83 research outputs found

    Post-Transcriptional Regulation of BCL2 mRNA by the RNA-Binding Protein ZFP36L1 in Malignant B Cells

    Get PDF
    The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3′ untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the ‘maximum information coefficient’ (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3′ untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3′ untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells

    Sequencing, de novo annotation and analysis of the first Anguilla anguilla transcriptome: EeelBase opens new perspectives for the study of the critically endangered european eel

    Get PDF
    Background: Once highly abundant, the European eel (Anguilla anguilla L.; Anguillidae; Teleostei) is considered to be critically endangered and on the verge of extinction, as the stock has declined by 90-99% since the 1980s. Yet, the species is poorly characterized at molecular level with little sequence information available in public databases.\ud \ud Results: The first European eel transcriptome was obtained by 454 FLX Titanium sequencing of a normalized cDNA library, produced from a pool of 18 glass eels (juveniles) from the French Atlantic coast and two sites in the Mediterranean coast. Over 310,000 reads were assembled in a total of 19,631 transcribed contigs, with an average length of 531 nucleotides. Overall 36% of the contigs were annotated to known protein/nucleotide sequences and 35 putative miRNA identified.\ud \ud Conclusions: This study represents the first transcriptome analysis for a critically endangered species. EeelBase, a dedicated database of annotated transcriptome sequences of the European eel is freely available at http://compgen.bio.unipd.it/eeelbase. Considering the multiple factors potentially involved in the decline of the European eel, including anthropogenic factors such as pollution and human-introduced diseases, our results will provide a rich source of data to discover and identify new genes, characterize gene expression, as well as for identification of genetic markers scattered across the genome to be used in various applications

    Impact of maternal education on response to lifestyle interventions to reduce gestational weight gain: Individual participant data meta-Analysis

    Get PDF
    Objectives To identify if maternal educational attainment is a prognostic factor for gestational weight gain (GWG), and to determine the differential effects of lifestyle interventions (diet based, physical activity based or mixed approach) on GWG, stratified by educational attainment. Design Individual participant data meta-Analysis using the previously established International Weight Management in Pregnancy (i-WIP) Collaborative Group database (https://iwipgroup.wixsite.com/collaboration). Preferred Reporting Items for Systematic reviews and Meta-Analysis of Individual Participant Data Statement guidelines were followed. Data sources Major electronic databases, from inception to February 2017. Eligibility criteria Randomised controlled trials on diet and physical activity-based interventions in pregnancy. Maternal educational attainment was required for inclusion and was categorised as higher education ( 65tertiary) or lower education ( 64secondary). Risk of bias Cochrane risk of bias tool was used. Data synthesis Principle measures of effect were OR and regression coefficient. Results Of the 36 randomised controlled trials in the i-WIP database, 21 trials and 5183 pregnant women were included. Women with lower educational attainment had an increased risk of excessive (OR 1.182; 95% CI 1.008 to 1.385, p =0.039) and inadequate weight gain (OR 1.284; 95% CI 1.045 to 1.577, p =0.017). Among women with lower education, diet basedinterventions reduced risk of excessive weight gain (OR 0.515; 95% CI 0.339 to 0.785, p = 0.002) and inadequate weight gain (OR 0.504; 95% CI 0.288 to 0.884, p=0.017), and reduced kg/week gain (B-0.055; 95% CI-0.098 to-0.012, p=0.012). Mixed interventions reduced risk of excessive weight gain for women with lower education (OR 0.735; 95% CI 0.561 to 0.963, p=0.026). Among women with high education, diet based interventions reduced risk of excessive weight gain (OR 0.609; 95% CI 0.437 to 0.849, p=0.003), and mixed interventions reduced kg/week gain (B-0.053; 95% CI-0.069 to-0.037,p<0.001). Physical activity based interventions did not impact GWG when stratified by education. Conclusions Pregnant women with lower education are at an increased risk of excessive and inadequate GWG. Diet based interventions seem the most appropriate choice for these women, and additional support through mixed interventions may also be beneficial

    Variations in reporting of outcomes in randomized trials on diet and physical activity in pregnancy: A systematic review

    Get PDF
    AIM: Trials on diet and physical activity in pregnancy report on various outcomes. We aimed to assess the variations in outcomes reported and their quality in trials on lifestyle interventions in pregnancy. METHODS: We searched major databases without language restrictions for randomized controlled trials on diet and physical activity-based interventions in pregnancy up to March 2015. Two independent reviewers undertook study selection and data extraction. We estimated the percentage of papers reporting 'critically important' and 'important' outcomes. We defined the quality of reporting as a proportion using a six-item questionnaire. Regression analysis was used to identify factors affecting this quality. RESULTS: Sixty-six randomized controlled trials were published in 78 papers (66 main, 12 secondary). Gestational diabetes (57.6%, 38/66), preterm birth (48.5%, 32/66) and cesarian section (60.6%, 40/66), were the commonly reported 'critically important' outcomes. Gestational weight gain (84.5%, 56/66) and birth weight (87.9%, 58/66) were reported in most papers, although not considered critically important. The median quality of reporting was 0.60 (interquartile range 0.25, 0.83) for a maximum score of one. Study and journal characteristics did not affect quality. CONCLUSION: Many studies on lifestyle interventions in pregnancy do not report critically important outcomes, highlighting the need for core outcome set development

    Ceramides bind VDAC2 to trigger mitochondrial apoptosis

    Get PDF
    Ceramides draw wide attention as tumor suppressor lipids that act directly on mitochondria to trigger apoptotic cell death. However, molecular details of the underlying mechanism are largely unknown. Using a photoactivatable ceramide probe, we here identify the voltage-dependent anion channels VDAC1 and VDAC2 as mitochondrial ceramide binding proteins. Coarse-grain molecular dynamics simulations reveal that both channels harbor a ceramide binding site on one side of the barrel wall. This site includes a membrane-buried glutamate that mediates direct contact with the ceramide head group. Substitution or chemical modification of this residue abolishes photolabeling of both channels with the ceramide probe. Unlike VDAC1 removal, loss of VDAC2 or replacing its membrane-facing glutamate with glutamine renders human colon cancer cells largely resistant to ceramide-induced apoptosis. Collectively, our data support a role of VDAC2 as direct effector of ceramide-mediated cell death, providing a molecular framework for how ceramides exert their anti-neoplastic activity

    Synaptic Defects in the Spinal and Neuromuscular Circuitry in a Mouse Model of Spinal Muscular Atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7). In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs) in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ∼28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3–5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1)-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy
    corecore