28 research outputs found

    The Next Influenza Pandemic: Lessons from Hong Kong, 1997

    Get PDF
    The 1997 Hong Kong outbreak of an avian influenzalike virus, with 18 proven human cases, many severe or fatal, highlighted the challenges of novel influenza viruses. Lessons from this episode can improve international and national planning for influenza pandemics in seven areas: expanded international commitment to first responses to pandemic threats; surveillance for influenza in key densely populated areas with large live-animal markets; new, economical diagnostic tests not based on eggs; contingency procedures for diagnostic work with highly pathogenic viruses where biocontainment laboratories do not exist; ability of health facilities in developing nations to communicate electronically, nationally and internationally; licenses for new vaccine production methods; and improved equity in supply of pharmaceutical products, as well as availability of basic health services, during a global influenza crisis. The Hong Kong epidemic also underscores the need for national committees and country-specific pandemic plans.publishedVersio

    Dominant influenza A(H3N2) and B/Yamagata virus circulation in EU/EEA, 2016/17 and 2017/18 seasons, respectively

    Get PDF
    Members of the European Influenza Surveillance Network: Portugal (Figueiredo Augusto Gonçalo, Machado Jorge, Moreira Guiomar Raquel, Nogueira Paulo, Rebelo de Andrade Helena, Rodrigues Ana Paula)The yearly influenza epidemics during each winter season vary in burden and severity. During the 2016/17 and 2017/18 seasons, all-cause excess mortality was observed during periods of high influenza virus circulation. Our aim is to describe and compare the pattern of influenza virus circulation and related disease severity by number of patients and fatal cases in intensive care units (ICUs) across European Union/European Economic Area (EU/EEA) countries for the seasons 2016/17 and 2017/18. As influenza circulation progressed from a west to east direction across Europe in 2017/18, a better understanding of the current epidemiological situation might help to prepare countries in the eastern part of the World Health Organization (WHO) European Region for high influenza activity and severity.info:eu-repo/semantics/publishedVersio

    Seasonality and geographical spread of respiratory syncytial virus epidemics in 15 European countries, 2010 to 2016

    Get PDF
    Respiratory syncytial virus (RSV) is considered the major pathogen causing severe lower respiratory tract infections among infants and young children [1]. RSV is the most common cause of hospitalisation for acute lower respiratory tract infection in children younger than 5 years and is estimated to cause between 66,000 and 199,000 deaths worldwide every year [2]. Its significance in causing substantial morbidity and hospitalisation in the first year of life has been affirmed in a recent study and a meta-analysis [3,4]. In England, average annual hospital admission rates are 35.1 per 1,000 children younger than 1 year and 5.31 per 1,000 children aged 1–4 years [5]. In addition to children, RSV causes a substantial disease burden in elderly people and patients with chronic obstructive pulmonary disease [6,7]. RSV causes seasonal epidemics worldwide [8], with one to two epidemics each year [9] following latitudinal gradients in timing, duration, seasonal amplitude and between-year variability [8,9]. In some studies, the seasonal periodicity has been connected to climatic factors [9-11], but a common factor that explains all observed periodicity has not been established. Meteorological conditions such as temperature and high relative humidity have been reported as important predictors of RSV epidemics [9,12]. In the United States (US) and Japan, annual national and regional variation of RSV season onset and end has been reported [13-15]. In the Nordic countries, a major outbreak often alternates with a minor one, with the minor peak in the spring and a major one the following winter [16-19], a phenomenon reported also in Croatia [20], Denmark [21] and Germany [22]. RSV antigenic groups A and B alternate in two-year cycles in Finland, with dominance of the group A viruses in years 1981–82, 1985–86 and 1989–90 and the group B viruses 1983–84 and 1987–88 [17,19], and different genotypes dominate the circulation in consecutive epidemics in Korea [23]. In Spain, no biennial rhythm has been detected but rather a stable annual epidemic with a peak between week 52 and week 1 and circulation 2–8 weeks earlier than influenza viruses [24]. Similarly, in the United Kingdom (UK), one stable epidemic per year is observed [5]. Immunoprophylaxis to prevent RSV infection with a neutralising monoclonal antibody, palivizumab, has been developed for administration to target groups on a monthly basis during the RSV season [25]. However, this drug is limited to high-risk infants, the cost prohibits its use in low- and middle-income countries and the data on effectiveness of the drug in children at high risk other than infants born at gestational age < 33 weeks and in children with chronic lung and heart diseases are limited [26]. The demonstrated high disease burden of RSV infection has created a longstanding interest in RSV vaccines. Approximately 60 RSV vaccine candidates are in preclinical to phase III clinical trials [27,28], with potential target groups including elderly people, pregnant women and infants. A vaccine is expected to enter the market within 5–10 years, presumably by 2025 [29]. As natural infection provides only limited protective immunity owing to evolution of the surface protein G and alternating dominance of antigenic groups A and B [30], most of the vaccine candidates target the fusion protein F, which is cross-reactive across RSV subtypes [27]. To circumvent issues with alternating strains, it has been also suggested to consider inclusion of both RSV A and B in a future RSV vaccine [30]. To plan optimal future vaccination strategies, it is critically important to understand who is affected by RSV and to identify which groups are at risk of more severe RSV infection requiring hospitalisation or intensive care. RSV infection is not notifiable in the European Union (EU) and European Economic Area (EEA), except in Ireland, but many countries have a long tradition of reporting laboratory-confirmed RSV infections at national and international level. The European Influenza Surveillance Network (EISN) collects RSV data for the purpose of interpreting the reports of influenza-like-illness (ILI); these data can also be used to analyse seasonality of RSV [31]. Inter-country comparative analysis of seasonal circulation of RSV across Europe is lacking as most of the published literature focuses on individual countries. Our study describes the seasonality of RSV in 15 countries in the EU/EEA, specifically the start and peak of the season, length of the season and geographical spread, as a baseline description of RSV circulation in Europe. We further aimed to test if the data reported through influenza surveillance systems in use in EU/EEA countries are appropriate to analyse RSV seasonality, including more countries and a more detailed analysis than previous studies.Peer Reviewe

    Influenza surveillance in Europe: comparing intensity levels calculated using the moving epidemic method.

    Get PDF
    Although influenza-like illnesses (ILI) and acute respiratory illnesses (ARI) surveillance are well established in Europe, the comparability of intensity among countries and seasons remains an unresolved challenge. The objective is to compare the intensity of ILI and ARI in some European countries. Weekly ILI and ARI incidence rates and proportion of primary care consultations were modeled in 28 countries for the 1996/1997-2013/2014 seasons using the moving epidemic method (MEM). We calculated the epidemic threshold and three intensity thresholds, which delimit five intensity levels: baseline, low, medium, high, and very high. The intensity of 2013/2014 season is described and compared by country. The lowest ILI epidemic thresholds appeared in Sweden and Estonia (below 10 cases per 100 000) and the highest in Belgium, Denmark, Hungary, Poland, Serbia, and Slovakia (above 100 per 100 000). The 2009/2010 season was the most intense, with 35% of the countries showing high or very high intensity levels. The European epidemic period in season 2013/2014 started in January 2014 in Spain, Poland, and Greece. The intensity was between low and medium and only Greece reached the high intensity level, in weeks 7 to 9/2014. Some countries remained at the baseline level throughout the entire surveillance period. Epidemic and intensity thresholds varied by country. Influenza-like illnesses and ARI levels normalized by MEM in 2013/2014 showed that the intensity of the season in Europe was between low and medium in most of the countries. Comparing intensity among seasons or countries is essential for understanding patterns in seasonal epidemics. An automated standardized model for comparison should be implemented at national and international levels.This work has been funded by the National and International Public Institutions and the Regional Health Department of Castilla y León (Spain).S

    Dominant influenza A(H3N2) and B/Yamagata virus circulation in EU/EEA, 2016/17 and 2017/18 seasons, respectively

    Get PDF
    We use surveillance data to describe influenza A and B virus circulation over two consecutive seasons with excess all-cause mortality in Europe, especially in people aged 60 years and older. Influenza A(H3N2) virus dominated in 2016/17 and B/Yamagata in 2017/18. The latter season was prolonged with positivity rates above 50% among sentinel detections for at least 12 weeks. With a current west-east geographical spread, high influenza activity might still be expected in eastern Europe.S

    Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the H<sub>1</sub>N<sub>1 </sub>flu can easily spread from one region to another.</p> <p>Methods</p> <p>In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks.</p> <p>Results</p> <p>Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks.</p> <p>Conclusions</p> <p>Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks.</p

    Alternating patterns of seasonal influenza activity in the WHO European Region following the 2009 pandemic, 2010-2018

    Get PDF
    Background: Influenza virus infections are common and lead to substantial morbidity and mortality worldwide. We characterized the first eight influenza epidemics since the 2009 influenza pandemic by describing the distribution of viruses and epidemics temporally and geographically across the WHO European Region. Methods: We retrospectively analyzed laboratory-confirmed influenza detections in ambulatory patients from sentinel sites. Data were aggregated by reporting entity and season (weeks 40-20) for 2010-2011 to 2017-2018. We explored geographical spread using correlation coefficients. Results: There was variation in the regional influenza epidemics during the study period. Influenza A virus subtypes alternated in dominance, except for 2013-2014 during which both cocirculated, and only one season (2017-2018) was B virus dominant. The median start week for epidemics in the Region was week 50, the time to the peak ranged between four and 13 weeks, and the duration of the epidemic ranged between 19 and 25 weeks. There was evidence of a west-to-east spread across the Region during epidemics in 2010-2011 (r = .365; P = .019), 2012-2013 (r = .484; P = .001), 2014-2015 (r = .423; P = .006), and 2017-2018 (r = .566; P < .001) seasons. Variation in virus distribution and timing existed within reporting entities across seasons and across reporting entities for a given season. Conclusions: Aggregated influenza detection data from sentinel surveillance sites by season between 2010 and 2018 have been presented for the European Region for the first time. Substantial diversity exists between influenza epidemics. These data can inform prevention and control efforts at national, sub-national, and international levels. Aggregated, regional surveillance data from early affected reporting entities may provide an early warning function and be helpful for early season forecasting efforts.WHO Regional Office for Europe was supported for work on influenza by a cooperative agreement from the United States Centers for Disease Control and Prevention (NU511P000876); the funder had no role in the analysis or interpretation of the data.S

    Highly Pathogenic H5N1 Influenza Virus in Smuggled Thai Eagles, Belgium

    Get PDF
    We report the isolation and characterization of a highly pathogenic avian influenza A/H5N1 virus from Crested Hawk-Eagles smuggled into Europe by air travel. A screening performed in human and avian contacts indicated no dissemination occurred. Illegal movements of birds are a major threat for the introduction of highly pathogenic avian influenza

    Determinants of fatal outcome in patients admitted to intensive care units with influenza, European Union 2009–2017

    Get PDF
    Free PMC article: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/32258201/Background: Morbidity, severity, and mortality associated with annual influenza epidemics are of public health concern. We analyzed surveillance data on hospitalized laboratory-confirmed influenza cases admitted to intensive care units to identify common determinants for fatal outcome and inform and target public health prevention strategies, including risk communication. Methods: We performed a descriptive analysis and used Poisson regression models with robust variance to estimate the association of age, sex, virus (sub)type, and underlying medical condition with fatal outcome using European Union data from 2009 to 2017. Results: Of 13 368 cases included in the basic dataset, 2806 (21%) were fatal. Age ≄40 years and infection with influenza A virus were associated with fatal outcome. Of 5886 cases with known underlying medical conditions and virus A subtype included in a more detailed analysis, 1349 (23%) were fatal. Influenza virus A(H1N1)pdm09 or A(H3N2) infection, age ≄60 years, cancer, human immunodeficiency virus infection and/or other immune deficiency, and heart, kidney, and liver disease were associated with fatal outcome; the risk of death was lower for patients with chronic lung disease and for pregnant women. Conclusions: This study re-emphasises the importance of preventing influenza in the elderly and tailoring strategies to risk groups with underlying medical conditions.info:eu-repo/semantics/publishedVersio
    corecore