20 research outputs found

    The Casein Kinase I Family in Wnt Signaling

    Get PDF
    AbstractThe canonical Wnt-signaling pathway is critical for many aspects of development, and mutations in components of the Wnt pathway are carcinogenic. Recently, sufficiency tests identified casein kinase Iϵ (CKIϵ) as a positive component of the canonical Wnt/β-catenin pathway, and necessity tests showed that CKIϵ is required in vertebrates to transduce Wnt signals. In addition to CKIϵ, the CKI family includes several other isoforms (α, β, γ, and δ) and their role in Wnt sufficiency tests had not yet been clarified. However, in Caenorhabditis elegans studies, loss-of-function of a CKI isoform most similar to α produced the mom phenotype, indicative of loss-of-Wnt signaling. In this report, we examine the ability of the various CKI isoforms to activate Wnt signaling and find that all the wild-type CKI isoforms do so. Dishevelled (Dsh), another positive component of the Wnt pathway, becomes phosphorylated in response to Wnt signals. All the CKI isoforms, with the exception of γ, increase the phosphorylation of Dsh in vivo. In addition, CKI directly phosphorylates Dsh in vitro. Finally, we find that CKI is required in vivo for the Wnt-dependent phosphorylation of Dsh. These studies advance our understanding of the mechanism of Wnt action and suggest that more than one CKI isoform is capable of transducing Wnt signals in vivo

    The Casein Kinase I Family: Roles in Morphogenesis

    Get PDF
    AbstractWnt signals play important roles in development and oncogenesis and are transduced through at least two pathways: a canonical β-catenin-dependent and a β-catenin-independent cascade. Casein kinase I (CKI) is required in both invertebrates and vertebrates to transduce canonical Wnt signals. However, its role in the β-catenin-independent pathway was unknown. During vertebrate embryogenesis, the β-catenin-independent cascade is thought to control cell movements and has been postulated to be analogous to the Drosophila planar cell polarity pathway, which signals through the JNK cascade. Here, we report that blocking CKI function inhibits embryonic morphogenesis and activates JNK in cell lines. These studies suggest that CKI might also act in the β-catenin-independent pathway and indicate a role for CKI during convergence extension in early vertebrate development

    Shared heritability and functional enrichment across six solid cancers

    Get PDF
    Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis

    Neurofibromin modulates adult hippocampal neurogenesis and behavioral effects of antidepressants

    No full text
    Neurogenesis persists in the rodent dentate gyrus (DG) throughout adulthood but declines with age and stress. Neural progenitor cells (NPCs) residing in the subgranular zone of the DG are regulated by an array of growth factors and respond to the microenvironment, adjusting their proliferation level to determine the rate of neurogenesis. Here we report that genetic deletion of neurofibromin (Nf1), a tumor suppressor with RAS-GAP activity, in adult NPCs enhanced DG proliferation and increased generation of new neurons in mice. Nf1 loss-associated neurogenesis had the functional effect of enhancing behavioral responses to subchronic antidepressants and, over time, led to spontaneous antidepressive-like behaviors. Thus, our findings establish an important role for the Nf1-Ras pathway in regulating adult hippocampal neurogenesis, and demonstrate that activation of adult NPCs is sufficient to modulate depression- and anxiety-like behaviors

    Tripeptidyl peptidase II promotes fat formation in a conserved fashion

    No full text
    Tripeptidyl peptidase II (TPPII) is a multifunctional and evolutionarily conserved protease. In the mammalian hypothalamus, TPPII has a proposed anti-satiety role affected by degradation of the satiety hormone cholecystokinin 8. Here, we show that TPPII also regulates the metabolic homoeostasis of Caenorhabditis elegans; TPPII RNA interference (RNAi) decreases worm fat stores. However, this occurs independently of feeding behaviour and seems to be a function within fat-storing tissues. In mammalian cell culture, TPPII stimulates adipogenesis and TPPII RNAi blocks adipogenesis. The pro-adipogenic action of TPPII seems to be independent of protease function, as catalytically inactive TPPII also increases adipogenesis. Mice that were homozygous for an insertion in the Tpp2 locus were embryonic lethal. However, Tpp2 heterozygous mutants were lean compared with wild-type littermates, although food intake was normal. These findings indicate that TPPII has central and peripheral roles in regulating metabolism and that TPPII actions in fat-storing tissues might be an ancient function carried out in a protease-independent manner

    Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development

    No full text
    Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), are associated with the physiology of the striatum and the loss of its normal functioning under pathological conditions. The role of BDNF and its downstream signaling in regulating the development of the striatum has not been fully investigated, however. Here we report that ablation of Bdnf in both the cortex and substantia nigra depletes BDNF in the striatum, and leads to impaired striatal development, severe motor deficits, and postnatal lethality. Furthermore, striatal-specific ablation of TrkB, the gene encoding the high-affinity receptor for BDNF, is sufficient to elicit an array of striatal developmental abnormalities, including decreased anatomical volume, smaller neuronal nucleus size, loss of dendritic spines, reduced enkephalin expression, diminished nigral dopaminergic projections, and severe deficits in striatal dopamine signaling through DARPP32. In addition, TrkB ablation in striatal neurons elicits a non–cell-autonomous reduction of tyrosine hydroxylase protein level in the axonal projections of substantia nigral dopaminergic neurons. Thus, our results establish an essential function for TrkB in regulating the development of striatal neurons
    corecore