of fish and 

amphibians.19, 32, 52, 57The dorsal roots are composed of both the central branches of the dorsal root 

ganglion cells and the peripheral branches of the DSCs. Ascending and descending axons of primary afferent 

neurons are located in the dorsal fiber column. 



 
Fig. 1. Schematic drawing of a lamprey spinal cord segment illustrating some connections of two types of 
primary afferent neurons: dorsal sensory cells and dorsal root ganglion cells. 
 

2.1. Physiological investigations 
After dissociation, DSCs having processes from 40 to 200 μm in length were chosen for investigation. The 

currents through the calcium channels were recorded in more than 200 DSCs and analysed in 59 DSCs 

of Ichthyomyzon unicuspis and in 44 DSCs of Lampetra fluviatilis. These cells had membrane potentials from −32 

to −60 mV (mean=−40.5±9.1 mV) and generated Na+ and K+ currents with amplitudes up to 50 nA in the normal 

solution (N° 1), when applying depolarizing voltage steps from the holding potential −100 mV up to +30 mV in a 

voltage-clamp mode (Fig. 2A, B). After performing this test to evaluate the condition of the cell, the pipette with 

the cell attached was then moved to the smaller part of the recording chamber, and the normal solution (N° 1) 

was replaced by the calcium current solution (N° 2). After 2–3 min exposure to solution N° 2, a series of 

depolarizing steps from −100 up to +40 mV evoked inward currents with kinetic parameters different than the 

Na+ and K+ currents recorded in the normal solution (Fig. 2C). Based on the current–voltage relationship, this 

current is likely to be a calcium channel current carried by Ba2+. The amplitude of the current was stable during 

>30 min perfusion with 1 μM TTX, and it was blocked by the addition of 5 mM CdCl2 (Fig. 2D). It was the barium 

current in this case because Ca2+ was replaced with Ba2+ in the bath solution. Those cells maintaining stable 

parameters of Ba2+ current throughout the recording period were chosen for further analysis. The Ba2+ currents 

in DSCs from the two lamprey species used had similar values (see Table 1). 

 



Fig. 2. Voltage-activated currents in an isolated dorsal sensory cell. Shifting the potential from −100 mV up to 
+30 mV produced Na+ and K+ currents through the membrane in solution No 1 containing Na+ and K+ ions (A). 
The corresponding current–voltage curve is shown in B for the peak inward currents. When the same cell was 
bathed in solution No 2 containing no Na+ and K+ ions and with Ba2+ replacing Ca2+, shifting the potential from 
−100 mV up to +40 mV produced an inward current through the calcium channels (C). In (D) the current–voltage 
curves for the currents in (C) are given before (round dots) and after block of the Ba2+ current by 5 mM 
Cd2+ (square dots). 
 

Table 1. Parameters of the barium current in dorsal sensory cells of two lamprey species 

Species Threshold potential of 
Ba2+ current 

Potential of peak 
Ba2+ current 

Mean peak value of 
Ba2+ current 

Ichthyomyzon unicuspis −35 to +5 mV −8 to +30 mV 7.24±3.6 nA (n=59) 

Lampetra fluviatilis −30 to −10 mV −20 to +10 mV 8.48±6.0 nA (n=44) 

 

Addition of GABA to the perfusion solution always reduced the Ba2+ current amplitude. A typical effect of GABA 

on the Ba2+ current is illustrated in Fig. 3A. The GABA effect was dose-dependent and reversible. The minimal 

concentration of GABA required was 0.1 mM, while 10 mM GABA reduced the Ba2+ current by 50%. We typically 

used moderate concentrations of GABA (1 and 4 mM) which permitted repeating the effect with serial re-

applications and washes. The peak reduction of the Ba2+ current by GABA occurred within 1–2 min, and, 

therefore, all measurements of GABA effects were made 2 min after the addition of GABA. Application of 4 mM 

GABA reduced the peak current amplitude by a mean value of 28.5±4.9% (n=45). After 2 min washing in GABA-

free solution, the peak current amplitude recovered to 96.2±9.2% in both species (n=45). GABA application did 

not change membrane conductance, nor did it cause opening of Cl− channels (see below). 

Baclofen, a selective GABAB receptor agonist, mimicked the GABA effect on the Ba2+ current in DSCs of both 

species (Fig. 3B). After 2 min perfusion with solution N° 2 containing 0.5 mM baclofen, the peak amplitude of the 

Ba2+ current was reduced by 25.5%±3.8% (n=30). After subsequent 2 min perfusion with baclofen-free solution, 

the Ba2+ current recovered its initial level (Fig. 3B). 

 
Fig. 3. Action of GABA and baclofen on the voltage-activated Ba2+ currents in an isolated dorsal sensory cell. 
Application of 4 mM GABA (A) and 0.5 mM baclofen (B) to the bath solution reduced the peak amplitude of the 
voltage-activated Ba2+ currents by 28.5% and 25.5%, respectively. After 2 min of wash out, the currents 
recovered 96.2% (A) and 89.1% (B) of their control levels. 
 

To determine the pharmacological properties of the receptors activated by GABA and baclofen in DSCs 

membranes, specific antagonists of GABAA and GABAB receptors were used. In all seven DSCs tested, the GABA 

effect was not modified by a prior 1 min exposure of the cell to 0.1 mM bicuculline, a GABAA receptor antagonist 

(Fig. 4A,B). Similarly, in two DSCs, it was examined whether bicuculline antagonized the action of baclofen. The 



cells were preincubated for 1 min with 0.2 mM bicuculline and then perfused with 0.1 mM bicuculline plus 

0.5 mM baclofen. In the presence of baclofen and bicuculline the Ba2+ current decreased by 22% in one cell and 

by 30% in the second cell (not illustrated). After 2 min of wash out, the Ba2+ current recovered to 97 and 90% of 

control in the two cells, respectively. Thus, the effects of baclofen and GABA remained in the presence of the 

GABAA receptor antagonist, bicuculline. 

2-Hydroxysaclofen, an antagonist of GABAB receptors,[41]was tested in four DSCs. First, the reduction of 

Ba2+ current by 0.5 mM GABA was observed, then after a 10 min wash out, 0.1 mM 2-hydroxysaclofen plus 

0.5 mM GABA accompanied by 0.1 mM 2-hydroxysaclofen were added to the bath solution. In three cells, the 

Ba2+ current remained unchanged (Fig. 4C), while in one cell it increased by 6%. 

A second GABAB receptor antagonist, AVA,[59]was also tested. When applied alone, AVA did not modify the 

Ba2+ current in a concentration range of 0.14–1.4 mM. To determine the action of AVA on the baclofen effect, six 

cells were exposed for 1 min to 0.5 mM AVA. Then they were perfused for 2 min with 0.2 mM AVA plus 0.5 mM 

baclofen. In five cells, the Ba2+ currents were not modified (Fig. 4D), while in one cell the Ba2+ current was 

decreased by 4%. Thus, the actions of GABA and baclofen on the Ba2+ currents were blocked by GABAB receptor 

antagonists. 

 
Fig. 4. Influences of GABA receptor antagonists on the GABA and baclofen reductions of the Ba2+ current. In an 
isolated dorsal sensory cell, GABA reduced the Ba2+ current by 13.2% (A). Bicuculline (0.2 mM), a GABAA receptor 
antagonist, did not modify the GABA effect in the same cell (B). 2-Hydroxysaclofen (0.1 mM) and AVA (0.2 mM), 
GABAB receptor antagonists, blocked the GABA and baclofen reductions of the Ba2+ current in dorsal sensory 
cells (C and D, respectively). Controls and tests represent the currents recorded before and after antagonist 
application, respectively. 
 

Muscimol (0.5 mM), a GABAA receptor agonist and a weak GABAB agonist,12, 62decreased the peak amplitude of 

the Ba2+ current by 13±2.6% (n=8). 

Glycine and taurine induced Cl− currents and have been shown to act on both GABA and glycine receptors in 

isolated multipolar cells of adult lampreys. The action of glycine (1 mM) and taurine (5 mM) was tested now on 

the Ba2+ current in eight DSCs from I. unicuspis and five DSCs from L. fluviatilis. Neither glycine nor taurine 

affected the Ba2+ currents. 



To measure changes in membrane conductance with application of GABA and baclofen, a passive current was 

induced through the membrane in a voltage-clamp mode using depolarizing voltage pulses of 20 mV, 100 ms in 

duration, and with intervals of 200 ms for 15 s (Fig. 5). In all eight DSCs tested, the conductance did not change 

after application of 0.5–1.0 mM baclofen or 1–4 mM GABA (Fig. 5A,1,2), indicating that neither baclofen nor 

GABA activated ligand-gated channels. Consistent with this conclusion, GABA and baclofen application did not 

induce any additional currents in the same DSCs (Fig. 5A,4,5). However, it has been shown that activation of 

GABAA receptors induces Cl− current and increases the membrane conductance in giant interneurons of the 

lamprey spinal cord.[37]To compare GABA and baclofen effects in different populations of lamprey spinal cord 

neurons, we performed the same experiments in isolated multipolar neurons (presumably interneurons and/or 

motoneurons). As shown in Fig. 5B, baclofen did not produce any membrane conductance change (Fig. 5B2), 

while GABA considerably increased the membrane conductance and induced a Cl− current (Fig. 5B1,4). 

 
Fig. 5. Effects of GABA and baclofen on the membrane conductance of spinal neurons. (A) In a dorsal sensory 
cell, the amplitudes of passive currents evoked by a series of voltage pulses (3) were not modified by 4 mM 
GABA (1) or by 1 mM baclofen (2) applications. Neither GABA nor baclofen induced currents in the same cells in 
a voltage-clamp mode (4 and 5, respectively). (B) In a multipolar neuron (presumably an interneuron or a 
motoneuron), the amplitudes of passive currents increased after GABA application (1) indicating an increased 
membrane conductance, but the current amplitudes were not changed after baclofen application (2). Voltage 
pulses in A and B were 20 mV in amplitude and 100 ms in duration (3). GABA, but not baclofen, evoked Cl− 
current in the same multipolar neuron (4 and 5, respectively). The moment of drug application is marked by 
arrows. 
 

2.2. Morphological investigations 
After HRP application to the central stump of the cut dorsal root, the labelled fibers could be followed in 

semithin transverse sections for several spinal segments in both the rostral and the caudal directions. Labelled 

fibers were found ipsilaterally in the lateral zone of the dorsal column forming a vertically-oriented band 

extending from the entrance of the dorsal root to the ventral limit of the dorsal column. Several DSCs were also 

labelled. They were characteristically localized in the zone between the dorsal column and the large 

reticulospinal Müller axons and they had a rather regular round shape with no dendrites. In transverse ultrathin 

sections at the electron microscopic level, the primary afferent fiber profiles labelled with HRP could be easily 



distinguished (Fig. 6A,C). After GABA immunocytochemical processing, these fibers never produced any GABA-

immunoreactivity (GABA-IR). Labelled primary afferent fibers made conventional synapses onto unidentified 

dendrites. These synapses were asymmetric, and contained round synaptic vesicles with a maximum diameter 

that ranged from 32 to 61 nm (mean=45.8±6.3 nm, n=150) and with an index of ellipticity of e=0.53. 

Postsynaptic dendritic profiles were usually GABA-immunonegative, but some GABA-immunopositive 

postsynaptic dendrites were observed. In ultrathin sections obtained from the spinal cords of six animals, we 

photographed 62 synapses formed by primary afferent fibers onto postsynaptic dendrites. GABA-ir boutons 

containing synaptic vesicles were found in close proximity to 66% of these synapses (Fig. 6). The directly 

apposed primary afferent fiber and the GABA-IR bouton profile were not separated by any other profiles. The 

apposed GABA-IR boutons often made symmetric synapses onto the same dendritic profile that was contacted 

by the primary afferent fiber, thus forming a triad. Synaptic vesicles of the GABA-IR boutons were usually 

clustered over the presynaptic membrane, but were also often found to be associated with the membrane 

apposed to the afferent fiber. The vesicles of these GABA-IR boutons had a shape and diameter similar to those 

observed in the primary afferent fibers. Their maximum diameter ranged from 31 to 55 nm 

(mean=46.7±5.6 nm, n=150) and had an index of ellipticity of e=0.56. In most cases the apposition between the 

GABA-IR bouton and the afferent axon displayed no synaptic specializations. Only in two cases of these 

appositions were observed ultrastructural features that could be interpreted as synaptic-like specializations. In 

these cases, small densities were distinguished in the presynaptic and postsynaptic areas of the apposed zones, 

and the synaptic vesicles were associated with the presynaptic membranes (Fig. 7). 

 
Fig. 6. Apposition of GABA-immunoreactive boutons and HRP-labelled primary afferent fibers (pa). Two 
examples (A and C). (B) High power view of the boxed area in (A). Apposed GABA-immunoreactive boutons are 
indicated by asterisks. Appositions are delimited by unfilled arrows. Synapses of primary afferent fibers with 



non-identified dendrites (d) are indicated by unfilled arrowheads, and synapses of GABA-immunopositive 
boutons with non-identified dendrites are indicated by filled arrowheads. 

 
Fig. 7. Two cases of presumed synaptic-like specializations in the apposed zone of primary afferent fiber (pa) and 
GABA-immunoreactive bouton (A, B). GABA-immunoreactive boutons are indicated by asterisks. Appositions are 
delimited by unfilled arrows. Filled arrows indicate ultrastructural features which could be interpreted as 
synaptic-like specializations. HRP-labelled primary afferent fibers make synapses (unfilled arrowheads) with non-
identified dendrites (d). 
 

3. Discussion 

3.1. Physiological investigations 
In the present work, we studied the Ca2+ channel currents in DSCs that possessed axonal processes of 40 to 

200 μm in length after enzymatic dissociation. While we cannot say with certainty how much the processes 

themselves contributed to the results observed here, we suggest that they were likely to be within the voltage-

clamped zone. In our experiments, the pipette position in different cells varied from the centre of DSC soma to 

the initial region of a DSC process, but the effects of GABA agonists on Ca2+ channel currents did not depend on 

the micropipette position. This observation supports the idea that the soma and the proximal axonal processes 

exhibit similar GABAergic mechanisms and may thus reflect GABAergic mechanisms in more distal axonal 

processes. It was shown recently that GABA-immunopositive terminals were located both in close apposition to 

the DSC somata and their processes.[8]Therefore, it is quite possible that GABA receptors are distributed both in 

the soma and fiber membrane. It seems likely that there are no GABAA receptors in the DSC membrane because 

Cl− currents were not induced in DSCs by GABA application. 

The Ca2+ channel current was isolated in more than 200 DSCs obtained from two lamprey species, Ichthyomyzon 

unicuspis and Lampetra fluviatilis. Judging by the threshold potentials of calcium channel activation in different 

DSCs, the calcium channels are not uniform and can be subdivided into several types[9]as in other vertebrate 

neurons.42, 48To ensure that all types of Ca2+ channels could be activated, the holding potential was maintained 

in our experiments at the level of −100 or −80 mV. Under these conditions, the threshold potentials of 

Ca2+ channel currents were close to (−35 mV) or varied between −10 mV and +5 mV. Our results are in 

accordance with data on calcium channel properties obtained in DSCs of the isolated lamprey spinal 

cord.18, 47Christenson et al.[18]reported that the presence of low-voltage-activated calcium channels is 

characteristic of touch-activated DSCs, but not of pressure-activated DSCs of the lamprey spinal cord. They gave 

the fraction of low-voltage-activated DSCs as three out of fifteen total DSCs. 



In the present study, GABA reduced the peak amplitude of Ca2+ channel currents in isolated DSCs. In the present 

investigation, it was also observed that the GABA effect was mimicked by baclofen, a GABAB receptor agonist. 

The baclofen effect was reversible and was abolished by GABAB receptor antagonists. Thus, the evidence here 

strongly suggests that the GABA and baclofen effect on lamprey DSCs is mediated by GABAB receptors and that it 

acts to reduce the peak amplitude of voltage-activated calcium current. This is in accordance with the data 

obtained by Matsushima et al.,[47]who found using single-electrode voltage-clamp recordings in the isolated 

lamprey spinal cord that baclofen reduced the peak amplitude of calcium currents in both low- and high-

threshold Ca2+ channels in motoneurons and interneurons. The involvement of GABAB receptor activation in the 

mediation of presynaptic inhibition has been previously demonstrated in the isolated spinal cord of the 

lamprey.4, 17These authors demonstrated additionally that these GABAB effects are mediated by G-proteins. 

Therefore, taken together, the evidence suggests that GABA-mediated presynaptic inhibition of lamprey DSC 

fibers results from GABAB receptor activation followed by a decrease of inward voltage-activated calcium 

currents. The inhibition of calcium entrance into the axonal presynaptic zone results in a decrease of 

neurotransmitter release in many other preparations.13, 22, 40, 46Therefore, glutamate release from sensory 

afferent fiber synapses terminating on spinal interneurons and motoneurons will be decreased. 

According to the data obtained in the present work, GABA and baclofen application did not change the 

membrane conductance of the DSCs. In addition, GABAA receptor antagonists did not modify the GABA effect on 

the DSCs. This lack of GABAA effect in the isolated DSCs (Fig. 5A,4) can not be attributed to the enzyme 

treatments used for dissociation because under the same conditions isolated multipolar cells displayed robust 

GABAA effects (Fig. 5B,4). It seems likely, therefore, that the DSC membrane possesses no or few 

GABAA receptors and that there may be different GABAA and GABAB receptor distributions in different neuron 

populations of the lamprey spinal cord. 

3.2. Morphological investigations 
Six amino acid-protein complexes fixed with glutaraldehyde were used for testing the specificity of the anti-

GABA antibody. The control experiments showed a selective labelling of GABA-containing conjugate. The other 

amino acids expressed no immunogold labelling or only weak labelling in the case of aspartate-containing 

conjugate. This allows us to conclude that the antibody detects GABA in the tissue with sufficient selectivity. In 

our experimental material, immunolabelling was clustered over profiles containing synaptic vesicles. The 

ultrastructure of these synapses differed from that of primary afferent synapses. Synapses made by the 

immunolabelled boutons onto unidentified dendrites were symmetric while the primary afferent fibers 

established asymmetric synapses which are known to be glutamatergic.[17]Therefore, the ultrastructure of 

these GABA-immunolabelled boutons alone suggests that they belong to inhibitory neurons. It has been 

proposed that the density of gold particles reflects the antigen concentration.[54]Since the density of gold 

particles over the boutons exceeded the background by more than five times, it is concluded that there was a 

high concentration of GABA in the immunolabelled boutons. 

The arrangement of GABA-IR boutons apposed to HRP-labelled fibers from the dorsal root and located in the 

lamprey dorsal column, which was observed in our experiments, coincides on the whole with the descriptions of 

Christenson et al.[20]In that work, GABA-IR terminals were found to make appositions with unlabelled axons 

located in the dorsal column. These authors concluded that axons with apposed GABA-IR profiles were primary 

afferent axons because most of the axons of the dorsal column are probably derived from primary sensory 

neurons.19, 57Our findings made with HRP-labelled primary afferent fibers confirm this conclusion. 

In few cases, we found ultrastructural features which could be interpreted as synaptic specializations between 

the GABA-IR boutons and the primary afferent fibers. This observation is in agreement with the previous finding 

that only 2–3% of apposed GABA-IR terminals and GABA-negative axons could be suggested to make a 



synapse.[20]It seems unlikely that GABA release in these rare synapses could be sufficient to produce the total 

inhibitory effect on the primary afferent axons. Rather the GABA effect on the primary afferent axon is 

extrasynaptic. The lack of true axoaxonal synapses in lamprey primary afferent terminal therefore suggests that 

GABA is acting extrasynaptically in this model of presynaptic inhibition in lamprey and it is also consistent with 

the absence of GABAA receptors in dorsal sensory cells. Stuart and Redman[63]also suggested that in cat primary 

afferents, (−)-baclofen-activated receptors are predominantly extrasynaptic. 

It is possible to hypothesize that GABA reaches the extrasynaptic GABAB receptors of the primary afferent axon 

membrane by two different routes. In the first hypothesized route, GABA could be released non-synaptically 

from the apposed bouton, and in the second route, GABA could diffuse from neighbouring axodendritic 

synapses of the GABA-IR terminals (Fig. 8). Non-synaptic release of GABA from GABA-containing axon terminals 

was proposed by Christenson et al.[20]to be a way of GABA access to the primary afferent fibers in this neuronal 

circuit of the lamprey. Non-synaptic release of other neurotransmitters and their actions on distant receptors 

has been previously discussed.2, 7, 33The long extent of the appositions and the frequently observed clustering 

of synaptic vesicles near the apposed neuronal membrane can be considered as an arrangement favourable to 

this mode of GABA action. Under conditions of high sustained activity, it has been shown that the GABA-

transporter may function in reverse, thereby increasing extracellular levels of GABA.[56]Carrier-mediated 

release of GABA from neurons and glial cells has been demonstrated in different experimental 

conditions.27, 44Carrier-mediated release could therefore increase the level of GABA around the primary 

afferent fibers in the extrasynaptic zone. 

 
Fig. 8. Schematic drawing of the neuronal circuitry providing presynaptic inhibition of lamprey spinal cord 
primary afferents. GABA presumably acts on the extrasynaptic GABAB receptors located on the primary afferent 
fiber surface in the apposition zone (a). GABA could reach these receptors by diffusing from neighbouring 
synaptic cleft (s) or by being released non-synaptically. 
 

However, there are also arguments in favour of the second hypothesis regarding the route for GABA to reach 

extrasynaptic GABAB receptors. The lateral diffusion of transmitter from one discrete postsynaptic domain to 

another has been shown in neighbouring glycinergic synapses of the Mauthner cell.[31]In addition, there is 

experimental evidence suggesting that during increased synaptic release, only part of the GABA can be removed 

by re-uptake. Under these conditions, GABA would diffuse to extrasynaptic sites and act upon extrasynaptic 

receptors (for review see [60]). Experimental evidence for distant actions of GABA has been obtained in the 

neuronal circuits of the hippocampus.[38]Stimulation of one bundle of afferent fibers in the stratum radiatum 

region of CA1 caused short-lasting, heterosynaptic depression of excitatory transmission in an independent, 



overlapping set of inputs. These authors concluded that GABA released from conventional synapses spilled over 

and acted as a diffuse signal onto nearby (within micrometers) excitatory synaptic terminals. This conclusion was 

supported by the observation that inhibition of GABA re-uptake enhanced the presynaptic inhibitory effect of 

GABA in this paradigm.[38]Diffusion of GABA from GABAergic synapses to neighbouring glutamate-containing 

terminals in the mammalian brain and the subsequent action of GABA on GABAB receptors have already been 

discussed.[51]Our data do not contain sufficient evidence permitting exclusion of either hypothesis, but it seems 

likely that the ultrastructural interrelations observed in the lamprey spinal cord could provide the morphological 

substrate for both mechanisms of GABA actions on the primary afferent fiber: the effect of GABA released non-

synaptically or diffusing from neighbouring conventional synapses. 

4. Conclusion 
The data concerning the physiological and morphological basis of primary afferent presynaptic inhibition in 

lampreys and in mammals do not coincide in all details. It seems likely that in lamprey, presynaptic inhibition of 

primary afferents is mediated by GABAB receptors, and GABAA receptors seem to be absent in the lamprey 

primary afferent neurons (at least in one class of primary afferents, the dorsal sensory cells). In mammals, 

however, primary afferent presynaptic inhibition is mediated by GABAA receptors55, 63, 65or both GABAA and 

GABAB receptors.[24]Synaptic contacts of GABA-containing boutons and primary afferent fibers have been 

described in mammals,6, 49while in lamprey such synapses are extremely rare if not absent at all 

(Christenson et al.[20]and the present investigation). This variance may be explained by species differences. It 

can also be suggested that the difference in GABA receptor types observed in primary afferent neurons of 

lampreys versus mammals may be due to the fact that we have studied GABA receptors only in the dorsal 

sensory cells, which represent only one class of lamprey primary afferent neurons and are not present in 

mammals. It has been shown that GABAA receptors mediate presynaptic inhibition in other neurons of the 

lamprey spinal cord.[3] 
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58 P. Rudomıń, I. Jimenez, M. Solodkin, S. Duenas. Sites of action of segmental and descending control of 

transmission on pathways mediating PAD of Ia- and Ib-afferent fibers in cat spinal cord. J. 

Neurophysiol., 50 (1983), pp. 743-769 

59 M. Schwarz, T. Klockgether, U. Wullner, L. Turski, K.-H. Sontag. δ-Aminovaleric acid antagonizes the 

pharmacological actions of baclofen in the central nervous system. Expl Brain Res., 70 (1988), pp. 618-

626 

60 Somogyi P. (1989) Synaptic organization of GABAergic neurons and GABAA receptors in the lateral geniculate 

nucleus and visual cortex. In Neuronal Mechanisms of Visual Perception (eds Lam D. K.-T. and Gilbert C. 

D.), pp. 35–62. Portfolio, Texas. 

61 H. Steffens, E.D. Schomburg, H.B. Behrends. Segmental reflex pathways from cutaneous afferents to α-

motoneurones in the tortoise. Neurosci. Lett., 1 (Suppl.) (1978), p. S104 

62 J.M. Stirling, A.J. Cross, T.N. Robinson, A.R. Green. The effects of GABAB receptor agonists and antagonists 

on potassium-stimulated [Ca2+]in in rat brain synaptosomes. Neuropharmacology, 28 (1989), pp. 699-

704 

63 G.J. Stuart, S.J. Redman. The role of GABAA and GABAB receptors in presynaptic inhibition of Ia EPSPs in cat 

spinal motoneurones. J. Physiol., Lond., 447 (1992), pp. 675-692. (in Russian) 

64 Z.A. Tamarova, A.I. Shapovalov, B.I. Shiriaev. Synaptic effects in the endings of individual primary afferent 

fibers mono- and polysynaptically connected to spinal motor neurons. Fiziol. Zh. SSSR, 67 (1981), 

pp. 1511-1520. (in Russian) 

65 S.W. Thompson, P.D. Wall. The effect of GABA and 5-HT receptor antagonists on rat dorsal root potentials. 

Neurosci. Lett., 217 (1996), pp. 153-156 

66 Vesselkin N. P., Batueva I. V., Buchanan J. T., Kurchavyi G. G., Tsvetkov E. A., Sagatelyan A. K., Suderevskaya E. 

I., Repérant J., Rio J.-P. and Adanina V. O. (1997) Different functional properties of neurons in spinal cord 

of lower vertebrates. In Abstr. of 33 Internat. Congr. of Physiol. Sci. IUPS. Abstr. L072.05. St Petersburg. 

67 Vesselkin N. P., Repérant J., Batueva I. V., Buchanan J. T., Adanina V. O., Rio J.-P. and Tsvetkov E. A. (1997) 

GABA-immunopositive boutons contact the primary afferent terminals in the lamprey spinal cord. 

In Abstr. of 17th Eur. Winter Conf. of Brain Res. Arc 2000 (France), pp. 73. 

 


	Physiological and Morphological Correlates of Presynaptic Inhibition in Primary Afferents of the Lamprey Spinal Cord
	Recommended Citation
	Authors

	tmp.1607536232.pdf.lbr3J

