75 research outputs found

    Boundary element solutions for broad-band 3-D geo-electromagnetic problems accelerated by an adaptive multilevel fast multipole method

    Get PDF
    We have developed a generalized and stable surface integral formula for 3-D uniform inducing field and plane wave electromagnetic induction problems, which works reliably over a wide frequency range. Vector surface electric currents and magnetic currents, scalar surface electric charges and magnetic charges are treated as the variables. This surface integral formula is successfully applied to compute the electromagnetic responses of 3-D topography to low frequency magnetotelluric and high frequency radio-magnetotelluric fields. The standard boundary element method which is used to solve this surface integral formula quickly exceeds the memory capacity of modern computers for problems involving hundreds of thousands of unknowns. To make the surface integral formulation applicable and capable of dealing with large-scale 3-D geo-electromagnetic problems, we have developed a matrix-free adaptive multilevel fast multipole boundary element solver. By means of the fast multipole approach, the time-complexity of solving the final system of linear equations is reduced to O(m log m) and the memory cost is reduced to O(m), where m is the number of unknowns. The analytical solutions for a half-space model were used to verify our numerical solutions over the frequency range 0.001-300kHz. In addition, our numerical solution shows excellent agreement with a published numerical solution for an edge-based finite-element method on a trapezoidal hill model at a frequency of 2Hz. Then, a high frequency simulation for a similar trapezoidal hill model was used to study the effects of displacement currents in the radio-magnetotelluric frequency range. Finally, the newly developed algorithm was applied to study the effect of moderate topography and to evaluate the applicability of a 2-D RMT inversion code that assumes a flat air-Earth interface, on RMT field data collected at Smørgrav, southern Norway. This paper constitutes the first part of a hybrid boundary element-finite element approach to compute the electromagnetic field inside structures involving complex 3-D conductivity and permittivity distribution

    Object-oriented implementation of 3D DC adaptive finite-element method

    Get PDF
    In this paper, we introduced a clear object-oriented framework to implement the complicated adaptive procedure with C ++ programming language. In this framework, it consisted of the unstructured mesh generation, a-posterior error estimating, adaptive strategy, and the postprocessing. Unlike the procedure-oriented framework, which is commonly used in DC resistivity modeling with FORTRAN language, the object-oriented one, which is famous for its characteristic of encapsulation, could be used for a class of problems that would be executed by only making some changes on the user interface. To validate its flexibility, two synthetic DC examples were tested her

    An automatic preselection strategy for magnetotelluric single-site data processing based on linearity and polarization direction

    Get PDF
    The magnetotelluric response function can be severely disturbed by cultural electromagnetic noise. The preselection strategy is one of the effective ways to remove the influence of noise when calculating the response function. This study proposed three new parameters (the amplitude ratio predicted amplitude ratio and linear coherence (PLcoh) between the predicted and observed electric fields and the dispersion degree of the magnetic polarization direction (DDpol)) to detect noisy data, making the preselection strategy automatic. The first two were used to evaluate the linearity of binary linear regression to constrain incoherent noise, while the last was used to evaluate the magnetic polarization direction to constrain coherent noise. Finally, the technique is illustrated by applying it to two field datasets and comparing it with the previous studies. The results showed that these parameters can be used to effectively identify contaminated data, and a reliable response function can be obtained by using these parameters to extract high-quality data when intermittent noise contaminates field data

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Uncertainty and Resolution Analysis of 2D and 3D Inversion Models Computed from Geophysical Electromagnetic Data

    No full text
    A meaningful solution to an inversion problem should be composed of the preferred inversion model and its uncertainty and resolution estimates. The model uncertainty estimate describes an equivalent model domain in which each model generates responses which fit the observed data to within a threshold value. The model resolution matrix measures to what extent the unknown true solution maps into the preferred solution. However, most current geophysical electromagnetic (also gravity, magnetic and seismic) inversion studies only offer the preferred inversion model and ignore model uncertainty and resolution estimates, which makes the reliability of the preferred inversion model questionable. This may be caused by the fact that the computation and analysis of an inversion model depend on multiple factors, such as the misfit or objective function, the accuracy of the forward solvers, data coverage and noise, values of trade-off parameters, the initial model, the reference model and the model constraints. Depending on the particular method selected, large computational costs ensue. In this review, we first try to cover linearised model analysis tools such as the sensitivity matrix, the model resolution matrix and the model covariance matrix also providing a partially nonlinear description of the equivalent model domain based on pseudo-hyperellipsoids. Linearised model analysis tools can offer quantitative measures. In particular, the model resolution and covariance matrices measure how far the preferred inversion model is from the true model and how uncertainty in the measurements maps into model uncertainty. We also cover nonlinear model analysis tools including changes to the preferred inversion model (nonlinear sensitivity tests), modifications of the data set (using bootstrap re-sampling and generalised cross-validation), modifications of data uncertainty, variations of model constraints (including changes to the trade-off parameter, reference model and matrix regularisation operator), the edgehog method, most-squares inversion and global searching algorithms. These nonlinear model analysis tools try to explore larger parts of the model domain than linearised model analysis and, hence, may assemble a more comprehensive equivalent model domain. Then, to overcome the bottleneck of computational cost in model analysis, we present several practical algorithms to accelerate the computation. Here, we emphasise linearised model analysis, as efficient computation of nonlinear model uncertainty and resolution estimates is mainly determined by fast forward and inversion solvers. In the last part of our review, we present applications of model analysis to models computed from individual and joint inversions of electromagnetic data; we also describe optimal survey design and inversion grid design as important applications of model analysis. The currently available model uncertainty and resolution analyses are mainly for 1D and 2D problems due to the limitations in computational cost. With significant enhancements of computing power, 3D model analyses are expected to be increasingly used and to help analyse and establish confidence in 3D inversion models

    Editorial for the Special Issue “Electromagnetic Exploration: Theory, Methods and Applications”

    No full text
    Electromagnetic (EM) methods, both airborne and ground, are some of the most widely used geophysical techniques in mineral exploration, in which natural or controlled sources are used to transmit EM waves to the Earth and measure the reflected EM signal [...
    • …
    corecore