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Abstract In this paper, we introduced a clear object-
oriented framework to implement the complicated adaptive
procedure with C++ programming language. In this
framework, it consisted of the unstructured mesh genera-
tion, a-posterior error estimating, adaptive strategy, and the
postprocessing. Unlike the procedure-oriented framework,
which is commonly used in DC resistivity modeling with
FORTRAN language, the object-oriented one, which is
famous for its characteristic of encapsulation, could be
used for a class of problems that would be executed by
only making some changes on the user interface. To
validate its flexibility, two synthetic DC examples were
tested here.

Keywords object-oriented strategy, adaptive finite-
element method, C++ framework, unstructured mesh

1 Introduction

Adaptive finite element method (AFEM) that obtained
better accuracies and efficiencies than finite element
method (FEM) has become a focused topic in electro-
magnetic computations. However, an AFEM procedure for
3D case was more complex than the standard FEM
program. Generally, it included a 3D unstructured mesh
generation, a-posterior error estimating, adaptive mesh
refinement, and postprocessing procedure, which agreed
well with the essence of object-oriented philosophy
(OOP). AFEM associated with OOP technique was already
studied in potential flow (Akin and Singh, 2002),
structural mechanics (Niekamp and Stein, 2002), multi-
physics applications (Stewart and Edwards, 2004), elec-
trochemistry (Ludwig and Speiser, 2006), astrophysical

fluid dynamics (Rosenberg et al., 2006), and crack
propagation (Phongthanapanich and Dechaumphai,
2004), etc.
However, little attention was paid to its applications in

geophysical fields of earth sciences. In current geophysical
fields, the FEM procedure (Nguyen and Mardon, 1995;
Folch et al., 1999; Haber, 2000; Braun, 2003; Axness et al.,
2004) was widely studied and the AFEM approach was
still in elementary development. Key andWeiss (2006) and
Li and Key (2007) applied the AFEM to 2-D magneto-
telluric and controlled-source electromagnetic modeling.
However, their codes were written in the procedure-
oriented language FORTRAN. The objective of this study
was trying to implement the AFEM approach using OOP
technique, especially in 3D geophysical DC cases.
The paper was organized as follows. First, the brief

mathematical formulas of an AFEM approach for the
second-order elliptic problem were introduced. Second, the
C++ framework of the AFEM procedures was briefly
depicted. Then, several key classes were presented in
detail. Last, two geophysical DC examples were tested to
validate our framework.

2 Elliptic partial differential equations

Generally, many geophysical problems such as seismic,
gravity, and magnetic all belonged to a second-order
elliptic problem that usually had the following form:

rðaruÞ þ bu ¼ f in Ω,

u ¼ g1 on ∂ΩD,

∂u
∂n

¼ g2 on ∂ΩN ,

a
∂u
∂n

þ ru ¼ g3 on ∂ΩM ,

(1)
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where Ω 2 R3 was a computational domain; uðx,y,zÞ was
the unknown; aðx,y,zÞ, bðx,y,zÞ, rðx,y,z,aÞ, and f ðx,y,zÞ
were coefficient functions; ∂ΩD was the essential boundary
with Dirichlet condition g1; ∂ΩN was the nature boundary
with Neumann condition g2; ∂ΩM was the boundary with
Mixed condition on which condition functions β and g3
were defined, and n was the outward unit normal on the
corresponding boundary ∂Ω ¼ ∂ΩD[∂ΩN[∂ΩM .
In FEM approximations (Brenner, 2002), the integral

weak form of Eq. (1) was to find a u which belonged to v
satisfying

Bðu,vÞ ¼ FðvÞ, for all v 2 V , (2)

where Bð:,:Þ and Fð:Þ were the bilinear and linear form,
respectively, defined by

Bðu,vÞ ¼ !
Ω
ðarurv – buvÞdΩþ!

∂ΩM

ruvdS,

f ðvÞ ¼ – !
Ω
fvdΩ –!

∂ΩN

ag2vdS –!∂ΩM

g3vdS

� �
,

(3)

where U 2 H1ðΩÞjuj∂ΩD
¼ g1, V 2 H1ðΩÞjuj∂ΩD

¼ 0, and
H1ðΩÞ is the Sobolev space.
By the Galerkin method, the FEM numerical solution

was to find uh, satisfying the following formula,

Bðuh,vhÞ ¼ FðvhÞ, for all vh 2 Vh , (4)

where uh 2 Uh, vh 2 Vh, H1
h ðΩÞ is the Sobolev finite-

element space.
After solving the large matrix system derived from

Eq. (4), we employed a gradient-based posteriori error
estimator (Zienkiewicz and Zhu, 1992a, b; Zienkiewicz
and Taylor, 2000) to adaptively refine the mesh. We
assumed that eK represented the Kth element error,ruh the
numerical gradient, and GðuhÞ the recovered gradient,
respectively. Then, eK of element K in L2 norm could be
obtained by

eK ¼ GðuhÞ –ruhj jj jL2ðKÞ, (5)

where GðuhÞ was defined in element patch ~K ¼ K[m – 1
i¼0 Ji :

f∂Ji \ ∂K≠f, aJi ¼ aKg, m was the element path size,
and Ji was the neighboring element of K. In 3D case,GðuhÞ
was an interpolation polynomial, owning the same order
with unstructured linear element

GðuhÞ ¼ a0 þ b0xþ c0yþ d0z: (6)

What we should note is that the least-square fitting was
respectively required to calculate the coefficients in Eq. (6)
for each component of the gradientsX

s2S
½GðuhÞðsÞ –ruhðsÞ�2 ! min, (7)

where s was the Gauss integral point in each element
belonging to ~K.

In the AFEM approach, a global relative error ηgoal was
specified, which generally could not be satisfied in the
initial mesh. Thus, the element goal error was defined by
assuming that an optimal mesh there would have an equal
error distribution in each element:

e
~
M ¼ ηgoalð GðuhÞ –ruhj jj j2L2ðΩÞ þ ruhj jj j2L2ðΩÞÞ1=2=

ffiffiffiffiffi
M

p
,

(8)

whereM was the number of elements. Through comparing
eK with ~eM and using the well-known convergence of FEM
approximation e / hmin ð1,lÞ, the new element size for the
Kth element in the current mesh can be predicated
(Zienkiewicz and Taylor, 2000),

hnew ¼hold � ε
1

min ð1,lÞ ,

ε ¼ e
~
M

eK
,

(9)

where hold was the current element size, l 2 ½0:5,1:0� was
the strength of singularities such as source point and
anomaly bodies. For the detail adaptive refinement
process, please refer to Ren and Tang (2009).

3 An object-oriented framework

In Fig. 1, the object-oriented framework was displayed by
the united model language (UML) of the adaptive FEM
procedures. For practical geophysical problems, the only
thing that should be done by artificial work was to offer a
geometric model with known boundary conditions on the
elliptic Eq. (1). After that, the adaptive computation would
automatically terminate with outputting the final high
accurate numerical solutions uh.

3.1 Mesh Class

Mesh was a key component in our framework. It was
solely defined by nodes and elements with neighboring
relationships, which was shown in Fig. 2(b). Moreover, the
Element class was abstracted as the father class of all finite
elements. Additionally, the neighboring vector connected
all elements in mesh for correctly assembling finite-
element equation. In terms of virtual polymorphism,
general operators on abstract Element class should be
transformed into derived finite elements. In the Element
class, all common operators were defined as virtual or pure
virtual functions, which were redefined in son derived
classes to perform correct actions. In this study, a linear
tetrahedron finite element was employed. The 4-node
element owned four faces and six edges, which was
abstracted as Tri3 class and Edge2 class, respectively.
Unlike the way of being member data in other literatures,
Tri3 class and Edge2 class were derived from a father
Element class to most possibly reuse codes and keep it
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uniform. The key job of the mesh was to assemble the final
sparse large linear equation by looping each element with
proper boundary conditions. For the essential boundary
condition, a Tri3 class face could be renewed from an
element and then applying it to each node of this Tri3 face.
To fulfill the data structure of mesh, a mesh generation
TetMesh class was defined. At present, TetMesh class
could generate unstructured grids by calling open source
library TetGen (Si, 2003).

3.2 DofMap Class

As it was shown in Fig. 1, a DofMap class was defined to
manage the unknowns on a mesh, which contained a
renumbering of unknowns and mappings of element
indices. After a mesh and a PDE system were given, the
DofMap class could prepare the unknown indices for
assembly. Here, a DofObject class was introduced on each
node associated with the DofMap class. In this class, an
INT number was used to identify the index of unknowns
on each node. After DofObject class was initialized, all
unknowns would be renumbered by the outstanding RCM
algorithm. In the DofMap class, another interior Sparse-
Pattern class was presented in which a std::vector < std::
vector < unsigned int > > semimatrix was used to store
the sparse pattern of unknowns on a mesh. The size of this
matrix was the number of unknowns, and the size of each

row i was the number of unknowns connected with the ith
unknown. For an unknown pair< i,j> on a given element
e, the index j was pushed back in the ith row. Once this
linear time complexity (o(m), m was the number of ele-
ments) process was done on all elements, the sparse pattern
of a mesh was immediately available. Since huge tempor-
ary storage allocation of sparse matrix would seriously
decrease the performances of linear solver defined in
LinearSolver class, in the SparsePattern class, a function
was defined, which used this computed sparse pattern to
preallocate the memory for SparseMatrix class to fix it.

3.3 FESpace Class

Being separated from Mesh class, all operations and data
associated with finite element space were abstracted into
the FESpace class. To corporate with the general frame-
work, the principle was designed by surrounding the
element type, which required all necessary data of finite-
element space that were prepared when finite element
encountered. However, the geometrical shape of any finite
element was so irregular that it was hard to design this
general framework on the real element. Fortunately, the
Isoparametric element projection mapping could easily fix
it. In the mapping process shown in Fig. 2(c), the real
element RðxÞ was transformed into a standard reference
element Sðx#Þ by a projecting F, which was denoted by

Fig. 1 Object-oriented framework
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RðxÞÐF

F – 1
Sðx#Þ, (10)

where F – 1 was the inverse projecting from Sðx#Þ to RðxÞ.
And x, x# could be solely mapped in Sðx#Þ and RðxÞ,
respectively. The volume integral term derived from
Eq. (4) could be easily implemented on the reference
element Sðx#Þ. In addition, by means of Gauss integral
rule (Zienkiewicz and Taylor, 2000), the expression of
volume term V ðφÞ could be deduced as

V ðφÞ ¼ 1

Vs
V ðφÞqv �Wqv � det jJV jqv , (11)

where qv was the volume integral points in Sðx#Þ, Vs was
the volume of unit reference element Sðx#Þ, Wqv was the
numerical weights at points qv, JV denoted the Jacobin
transform matrix, which could easily be calculated by the
projecting map F (Zienkiewicz and Taylor, 2000).
With regard to surface integrals, they owned the similar

expression,

SðφÞ ¼ 1

As
SðφÞqs �Wqs � det jJsjqs , (12)

where As was the area of an unit 2D reference element
Tðx#Þ, qs was the surface integral points in Tðx#Þ,Wqs was

the numerical weights at points qs, and Js was the Jacobin
transform matrix that projected a 3D surface of RðxÞ to a
unit 2D reference element Tðx#Þ in which only two volume
coordinates ðε,ηÞ were involved. It could be realized that
shape functions related term Sðφðε,η,�ÞÞ at the surface
integral point qs could be calculated by its corresponding
local coordinates ðε,ηÞ. Therefore, the ðx,y,zÞ coordinates
of surface integral points qs could be first calculated by the
surface projecting map T . Moreover, by the 3D inverse
volume projecting F – 1, the local ðε,η,�Þ coordinate of qs
could be accurately estimated by Newton iterative method
(Brenner and Scott, 2002) so that the value of SðφÞqs could
be calculated.
In our implementation, the surface integrals were treated

as the volume integrals that were incorporated in FESpace
class since the only difference between the two kinds of
integrals was that surface integrals were to calculate the
ðx,y,zÞ coordinates of surface integral points by the 2D
surface projecting. If the values of SðφÞ in the reference
element Sðx#Þ were computed, the remaining surface
integral weights and corresponding determinant of the 2D
surface projecting Jacobian matrix were multiplied into
SðφÞqs so that the surface integral terms SðφÞ were easily
available. To avoid being too much memory consuming,
the values of shape functions were preallocated, its

Fig. 2 Element class. (a) Class hierarchical structure; (b) underlying data structures; (c) isoperimetric unstructured element projecting
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gradients and also the numerical integral points and
weights by storing them as the fast indexed caches, since
they were independent of the practical geometrical shape
of element type. This way could dramatically accelerate
the computational speed and decreased the needs of
memory. Second, this independent design of FESpace
could offer us a way of only involving in two FESpace
objects in the finite-element assembling process, with one
for the volume integrals and another for surface integrals.

3.4 SEPDE Class

An abstract SEPDE class was defined for a second-order
elliptic partial deferential equation (SEPDE). Two maps
were involved to fulfill the coefficient functions of Eq. (1),
which were shown in Fig. 3. The first std::map〈ID,
BCType〉projected the boundary type BCType (such as
Neumann) from boundary ID. The second one std::map

〈ID, BCFunction [2]〉was used to map the boundary
function pointers BCFunction from the boundary ID. In
most engineering cases, the source coefficient function f
such as the Delta function was not smooth enough for the
Gauss integral rule. Therefore, an additional routine was
offered for users to assemble the right-hand side vector B.
There were also several classes such as SparseMatrix class
for global matrix A and NumVector class for RHS vector B
and solution vector X. To solve the linear equation AX = B,
the LinearSolver class was defined based on the LASPack
(Scalicky, 1996) package that offered some Krylov
subspace iterative methods such as CG-type ones.

3.5 Adaptive Class

A CFEM class was designed to implement the conven-
tional finite-element procedure and an AFEM class was
proposed for the adaptive process. From the AFEM class,
h-version adaptive process class HAFEMwas derived. The
HAFEM class was shown on the top level, which
contained the Mesh class, DofMap class, and SEPDE
class. In the HAFEM class, a SuperPR class that adapted
the gradient-recovery-based a-posterior error estimator
was adopted to drive the whole adaptive algorithm. To
terminate the adaptive process, two flags were set, which
were respectively the max iterations Tmax ¼ 5 and the

percent goal error threshold ηgoal ¼ 10%. The key
difference between the adaptive process and the traditional
one was that no matter how complex the models were, the
AFEMmethod could also offer us a way that the numerical
solution would asymptotically converge to the exact
solutions. For example, in a 3D linear element case, the
convergent ratio of CFEM algorithm was less than 1/6 in
contrast to a value of 1/3 of AFEM algorithm. The superior
performances of adaptive process were shown in the
following tests.

4 DC examples

4.1 Model 1

Model 1 was a conducting cube buried in earth, as shown
in Fig. 4. The solution domain was 1000 m � 1000 m �
1000 m with positive z-axis down. A 10 m-length dipole-
dipole measuring line was located along x-axis. A DC class
derived from SEPDE class was defined to finish our jobs.
By using the structure of our framework shown in Fig. 1,
the inputted boundary conditions and flags could be
expressed as follows:

b ¼ 0,

f ¼ – δðp – pAÞ þ δðp – pBÞ,
g2 ¼ 0 on ∂ΩN ðwith id ¼ 1Þ,

r ¼ a
cos ðrpA,nÞ
jrpB

�� – jrpA��
jrpB

��
jrpA

�� –
cos ðrpB,nÞ
jrpB

�� – jrpA��
jrpA

��
jrpB

��
� �

,

g3 ¼ 0 on ∂ΩM ðwith id ¼ 3Þ,

(13)

where pA and pB was respectively positive and negative
source point, p was any potential point in the model, and a
denoted the conductivity of model that had a value of 0.05
S/m in the cube and a value of 0.01 S/m in the homogenous
half-space. rpA was a vector connecting pA and p.
Correspondingly, rpB denoted a vector connecting pB and
p, and n was an outer unit vector on ∂ΩM.

In Fig. 5, the relative errors computed using the
singularity removal technique proposed by Wu (2002)
with finite element as reference are displayed. Our
algorithm has been dramatically validated by the decreased

Fig. 3 Map of boundary ID and conditions

Fig. 4 Cube model
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relative errors produced from final third generated mesh
depicted in Fig. 5(c). In the first mesh with 5980 nodes and
15093 tetrahedrons in which the relative errors are
displayed in Fig. 5(b), the average relative error has a
value more than 15%; after two adaptive iterations, on the
third mesh with 40902 nodes and 20292 tetrahedrons, it is
dramatically decreased to a value of less than 1.0% by
which the superior properties of adaptive process are
presented clearly.

4.2 Model 2

Avalley model was tested, which was shown in Fig. 6. The
solution domain was 2000 m�2000 m�2000 m with
positive z-axis down. Two current source points A and B
were located with two measuring electrodes M and N
moving in the range of AB/3. All inputted boundary
conditions and flags were as same as those in Model 1.
Computational results are compared with both 3D

boundary element method (3DBEM) proposed by Xu
and Zhao (1985) and 3D finite-element method (3DFEM)
using structured mesh introduced by Qiang and Luo
(2007). In Fig. 7(a), it is clear to see that our results are
much closer to that obtained from 3D boundary element
method. By contrast, it produces big deviations from Qiang
and Luo’s results (3DFEM). The relative errors using the
Xu and Zhao’s results as the reference are presented in
Fig. 7(b). From this figure, it can be seen that large
instability exists in the Qiang and Luo’s results, which may

Fig. 5 Comparison of singularity-removal method (Wu, 2003) and our adaptive finite-element method. (a) Apparent resistivities from
the final adaptive iteration (third mesh); (b) relative errors on the first mesh; (c) relative errors on the third mesh

Fig. 6 Valley model
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be caused by the not enough approximation to the
surface boundaries. Our algorithm based on unstructured
tetrahedrons can flexibly fix this problem. Even at the
initial mesh with 7830 nodes, more stable results with an
average relative error of 1.45% are obtained. Moreover, in
the final mesh (the 3rd adaptively refined mesh) with
49392 nodes, the average relative error is dramatically
reduced to 0.55%. This convergent phenomenon of errors
not only offers us more accurate results on the final mesh
but also proves the ability of dealing with complicated
problems in our algorithm.

5 Conclusions

In this study, the powerful properties of OOP method in
designing complex adaptive finite-element procedures are
shown. The OOP technique can divide the whole complex

adaptive process into several rather separated modules by
which modification is easily done to deal with more
problems. These advantages offer us an easy way to set up
a general framework for the common elliptic deferential
equation. Practical engineering problems can also be easily
deduced with a few extra works.
Two 3D DC resistivity examples have shown these

excellent performances through being compared with other
techniques. From these results, it is obvious to see that
oriented-object-based adaptive finite element method can
solve the DC problems with remarkably high accuracy and
efficiency .These are really essential for large-scaled
forward modeling problem that is the basis for the
inversion problem.
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