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S U M M A R Y
We have developed a generalized and stable surface integral formula for 3-D uniform induc-
ing field and plane wave electromagnetic induction problems, which works reliably over a
wide frequency range. Vector surface electric currents and magnetic currents, scalar surface
electric charges and magnetic charges are treated as the variables. This surface integral for-
mula is successfully applied to compute the electromagnetic responses of 3-D topography to
low frequency magnetotelluric and high frequency radio-magnetotelluric fields. The standard
boundary element method which is used to solve this surface integral formula quickly exceeds
the memory capacity of modern computers for problems involving hundreds of thousands
of unknowns. To make the surface integral formulation applicable and capable of dealing
with large-scale 3-D geo-electromagnetic problems, we have developed a matrix-free adaptive
multilevel fast multipole boundary element solver. By means of the fast multipole approach,
the time-complexity of solving the final system of linear equations is reduced to O(m log m)
and the memory cost is reduced to O(m), where m is the number of unknowns. The analytical
solutions for a half-space model were used to verify our numerical solutions over the frequency
range 0.001–300 kHz. In addition, our numerical solution shows excellent agreement with a
published numerical solution for an edge-based finite-element method on a trapezoidal hill
model at a frequency of 2 Hz. Then, a high frequency simulation for a similar trapezoidal
hill model was used to study the effects of displacement currents in the radio-magnetotelluric
frequency range. Finally, the newly developed algorithm was applied to study the effect of
moderate topography and to evaluate the applicability of a 2-D RMT inversion code that as-
sumes a flat air–Earth interface, on RMT field data collected at Smørgrav, southern Norway.
This paper constitutes the first part of a hybrid boundary element-finite element approach to
compute the electromagnetic field inside structures involving complex 3-D conductivity and
permittivity distributions.

Key words: Numerical solutions; Electromagnetic theory; Magnetotelluric; Magnetic and
electrical properties.

I N T RO D U C T I O N

Plane wave geo-electromagnetic induction methods such as the magnetotelluric (MT; Berdichevsky & Dmitriev 2008) and the radio-
magnetotelluric (RMT) methods (Pedersen et al. 2006) are widely used in geophysical exploration. At low frequencies, conduction currents
dominate and displacement currents can be neglected. This forms the basis for the quasi-static approximation which underlies the MT method
for studying the deep structure of the Earth. At much higher frequencies, in the RMT range (10–300 kHz), and on terrain with resistivities
above a few thousand Ohm metres, displacement currents are comparable or even larger than conduction currents and ought to be taken into
account. In such cases, neglecting displacement currents will decrease the reliability of inverted RMT models (Kalscheuer et al. 2008). In areas
with resistivities below a couple of thousand Ohm metres, the quasi-static approximation is rightfully made in the inversion of RMT data. In
recent years, the RMT method, in combination with the direct current resistivity method (Candansayar & Tezkan 2008; Kalscheuer et al. 2010)
and controlled-source electromagnetic methods (Pedersen et al. 2005), has become more and more important in imaging shallow subsurface
structure, such as in fracture zone detection (Pedersen & Engels 2005; Ismail & Pedersen 2011), monitoring active faults (Candansayar &
Tezkan 2008), hydrogeological surveying (Pedersen et al. 2005; Seher & Tezkan 2007), and environmental/engineering investigations (Tezkan
et al. 1996, 2005; Tezkan & Saraev 2008). Therefore, to assure correct modelling results in resistive environments it is important to have
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available a broad-band geo-electromagnetic solver, which cannot only deal with low frequency MT problems, but is also suitable for high
frequency RMT problems.

There are basically four candidate numerical simulation techniques to choose from for computing 3-D electromagnetic responses,
namely finite-difference methods (FDM), finite-element methods (FEM), volume integral equation methods (IE) and surface integral equation
methods. The FDM (Mackie et al. 1994; Aprea et al. 1997; Haber et al. 2000; Newman & Alumbaugh 2002; Hou et al. 2006) is very suitable
for fast modelling of electromagnetic fields on geometrically simple models. However, it is less convenient when treating resistivity models
that involve complicated shapes and curved interfaces such as free surface topography. This disadvantage of the FDM can be overcome with
the FEM (Badea et al. 2001; Mitsuhata & Uchida 2004; Nam et al. 2007), which is capable of solving complicated geometrical problems
by utilizing unstructured meshes (Key & Weiss 2006; Franke et al. 2007; Li & Key 2007; Mukherjee & Everett 2011). Due to the nature
of the geo-electromagnetic problem, additional unknowns have to be introduced to discretize the air domain above the ground for both the
FDM and the FEM. To avoid discretizing the air domain and to keep the number of unknowns to a minimum, we can look to the volume and
surface integral equation methods. The success of volume integral equation methods is strongly dependent on having an accurate solution
for the Green’s functions in the background medium. In simple cases, such as layered earth models, for which the Green’s functions are
readily available, the volume integral method might be the best choice (Hohmann 1975; Weidelt 1975; Avdeev et al. 2002). However, if the
background medium is reasonably complex, then no analytic Green’s functions exist, and several anomalous computation domains need to be
discretized. This leads to large dense matrices and iterative solving procedures, which might produce inaccurate results (Zhdanov et al. 2006).
Unlike the volume integral methods, the surface integrals methods (boundary element methods, BEM) use the full space Green’s functions
which can generally be expressed in simple closed-form (Colton & Kress 1983).

The main disadvantage of the surface integral approach though is its inability to handle models having complicated distributions of
subsurface electrical parameters. Therefore we propose to use it only as the first part of a hybrid approach to deal with complex models.
The arbitrary surface topography is handled by the surface integral approach while the other part of the modelling (to handle the subsurface
structure) will be done with a finite element approach. Careful treatment is required to derive numerically stable surface integral formulations,
due to the well-known low frequency and internal resonance problems (Colton & Kress 1983; Liu & Lamontagne 1998; Jin 2002) for 3-D
electromagnetic problems. The surface integral methods contain weak, strong or even hyper singular integrals which need to be evaluated.
The complexity of correctly computing these singular integrals sometimes exceeds the difficulty of formulating the surface integral equations
themselves. As a consequence, surface integral approaches have not been very popular in geo-electromagnetic investigations (Parry & Ward
1971; Doherty 1988; Liu & Becker 1992; Xu et al. 1997; Liu & Lamontagne 1998). However, the inherent advantage of surface integral
approaches of being able to reduce a 3-D problem to a 2-D problem prompts us to explore its potential power in geo-electromagnetic modelling.
Inspired by the work of Weidelt (1975), and to avoid the necessity to discretize the air domain and at the same time to deal with arbitrary
surface topography (air–Earth interface), the surface integral equation approach is the method of choice for complicated 3-D topography,
which we further develop in this paper.

The surface integral equation method can be formulated in terms of the direct physical electromagnetic fields (Parry & Ward 1971;
Doherty 1988; Xu et al. 1997; Liu & Lamontagne 1998), the indirect electric and magnetic potentials (Tsuboi & Misaki 1987; Ahmed et al.
1988; Rucker et al. 1995), or virtual equivalent currents and charges (Mayergoyz 1982; Liu & Becker 1992; Harrington 1993; Zheng 1997;
Homentcovschi 2002). The disadvantages of indirect surface integral approaches using vector and scalar potential functions are twofold.
First, the electromagnetic fields have to be computed from the potentials in terms of extra gradient and/or curl operations so that higher order
shape functions and denser meshes than in a direct solution for electromagnetic field components are required to achieve suitable accuracy.
Second, the continuity conditions at boundary surfaces which enforce the uniqueness of solutions, have to be applied in a nontrivial way,
especially for multiply connected regions of different electrical properties, due to the multivalued nature of the potentials at the interfaces
(Pérez-Gavilán & Aliabadi 2001; Pusch & Ostrowski 2010). By contrast, both the direct surface integral equation approaches which treat the
physical electromagnetic fields as the variables and the virtual surface approaches allow lower order shape functions and coarse meshes to be
used. Furthermore, more physically meaningful explanations of induced or scattered electromagnetic fields in the bodies can be made in terms
of the virtual currents and charges on surfaces enclosing the bodies. Unlike high frequency antenna design and wave propagation simulation,
in which the scattered electromagnetic fields can be stably expressed by surface magnetic currents and electric currents, the bridge or link
between surface currents and charges is broken for low frequency geo-electromagnetic problems from the numerical point of view. Recently,
the importance of introducing surface charges and surface currents as variables to solve high frequency scattering by dielectric objects was
investigated by Taskinen & Ylä-Oijala (2006). It was found that both surface currents and charges are needed to guarantee the stability of
numerical solutions.

In this study, we present a novel and numerically stable surface integral formula in terms of equivalent surface magnetic currents, surface
electric currents and surface magnetic and electric charges, to solve the geo-electromagnetic induction problem. The new scheme offers the
following advantages: (1) stable numerical results can be obtained for both high frequency and low frequency problems; (2) the condition
number of the final discretized system of linear equations is well behaved and (3) with the help of the vector Green’s theorem, boundary
conditions on internal interfaces can be enforced in a trivial way such that the equations for multiply connected regions can be solved naturally.
Although this new surface integral formula is stable for broad-band electromagnetic problems, there is a O(m2) time complexity of assembling
the final linear system of equations, and a O(m2) and O(m3) cost for storing and solving, respectively, this linear system of equations by direct
solvers. Here, m is the number of unknowns. This imposes a serious limitation on its applicability to practical large-scale geo-electromagnetic
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problems. To accelerate assembling and solving the entire system of linear equations, an optimal matrix-free adaptive multilevel fast multipole
AMFM) method is developed. Compared with other potentially accelerating algorithms which are only suitable for uniform grids, such as
adaptive integral methods (Bleszynski et al. 1996), fast Fourier transform methods (Borup & Gandhi 1984) and the standard fast multipole
method (Liu 2009), the matrix-free AMFM algorithm presented in this study can also work on non-uniform grids (Buchau et al. 2000), which
are widely used in geo-electromagnetic problems to reduce the computational cost, with a time complexity O(m log m) for assembling the
system of linear equations and a linear O(m) memory cost for iterative solvers.

To validate the new surface integral formula and the proposed optimal AMFM algorithm, the analytical solutions for a half-space model
at frequencies varying from 0.001 Hz to 300 kHz are used. In addition, a trapezoidal hill model at a frequency of 2 Hz is tested to compare our
numerical solutions with that from an edge-based 3-D FEM (Nam et al. 2007). Finally, using the new code we study the effect of displacement
currents on RMT responses in the presence of significant topography for a field example from Smørgrav, southern Norway.

G E N E R A L I Z E D S U R FA C E I N T E G R A L F O R M U L A

Single homogeneous isotropic body

Assuming a homogeneous and isotropic medium �, in which the conductivity σ (S/m), the electric permittivity ε(F/m) and the magnetic
permeability μ(H/m) are constant, we start with the stable Maxwell equations (Tsuboi & Misaki 1987; Shen 1995; Jin 2002) in terms of E
(electric field strength, V m−1) and B (magnetic flux density, T) in the frequency domain [assuming a time varying factor exp ( − iωt)]

∇ × E = iωB, (1)

∇ × B = μ (σ − iωε) E, (2)

∇ · E = 0, (3)

∇ · B = 0, (4)

where the imaginary unit i = √−1, ω = 2π f is the angular frequency and f is the frequency. Eliminating B from eq. (1) or E from eq. (2) ,
we have

∇ × ∇ × E − k2E = 0,

∇ × ∇ × B − k2B = 0. (5)

Here, k = √iωμ (σ − iωε) = √−ξχ is the wavenumber or complex propagation constant, ξ = −iωμ is the impedivity and χ = (σ − iωε)
is the admittivity.

For an arbitrary vector-scalar pair, W and ϕ, having continuous second derivatives over the domain �, the following vector-scalar
Green’s identity holds [Jin (2002), eq. (14.41)]�

�

[
ϕ∇ × ∇ × W + ∇ · W∇ϕ + ∇2ϕW

]
dV =

�
∂�

[ϕn̂ × ∇ × W + (n̂ · W)∇ϕ + (n̂ × W) × ∇ϕ] ds, (6)

where n̂ is an outward normal unit vector on the boundary ∂� of �. Mathematically, the scalar function ϕ = ϕ(r) could be any function of
position r ∈ � with at least continuous second derivatives, ϕ(r) ∈ Cn (�) , n ≥ 2. Physically, we consider the scalar function ϕ(r) to be the
potential generated by a unit source at a point ŕ ∈ �. The potential field will satisfy the inhomogeneous scalar Helmholtz equation

∇2ϕ(r, ŕ) + k2ϕ(r, ŕ) = −δ(r, ŕ). (7)

Without considering boundary conditions, one suitable form for ϕ(r, ŕ) is ϕ(r, ŕ) = exp(ik|r−ŕ|)
4π |r−ŕ| . Substituting this expression for ϕ(r, ŕ)

into eq. (6), and letting W = E and W = B, respectively, a pair of surface integral equations for the electric field E and magnetic field B is
obtained

�E (ŕ) = −
�

r∈∂�
[iωϕn̂ × B + (n̂ · E)∇ϕ + (n̂ × E) × ∇ϕ] ds, (8)

�B (ŕ) = −
�

r∈∂�
[μ (σ − iωε) ϕn̂ × E + (n̂ · B)∇ϕ + (n̂ × B) × ∇ϕ] ds, (9)
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where the gradient operator ∇ is on r ∈ ∂� and � is the solid angle subtended at ŕ

� =
�

�
δ(r, ŕ) dV =

{
1 ŕ ∈ �

1/2 ŕ ∈ ∂�.

eq. (8) is referred to as the electric field integral equation (EFIE) and eq. (9) is referred to as the magnetic field integral equation (MFIE).
In eqs (8) and (9), the normal components of E and B can be represented in terms of the tangential components of B and E, respectively,
(Harrington 1993),

n̂ · E = 1

k2
n̂ · (∇ × ∇ × E) = −1

μχ
∇ · (n̂ × B) , n̂ · B = μ

ξ
∇ · (n̂ × E) . (10)

This relationship is valid at high frequencies, such as wave propagation fields, and has the benefit of reducing the number of variables which
means the normal components of the electric and magnetic fields can be avoided because they can be represented by the tangential components
of the magnetic field and electric field, respectively. Such a representation shows that the electromagnetic fields inside a homogeneous
and isotropic medium are solely determined by the surface tangential electromagnetic fields. Therefore, the surface distributions of the
electromagnetic fields can be viewed as the ‘sources’ which generate the fields inside the domain. However, there is a risk of numerical
instability with this relationship, due to the small values of admittivity and impedivity at low frequency, as in highly resistive bodies such as
the air space. As a consequence, to avoid this potential risk, a full set of virtual equivalent surface electric currents J̃ and charges β̃, surface
magnetic currents M̃ and charges α̃ is considered in this study, J̃ = 1

μ
n̂ × B, M̃ = n̂ × E, β̃ = n̂ · B, α̃ = n̂ · E. Using the vector identity

W = (n̂ × W) × n̂ + (n̂ · W) n̂, and considering the above definitions, we have

�
[
M̃ × n̂ + α̃n̂

]
(ŕ)

= −
�

r∈∂�

[−ξϕJ̃ + α̃∇ϕ + M̃ × ∇ϕ
]

ds, (11)

�
[
μJ̃ × n̂ + β̃n̂

]
(ŕ)

= −
�

r∈∂�

[
μχϕM̃ + β̃∇ϕ + μJ̃ × ∇ϕ

]
ds. (12)

Two connected bodies

We consider now two arbitrary but dissimilar homogeneous and isotropic media �i with electromagnetic parameters (σ i, εi, μi), i = 0, 1,
as shown in Fig. 1. For the geo-electromagnetic problem, the subscript 0 represents air and the subscript 1 the Earth. The common surface
connecting these two bodies is � = ∂�0 ∩ ∂�1. The surface of body �0 is ∂�0 = � + �0, where �0 is the part of the surface which only
belongs to �0 . The surface of body �1 is ∂�1 = � + �1, where �1 is the part of the surface which only belongs to �1. On �0 and �1,
the electromagnetic fields are given as the boundary conditions. The normal vector n̂ on the common surface � is defined to point in the
direction from �0 to �1. The electromagnetic fields on the common surface � are unknown. Following on from eqs (11) and (12), once the
electromagnetic fields on the common surface have been determined, the fields at any point inside �0 ∪ �1 can be computed. To obtain
stable numerical solutions of surface currents and charges, the full set of boundary conditions should be satisfied simultaneously. This implies

Figure 1. The geometrical configuration of two connected arbitrary bodies �0 and �1. For example, �0 could be the air and �1 the Earth. The conductivity
of �0 is required to be less than or equal to that of �1 and n̂, n̂0 and n̂1 are unit normal vectors to the three surfaces �, �0 and �1.
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that both the EFIE of eq. (11) and MFIE of eq. (12) should be used in both �0 and �1. This is a variant of the combined field integral
equations (CFIE; Jin 2002; Ylä-Oijala 2008) by which internal resonance problems which cause extremely unstable numeral results at certain
frequencies can be avoided.

Applying both the EFIE eq. (11) and the MFIE eq. (12) to both �0 and �1, and letting the observation point ŕ approach the smooth
surface �, we have

1

2

[
M̃0 × n̂ + α̃0n̂

]
(ŕ)

= −
∫∫

r∈�

[−ξ0ϕ0J̃0 + α̃0∇ϕ0 + M̃0 × ∇ϕ0

]
ds + E�0 (ŕ) , (13)

1

2

[
μ0J̃0 × n̂ + β̃0n̂

]
(ŕ)

= −
∫∫

r∈�

[
μ0χ0ϕ0M̃0 + β̃0∇ϕ0 + μ0J̃0 × ∇ϕ0

]
ds + B�0 (ŕ) , (14)

1

2

[
M̃1 × n̂ + α̃1n̂

]
(ŕ)

=
∫∫

r∈�

[−ξ1ϕ1J̃1 + α̃1∇ϕ1 + M̃1 × ∇ϕ1

]
ds + E�1 (ŕ) , (15)

1

2

[
μ1J̃1 × n̂ + β̃1n̂

]
(ŕ)

=
∫∫

r∈�

[
μ1χ1ϕ1M̃1 + β̃1∇ϕ1 + μ1J̃1 × ∇ϕ1

]
ds + B�1 (ŕ) , (16)

where E�0 (ŕ) is the electric field contributed by the known electromagnetic fields on �0 to the observation point ŕ defined by eq. (8) and
B�0 (ŕ) is the magnetic field originating from the known electromagnetic fields on �0 defined by eq. (9). E�1 (ŕ) and B�1 (ŕ) have similar
definitions. On the common surface �, these virtual currents and charges are connected by the full set of the following boundary conditions:
J̃0 = J̃1, M̃0 = M̃1, β̃0 = β̃1, χ0α̃0 = χ1α̃1. Here, a constraint is assumed for the real parts of admittivities of bodies �0 and �0, viz., Re(χ 0)
≤ Re(χ 1), so that we can define two well-behaved factors D and Q

D = χ0

χ1
where |D| 
 ∞, 0 < Q = ξ0

ξ1

 ∞.

In terms of the constraint satisfied by body �0, the surface currents and charges for body �0 are taken as variables, that is J̃ ≡ J̃0, M̃ ≡
M̃0, β̃ ≡ β̃0, α̃ ≡ α̃0. Adding the two EFIE eqs (13) and (15), and the two MFIE eqs (14) and (16), respectively, and by further manipulation,
we obtain

[M̃ × n̂ + 1 + D

2
α̃n̂](ŕ) =

∫∫
r∈�

[
M̃ × (∇ϕ1 − ∇ϕ0) + J̃ (−ξ1ϕ1 + ξ0ϕ0) + α̃ (D∇ϕ1 − ∇ϕ0)

]
ds + E�0+�1 (ŕ) , (17)

[
(−ξ0 − ξ1)

2
J̃ × n̂ + iωβ̃n̂

]
(ŕ)

=
∫∫

r∈�

[
J̃ × (−ξ1∇ϕ1 + ξ0∇ϕ0) + M̃

(
k2

1ϕ1 − k2
0ϕ0

)+ iωβ̃ (∇ϕ1 − ∇ϕ0)
]

ds + iωB�0+�1 (ŕ) . (18)

It should be noted that the coefficients in front of each integrand in eqs (17) and (18) are quite different in amplitude. This would lead to large
differences in the entries for the final system of linear equations, and hence, to an ill-conditioned problem. To improve conditioning, a new
set of rescaled surface currents and charges (Colton & Kress 1983; Ylä-Oijala & Taskinen 2007) is introduced on the surface �

J ≡
√

−ξ1J̃, (19)

M ≡ √
χ1M̃, (20)

β ≡ iω√−ξ1
β̃, (21)

α ≡ √
χ1α̃. (22)

Substituting these rescaled currents and charges into eqs (17) and (18), we obtain the following generalized surface integral formulae for the
two connected homogeneous and isotropic media(

M × n̂ + 1 + D

2
αn̂

)
(ŕ)

=
∫∫

r∈�

[M × (∇ϕ1 − ∇ϕ0) + k1J (ϕ1 − Qϕ0) + α (D∇ϕ1 − ∇ϕ0)] ds + √
χ1E�0+�1 (ŕ) , (23)

(
1 + Q

2
J × n̂ + βn̂

)
(ŕ)

=
∫∫

r∈�

[J × (∇ϕ1 − Q∇ϕ0) + k1M (ϕ1 − Q Dϕ0) + β (∇ϕ1 − ∇ϕ0)] ds + iω√−ξ1
B�0+�1 (ŕ) . (24)
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Topographic models

For a typical geo-electromagnetic topographic model, the body �0 is set to be the free space or air and the body �1 represents the Earth. The
conductivity of free air is σ 0 , while ε0 and μ0 are the electric permittivity and the magnetic permeability values for free space. On �0 and �1,
the analytical solutions for a 1-D half-space model with sources polarized in two different directions (Ex and Hx) are enforced. The amplitude
of the incident electric (E p

x ) or magnetic (H p
x ) field just above the interface (with coordinate z = 0) is arbitrarily set to unit value, depending

on which polarization (p) is being considered. Using these boundary conditions, the source terms E�0+�1 in eq. (23) and B�0+�1 in eq. (24)
are computed. Then, on the common air–Earth surface �, the unknown surface currents and charges are solved via eqs (23) and (24).

S TA N DA R D B E M A P P ROA C H

On the common undulating surface �, a local coordinate system (u, v, n) is introduced in which n̂ is the normal unit vector to the topographic
surface, and û and v̂ are unit vectors in the two tangential directions orthogonal to each other. In this system the tangential vectors J and M
are defined as

M = Mu û + Mv v̂, J = Ju û + Jv v̂. (25)

To approximate complicated surfaces, a triangulation grid (Shewchuk 1996) is adopted on � = ∪�i, i = 1, . . . , N, where N is the number
of triangles. As no differential operators are applied to the surface currents and charges, zero-order constant shape functions are suitable to
represent these surface distributions. In addition, the point collocation method rather than the Galerkin residual method is naturally employed
with zero-order constant shape functions; this can dramatically speed up the assembling procedure and at the same time maintain the desired
accuracy of the final solution (Jin 2002). Substituting eq. (25) into eqs (23) and (24), and by applying û(ŕ)·, v̂(ŕ)· and n̂(ŕ)· operators to eqs
(23) and (24), the following system of linear equations is obtained⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mu

Mv

1+D
2 α

1+Q
2 Ju

1+Q
2 Jv

β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ŕ

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−v̂

û

n̂

−v̂

û

n̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ŕ

·
N∑

i=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b e c d 0]

a b e c d 0]

a b e c d 0]

g h 0 aQ bQ f]

g h 0 aQ bQ f]

g h 0 aQ bQ f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mu]

Mv]

α]

Ju]

Jv]

β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ri

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−v̂ · √
χ1E�0+�1

û · √
χ1E�0+�1

n̂ · √
χ1E�0+�1

−v̂ · iω√−ξ1
B�0+�1

û · iω√−ξ1
B�0+�1

n̂ · iω√−ξ1
B�0+�1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ŕ

, (26)

where ŕ is the centre point of a given observation triangle, and ri is the point of the ith source triangle. The various elements in the 6 × 6
matrix are given by

a =
∫∫

i

û × (∇ϕ1 − ∇ϕ0) ds, (27)

b =
∫∫

i

v̂ × (∇ϕ1 − ∇ϕ0) ds, (28)

aQ =
∫∫

i

û × (∇ϕ1 − Q∇ϕ0) ds, (29)

bQ =
∫∫

i

v̂ × (∇ϕ1 − Q∇ϕ0) ds, (30)

c =
∫∫

i

k1 (ϕ1 − Qϕ0) û ds, (31)

d =
∫∫

i

k1 (ϕ1 − Qϕ0) v̂ ds, (32)

e =
∫∫

i

(D∇ϕ1 − ∇ϕ0) ds, (33)

f =
∫∫

i

(∇ϕ1 − ∇ϕ0) ds, (34)
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g =
∫∫

i

k1 (ϕ1 − Q Dϕ0) û ds, (35)

h =
∫∫

i

k1 (ϕ1 − Q Dϕ0) v̂ ds. (36)

When the observation point is located inside the source triangle �i, the surface integrals in the above eqs (27)–(36) become singular. A
singularity extraction technique (Ylä-Oijala & Taskinen 2003; Ren et al. 2010), which analytically evaluates the singular parts is therefore
adopted to accurately compute the values of those integrals having singular integrands.

The above procedure is followed for all triangles, to finally yield a system of linear equations of dimensions 6N × 6N

AX = Y, (37)

where X = {Xi , i = 0, 1, . . . , N − 1}, Xi = {Mu, Mv, α, Ju, Jv, β}i are the unknown surface currents and charges over the ith triangle. It
should be noted that the final system matrix A of eq. (37) is diagonally dominant, which indicates its favourable behaviour and low condition
number (see Section A4). For the specific case of a homogeneous full space model, the system matrix becomes the identity matrix, with a
condition number of one. The right-hand side vector Y depends on the polarization and the azimuthal and inclination angles of the incident
wave.

For a single observation point, the integral eqs (27)–(36) need to be evaluated over all N triangles which constitute �, due to the
interactions between the Green’s functions. Therefore, the algorithm has a O(m2) time complexity and a memory cost of O(m2) to compute
and store all terms in the final system of linear eq. (37), respectively, where m = 6N. To solve this full system of linear equations by direct
solvers, a time cost of about O(m3) is required. For small-scale problems in which the number of unknowns is less than a few thousand, we
apply the open source MUMPS library (Amestoy et al. 2002; Operto et al. 2007; Streich 2009) to directly solve the linear system (37). We
refer to this as the standard BEM in the remainder of the paper.

A DA P T I V E M U LT I L E V E L FA S T M U LT I P O L E B E M M E T H O D

The expensive computational cost of O(m2) complexity for explicitly assembling and storing the system matrix makes the standard BEM
incapable of handing large-scale problems, in which the number of unknowns is typically tens or hundreds of thousands. To overcome this
limitation of the standard BEM algorithm, an adaptive multilevel fast multipole BEM (AMFM-BEM; Hackbusch & Nowak 1989; Buchau
et al. 2000) was introduced and further developed by us. Due to its complicated theoretical analysis and non-trivial implementation, only a
few applications of the AMFM approach have been published in geophysics, such as the scalar gravity field problem (May & Knepley 2011),
the direct current resistivity problem (Blome et al. 2009) and the seismic wave problem (Fujiwara 2000; Çakır 2006, 2009). To the best of
our knowledge, this study is the first attempt to use the AMFM concept to study 3-D geo-electromagnetic problems. Additionally, in terms
of the concept of panel clustering (Hackbusch & Nowak 1989), two optimal sub-algorithms are introduced to simplify the implementation of
the original procedure of the AMFM algorithm (Liu 2009) and to optimize its performance (see Section A1 and A2 for details).

Instead of explicitly assembling the system matrix A, the AMFM-BEM method which incorporates the generalized minimal residual
solver [GMRES, embedded in the open source PETSc library (Balay et al. 2010)] seeks to rapidly compute the product of the system matrix
with an initial vector of unknowns. Under this framework, the system matrix A can be divided into a banded matrix Anear and an off-diagonal
matrix Afar. Here, the banded matrix Anear with several non-zeros around the main diagonal stands for the near field integrals over nearby
triangles and is a sparse matrix. The off-diagonal matrix Afar stands for the far-field integrals and is partially dense. Using this decomposition,
the multiplication of the system matrix with the initial vector of unknowns can be represented as

AX = AnearX + AfarX. (38)

Due to the sparse nature of the banded matrix Anear, the computation only requires a linear O(m) time and memory complexity to perform
the first multiplication AnearX. Exploiting the features of the AMFM aglorithm, the time complexity of performing the multiplication AfarX
is reduced to O(m log m) and the memory cost reduced to O(m), at each iteration of the GMRES solver. Assuming the number of iterations
used by the GMRES solver is nit, the total time complexity of the AMFM-BEM algorithm is only about O(nitm log m).

Multipole moments

The core integrals in the multiplication AfarX in eq. (38) for an arbitrary given observation point ŕ are

I(ŕ) =
∫∫

r∈�far

[M × (∇ϕ1 − ∇ϕ0) + k1J (ϕ1 − Qϕ0) + α (D∇ϕ1 − ∇ϕ0)] ds, (39)

II(ŕ) =
∫∫

r∈�far

[J × (∇ϕ1 − Q∇ϕ0) + k1M (ϕ1 − Q Dϕ0) + β (∇ϕ1 − ∇ϕ0)] ds, (40)
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Figure 2. Direct connections between observation points ŕ and source points r are represented by moments-to-moments transformations (M2M), moments-to-
local transformations (M2L) and local-to-local transformations (L2L). Observation points of observation triangles are grouped into a cluster τ i having radius
R(τ i) and source points of source triangles are grouped into a cluster τ j having radius R(τ j). The quantity rc is the multipole expansion centre of the cube which
contains the source points; rć is the expansion centre of the parent cube with the child cube containing the source points. Quantity ŕc is the local expansion
centre of a parent cube which contains the observation point; ŕć is the local centre of a child cube with its parent cube containing the observation point. If the
distance D between clusters τ i and τ j satisfies the admissible condition, D(τ i, τ j) ≥ γ max [R(τ i), R(τ j)], then clusters τ i and τ j are in a far-field configuration,
otherwise in a near-field configuration, where γ > 0 is the admissible factor. The optimal admissible factor γ is about 2.0 (shown in Fig. 3) for our study.

where r ∈ �far denotes the integral domain far away from the observation point ŕ.
According to Gegenbauer’s addition theorem (Abramowitz & Stegun 1964), if the source point r ∈ �far and the observation point ŕ are

sufficiently far away from each other, the interaction between r and ŕ via the Green’s functions can be separated in terms of an expansion
point rc around the source point r (shown in Fig. 2). Hence, for |r − rc| < |ŕ − rc|

ϕ(k, ŕ, r) = eik|ŕ−r|

4π |ŕ − r| = ik

4π

∞∑
n=0

(2n + 1)
n∑

m=−n

S−m
n (k, ŕ − rc) Rm

n (k, r − rc) , (41)

where ϕ(k, ŕ, r) is the Green’s function of the 3-D Helmholtz equation in the full space, and k is the complex wavenumber. For the wavenumber
k0 in �0, we write in short ϕ(k0) = ϕ0. Similarly, ϕ(k1) is designated as ϕ1. Sm

n (k, �x) are the solid harmonics, which are singular as �x → 0, and
Rm

n (k, �x) are the regular solid harmonics as �x → 0. The solid harmonics are defined in terms of the spherical harmonics Y m
n (θ, φ), that is,

Sm
n (k, �x) = h(1)

n (kr ) Y m
n (θ, φ) (42)

Rm
n (k, �x) = jn (kr ) Y m

n (θ, φ) . (43)

Here h(1)
n and jn are the spherical Bessel functions of the third and first kind, respectively, (r, θ , φ) represent the spherical coordinates of

an arbitrary vector �x, 0 ≤ θ ≤ π , 0 ≤ r < ∞, 0 ≤ φ < 2π , and the spherical harmonics Y m
n (θ, φ) are defined by

Y m
n (θ, φ) = (−1)m

√
(n − |m|)!
(n + |m|)! P |m|

n (cos θ ) eimφ, n ≥ 0, −n ≥ m ≥ n, (43)

with Pm
n the associated Legendre functions and P0

n = Pn the Legendre polynomials. Substituting the expansion expression (41) of ϕ(k, ŕ, r)
into eqs (39) and (40), we have(

Ifar

IIfar

)
ŕ

=
∞∑

n=0

n∑
m=−n

(
Snm

I (ŕ − rc) � [Mnm
I (rc)]T

Snm
II (ŕ − rc) � [Mnm

II (rc)]T

)
, |ŕ − rc| > |r − rc|, (44)

where � is the dot operator, T is a transposition operator, SI and SII are the moment basis functions given by

Snm
I (�x) = i(2n + 1)

4π

[
S−m

n (k1, �x)k1, −S−m
n (k0, �x)k0, S−m

n (k1, �x)k2
1,

− S−m
n (k0, �x)k0k1 Q, S−m

n (k1, �x)k1 D,−S−m
n (k0, �x)k0

]
, (45)

Snm
II (�x) = i(2n + 1)

4π

[
S−m

n (k1, �x)k1, −S−m
n (k0, �x)Qk0, S−m

n (k1, �x)k2
1,

− S−m
n (k0, �x)k0k1 Q D, S−m

n (k1, �x)k1,−S−m
n (k0, �x)k0

]
, (46)
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and MI and MII are the multipole moments (MM) which are independent of the observation point. The explicit forms of the multipole
moments centred at rc are

Mnm
I (rc) =

Nfar−1∑
i=0

[
Mi × M∇nm

i (k1, rc), Mi × M∇nm
i (k0, rc), Ji Mnm

i (k1, rc),

Ji Mnm
i (k0, rc), αi M

∇nm
i (k1, rc), αi M

∇nm
i (k0, rc)

]
,

Mnm
II (rc) =

Nfar−1∑
i=0

[
Ji × M∇nm

i (k1, rc), Ji × M∇nm
i (k0, rc), Mi Mnm

i (k1, rc),

Mi Mnm
i (k0, rc), βi M

∇nm
i (k1, rc), βi M

∇nm
i (k0, rc)

]
,

where Nfar is the number of triangles in �far, Mi , Ji , αi and β i are constant distributions of surface currents and charges over each triangle,
�i ∈ �far, and the multipole moments over a single triangle are (see Appendix B for details)

M∇nm
i (k, rc) =

∫∫
r∈i

∇ Rm
n (k, r − rc) ds, (47)

Mnm
i (k, rc) =

∫∫
r∈i

Rm
n (k, r − rc) ds. (48)

M2M, M2L and L2L transformations

As observed from eq. (44), the fundamental reason for the reduction in the number of operations in the fast multipole accelerated BEM
approach is that once the multipole moments are computed at the expansion centre rc, for a moving observation point ŕ, the evaluations of
these new far-field integrals require simple algebraic operations. The given surface � (such as the air–Earth interface) which is composed
of m small disjoint triangles is divided into k regions (each region should act as both observation and source region). For the nth (n = 1, ...,
k) observation region (we assume that both it and its abutting regions contain mn triangles), the direct computation of the singular or nearly
singular integrals in Anear requires O(m2

n) operations. The computation of the multipole moments (MI and MII in eq. 44) over the far-field
regions requires O[(m − mn)p2] operations, where p is the truncation number of the expansion series used in eq. (44). The evaluation of
the moment basic functions (SI and SII in eq. 44) needs O(mnp2) operations. Therefore, the complexity function F(k) involving only the
procedure for multipole moment expansions (using eq. 44) is F(k) =∑k

n=1[m2
n + (m − mn)p2 + mn p2]. Assuming that the given surface �

is uniformly divided which means mn = m
k , then the minimum value of F(k) is given by

F(k) = m2

k
+ kp2m (49)

F(k)min = 2m
3
2 p = O(m3/2), kmin =

√
m

p
. (50)

The above algorithm is also referred as the single level fast multipole method (Liu 2009). It offers an O(m3/2) time complexity. To achieve
an optimal O(m log m) time complexity at each iteration, the adaptive multilevel fast multipole method is adopted in which the three
transformations (M2M, M2L and L2L) are needed, the basic theory for which is now outlined.

Moments to moments (M2M) transformation

If the multipole expansion centre rc is shifted to another expansion centre rć of �far (shown in Fig. 2), the far-field integrals over �far with
centre rć can be presented in a similar form as eq. (44)(

Ifar

IIfar

)
ŕ

=
∞∑

n=0

n∑
m=−n

(
Snm

I (ŕ − rć) � [Mnm
I (rć)]T

Snm
II (ŕ − rć) � [Mnm

II (rć)]T

)
, |ŕ − rć| > |r − rć|. (51)

Here, the new multipole moments Mnm
I (rć) and Mnm

II (rć) can be computed by Mnm
I (rc) and Mnm

II (rc) as follows. According to the convolution
form of the Helmholtz translation theorem (Epton & Dembart 1995), the regular solid harmonics in eq. (43) fulfill the requirement:

Rm
n (k, r − rć) = Rm

n (k, r − rc + rc − rć)

=
∞∑

ń=0

ń∑
ḿ=−ń

n+ń−2a∑
s=0

(2s + 1)(2ń + 1)

4π
(−1)a E

(
m ḿ − j
n ń s

)
R−ḿ

ń (k, rć − rc) R j
s (k, r − rc)

=
∞∑

ń=0

ń∑
ḿ=−ń

n+ń−2a∑
s=0

(R|R)ńḿs
nm R−ḿ

ń (k, rć − rc) R j
s (k, r − rc) ,

( j = m + ḿ, a ≥ 0),
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where ń, ḿ, s, n, m and a are integers, and integer a is chosen from a = 1
2 (n + ń − s) ≥ 0, (R|R)ńḿs

nm are the abbreviations for the first three

factors in the second line of the above equation, and E( ∗ ∗ ∗
∗ ∗ ∗ ) are the Wigner 3-j symbols (Abramowitz & Stegun 1964), which are evaluated

using the open source GNU scientific library (Galassi et al. 2009). Using the above identity and considering both eqs (51) and (44), we have
the following M2M transformation to evaluate the new multipole moments centred at rć by the multipole moments centred at rc[

Mnm
I (rć)

Mnm
II (rć)

]
=

∞∑
ń=0

ń∑
ḿ=−ń

n+ń−2a∑
s=0

(M2M)ńḿs
nm (rć − rc) ·

[
Ms j

I (rc)

Ms j
II (rc)

]
. (52)

Moments to local (M2L) transformation

We assume that ŕc is the local expansion centre of the observation point (shown in Fig. 2), r is far away from the observation point so that
|ŕ − ŕc| < |r − ŕc|, the Green’s functions can be rewritten as

ϕ(k, ŕ, r) = eik|ŕ−r|

4π |ŕ − r| = ik

4π

∞∑
n=0

(2n + 1)
n∑

m=−n

R−m
n (k, ŕ − ŕc) Sm

n (k, r − ŕc) . (53)

Substituting the above local expansion into eqs (39) and (40), for �far, with respect to ŕ, this yields(
Ifar

IIfar

)
ŕ

=
∞∑

n=0

n∑
m=−n

(
Rnm

I (ŕ − ŕc) � [Lnm
I (ŕc)]T

Rnm
II (ŕ − ŕc) � [Lnm

II (ŕc)]T

)
, |ŕ − ŕc| < |r − ŕc|. (54)

Here Rnm
I (�x) and Rnm

II (�x) are the local expansion basis functions, for �x = ŕ − ŕc which are similar to eqs (45) and (46), that is,

Rnm
I (�x) = i(2n + 1)

4π

[
R−m

n (k1, �x)k1,−R−m
n (k0, �x)k0, R−m

n (k1, �x)k2
1,

− R−m
n (k0, �x)k0k1 Q, R−m

n (k1, �x)k1 D, −R−m
n (k0, �x)k0

]
, (55)

Rnm
II (�x) = i(2n + 1)

4π

[
R−m

n (k1, �x)k1,−R−m
n (k0, �x)Qk0, R−m

n (k1, �x)k2
1,

−R−m
n (k0, �x)k0k1 Q D, R−m

n (k1, �x)k1, −R−m
n (k0, �x)k0

]
. (56)

Using the addition theorem (Epton & Dembart 1995; Gumerov & Duraiswami 2004b) for the singular solid harmonics in eq. (42), we obtain

Sm
n (k, r − ŕc) = Sm

n (k, r − rć + rć − ŕc)

=
∞∑

ń=0

ń∑
ḿ=−ń

n+ń−2a∑
s=0

(S|R)ńḿs
nm (−1)s+ń S j

s (k, ŕc − rć) R−ḿ
ń (k, r − rć) , (57)

where (S|R)ńḿs
nm = (R|R)ńḿs

nm . Substituting the above result into eq. (54), the local expansion coefficients centred at the local point ŕc can be
represented by the new multipole moments centred at the multipole point rć by the following M2L transformation[

Lnm
I (ŕc)

Lnm
I (ŕc)

]
=

∞∑
ń=0

ń∑
ḿ=−ń

n+ń−2a∑
s=0

(M2L)ńḿs
nm (ŕc − rć) ·

[
Mń,−ḿ

I (rć)

Mń,−ḿ
I (rć)

]
. (58)

Local to local (L2L) transformation

If the local expansion point ŕc is shifted to another local expansion point ŕć (shown in Fig. 2), the far-field contributions centred at the new
local expansion point ŕć can be rewritten as(

Ifar

IIfar

)
ŕ

=
∞∑

n=0

n∑
m=−n

(
Rnm

I (ŕ − ŕć) � [Lnm
I (ŕć)]T

Rnm
II (ŕ − ŕć) � [Lnm

II (ŕć)]T

)
, |ŕ − ŕć| < |r − ŕć|. (59)

Due to the availability of the local expansion coefficients Lnm
I (ŕc) and Lnm

II (ŕc) at the old local expansion point, reusing the old local expansion co-
efficients to compute the new local expansion coefficients (centred at ŕć) is faster than directly evaluating these new local expansion coefficients
(Liu 2009). We also have (Epton & Dembart 1995; Gumerov & Duraiswami 2004b), Sm

n (k, r − ŕć) = Sm
n (k, r − ŕc + ŕc − ŕć) , |r − ŕc| >

|ŕc − ŕć|, which yields

Sm
n (k, r − ŕć) =

∞∑
ń=0

ń∑
ḿ=−ń

n+ń−2a∑
s=0

(S|S)ńḿs
nm R−ḿ

ń (k, ŕć − ŕc) S j
s (k, r − ŕc) , (60)
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Figure 3. (a) Relative errors of multipole moments (MM) expansions of Green’s functions over clusters τ i and τ j (in Fig. 2) versus the number of expansion
terms (p), for different distance parameters γ . The clusters τ i and τ j are smaller than 0.1 skin depth in diameter. Numerical results suggest that with γ = 2.0,
the number of expansion terms p ≥ 6 would yield highly accurate results. (b) Relative errors of multipole moments (MM) expansions (eq. 44), M2M (eqs
51 and 52, M2L eqs 54 and 58 and L2L eqs 59 and 61) transformations versus the number of expansion terms (p), where γ = 2.0. The plot suggests that to
guarantee a relative error of less than 0.01 per cent for all transformations, the number of expansion terms might be p ≥ 6. In this numerical experiment, relative
errors are measured against the semi-analytical evaluations of the surface integrals Ifar and IIfar in eqs (39) and (40) over two distant triangles with γ = 2.0.
Numerical solutions for the M2M transformation are computed by the evaluated multipole moments; those for the M2L transformation are computed by the
M2M transformation and so on. Therefore, the relative errors increase when the transformations are successively performed. As for the L2L transformation,
due to the regular transformation core L2L in eqs (60) and (61), the L2L transformation shows an accuracy similar to that of the M2L transformation.

where (S|S)ńḿs
nm = (R|R)ńḿs

nm . Using eq. (60) and considering the implicit expressions for Lnm
I and Lnm

II in eq. (54), the new local expansion
coefficients (centred at ŕć ) can be represented by the old local expansion coefficients (centred at ŕc) using the following L2L transformations[

Lnm
I (ŕć)

Lnm
II (ŕć)

]
=

∞∑
ń=0

ń∑
ḿ=−ń

n+ń−2a∑
s=0

(L2L)ńḿs
nm (ŕć − ŕc)

[
Ls j

I (ŕc)

Ls j
II (ŕc)

]
. (61)

Due to the summation over five integers (n ≥ 0, n ≥ m ≥ −n, ń ≥ 0, ń ≥ ḿ ≥ −ń, s = n + ń − 2a, a ≥ 0), all three transformations
need O(p5) operators, where p ≥ n ≥ 0 in the M2M and M2L and L2L transformation. For the case of large p, these transformations require a
lot of computation time which decreases the efficiency of the fast multipole approach. Several algorithms were proposed to decrease the time
complexity of these transformations, such as the diagonal form approach (Rokhlin 1992). However, the diagonal form becomes inaccurate
at low frequency (Liu 2009). To avoid low-frequency problems, for local expansion coefficients Lnm

I (ŕc) and Lnm
II (ŕc) we adhere to using

the original O(p5) algorithm. Typically, at MT and RMT frequencies, p ≤ 10, based on numerical experiments (see Fig. 3). To improve the
efficiency of these transformations, it might be valuable to investigate the potentials of an O(p3) algorithm which was proposed by Gumerov
& Duraiswami (2004b) in the future.

Transformations on a cluster tree

To efficiently perform these three transformations, a hierarchy cluster tree ϒ needs to be set up by using the cluster tree construction algorithm
presented in Section A1. On this tree, the disjoint triangles of the given air–Earth interface � are adaptively distributed into cluster cells.
Selecting an arbitrary leaf cluster cell τ on ϒ , using the generalized cluster relationship identification algorithm presented in Section A2, its
far field clusters Pfar, near field clusters Pnear and interaction-field clusters Pinter can be found. After the upward and downward pass procedures
(which are presented in Section A3), the far-field integral term AfarX over Pfar must be available for its parent cluster. For instance, one of the
far-field clusters Pfar might have a subtree structure (shown in Fig. 4). On the leaf clusters of this subtree, the multipole moment expansions in
eq. (44) are first performed, where the expansion centre rc is the centre point of the axis-parallel cuboid which entirely encloses the triangles
in each leaf cluster. Then, the M2M transformations given by eq. (52) are performed upward along this sub-tree (red arrows in Fig. 4, see
also Section A.3) with the new expansion centre rć being the centre of their parents. This upward procedure is terminated up until to the cell
of Pfar. After that, the computed far-field integral over Pfar centred at rć is then shifted onto the centre of the parent of τ (τ p), ŕc, in terms
of the M2L transformation by eq. (58). Now, the local expansion coefficients Lnm

I and Lnm
II at ŕc are available. To obtain the local expansion

coefficients at the centre of τ , ŕć, the L2L transformations are applied by eq. (61). Furthermore, since the clusters contained in Pinter are also
far away from τ , using a similar procedure, the far-field integrals over Pinter centred at rć could be shifted onto the centre of τ , ŕć, in terms of
the M2L transformation by eq. (58). Here, the far-field integrals are directly transformed onto the centre of τ , not to the centre of its parent
τ p, therefore ŕć replaces ŕc in eq. (58). As discussed in Section A.2, there are no shared triangles among Pfar, Pnear and Pinter. Triangles among



484 Z. Ren et al.

Figure 4. (a) Illustration of M2M transformations on a cluster tree. (b) Illustration of surface integration for a cluster τ in terms of M2L and L2L transformations.
The cluster τ p is the parent cluster of cluster τ . The far-field and interaction-field and near-field clusters of τ are identified with Algorithm 2.

Pfar, Pnear and Pinter completely cover the air–Earth interface �, that is

Pfar

⋂
Pinter = ∅, (62)

Pinter

⋂
Pnear = ∅, (63)

Pnear

⋂
Pfar = ∅, (64)

Pfar

⋃
Pnear

⋃
Pinter = �. (65)

Then, all the far-field integrals over Pfar + Pinter with respect to each observation triangle (with ŕ being its centroid) in τ could be
computed as (using eq. 59)

AfarX(ŕ) =
p∑

n=0

n∑
m=−n

(
Rnm

I (ŕ − ŕć) � [Lnm
I (ŕć)]T

Rnm
II (ŕ − ŕć) � [Lnm

II (ŕć)]T

)
, |ŕ − ŕć| < |r − ŕć|, (66)

where

Lnm
I (ŕć) = Lnm

I (ŕć, ŕc
L2L−→ŕć)︸ ︷︷ ︸

Pfar

+ Lnm
I (ŕć, rć

M2L−→ŕć)︸ ︷︷ ︸
Pinter

, (67)

Lnm
II (ŕć) = Lnm

II (ŕć, ŕc
L2L−→ŕć)︸ ︷︷ ︸

Pfar

+ Lnm
II (ŕć, rć

M2L−→ŕć)︸ ︷︷ ︸
Pinter

. (68)

The near-field integrals over Pnear must be directly evaluated using the singular integral techniques (Ylä-Oijala & Taskinen 2003; Ren et al.
2010). Once the multipole moments are computed on the cluster tree, the number of operations required to evaluate the above local expansion
coefficients Lnm

I (ŕć) and Lnm
II (ŕć) is about O(log m) (Hackbusch & Nowak 1989). Therefore, the time complexity for the AMFM-BEM approach

is reduced to

F = O(m log m) (69)

for each iteration. The reader is referred to Gumerov & Duraiswami (2004a) for a detailed time complexity analysis. Incorporating these three
transformations, the multilevel fast multipole method reduces the computational time and memory cost significantly. Further details of the
implementation of this algorithm are provided in Appendix A.

I M P E DA N C E S A N D V E RT I C A L M A G N E T I C T R A N S F E R F U N C T I O N S

Once the system of linear eqs (37) is solved by the standard BEM procedure or the system (38) is solved by the AMFM-BEM algorithm,
the electric field E (V m−1) and magnetic field H = 1

μ
B (A m−1) on the common surface � are computed in terms of surface currents and
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surface charges. Assuming that there is a local coordinate system (u, v, n) at each measuring site, the components of the electric fields and
magnetic fields are related by an impedance tensor Z and the vertical magnetic transfer function (VMT) T (Berdichevsky & Dmitriev 2008).
To compute the impedance matrix Z and the VMT T, two sets of electromagnetic fields (on the Earth side of the interface) for both the E p

x

and H p
x polarizations are needed. The impedance tensor is determined as follows:[

Zuu Zuv

Zvu Zvv

]
=
[

E E p
x

u E H p
x

u

E E p
x

v E H p
x

v

][
H E p

x
u H H p

x
u

H E p
x

v H H p
x

v

]−1

. (70)

The VMT is computed from the expression[
Tu

Tv

]
=
[

H E p
x

u H E p
x

v

H H p
x

u H H p
x

v

]−1 [
H E p

x
n

H H p
x

n

]
. (71)

Note that in eqs (70) and (71) the use of superscripts H p
x and E p

x on the E and H components in local co-ordinates (Eu, Ev) and (Hu, Hv)
denotes that the primary (p) incident magnetic field H or the electric field E is polarized in the x direction. For 1-D and 2-D models which
are invariant along the strike or the x direction, H p

x would be referred to as the TM mode and E p
x would be referred to as the TE mode.

In our examples, we only consider the effect of one angle of incidence, that is inclination, and disregard the azimuthal angle of incidence.
Furthermore, in our 3-D examples, we consider only vertical incidence along the z-axis and receivers located on a topographical axis of
symmetry. In this special situation, the above definitions of an impedance tensor with four elements and a VMT with two elements are still
reasonable to approximate a 3 × 3 impedance tensor for the full 3-D case. It should be noted that at sufficiently high frequency the Earth
transmission angle deviates from the normal for oblique incidence in air. In this case, the more general definition of the impedance tensor
with nine elements, that establish the transfer functions between all three components of the electric and magnetic fields, would have to be
employed. Furthermore, three source polarizations would be necessary to define this impedance tensor (Berdichevsky & Dmitriev 2008).

Once the impedance tensor is available, the apparent resistivities and phases are extracted from the basic definitions

ρi j
a = 1

ωμ0
|Zi j |2, i, j = u, v, (72)

φi j = arctan
[
I m(Zi j )/Re(Zi j )

]
. (73)

N U M E R I C A L E X A M P L E S

To perform the numerical experiments, the resistivity of free air is set to ρ0 = 1
σ0

= 1016 �m . The boundary conditions enforced on the
surfaces �0 and �1 are the analytical solutions of 1-D half-space models, which assume that �0 and �1 should be far enough away (such as
5–10 skin depths) from the topographic surface. The amplitude of the incident E p

x polarized field or H p
x polarized field for these analytical

solutions is arbitrarily set to unit value at the air–Earth interface (z = 0). In the numerical solution, similar unit values are assumed for the
magnitude of the field value in the x-direction (H p

x or E p
x ) of the incident wave. The plane wave can have an arbitrary angle of incidence.

Benchmark 1: half-space model

A half-space model is first used to verify our numerical solutions against analytical solutions. The resistivity of the homogeneous Earth is
10 000 �m . The magnetic permeability of the Earth is the same as that of free space, that is, μ1 = μ0 = 4π × 10−7 Vs Am−1; the dielectric
permittivity of the Earth is chosen as ε1 = 5ε0 to be in the typical range of plutonic rocks as, for instance, granite, where ε0 = 8.854 ×
10−12 F m−1 is the free space value.

First, we consider plane waves vertically incident on the air–Earth interface at frequencies from f = 0.001 Hz to 300 kHz. The standard
BEM approach is used. All computations use the same mesh with 13 nodes and 16 triangles. The computational domain is [−6 km, 6 km]2,
and the computational time for each case is less than 1 s, and the memory cost is less than 10.0 MB. Solutions of our BEM approach shown
in Fig. 5 are comparable to the analytical 1-D solutions (Ward & Hohmann 1987). The absolute values of the relative errors for the apparent
resistivities are less than 0.01 per cent and the absolute phase errors are less than 0.002◦. It is obvious that for a highly resistive subsurface,
as considered here, displacement currents play an important role at the RMT frequency range (f = 10 –300 kHz). Over this frequency range,
both the apparent resistivities and the phases decrease with increasing frequency. In the MT low frequency range f = 0.001 Hz to 1 kHz, both
apparent resistivities and phases converge to their quasi-static theoretical values of 10, 000 �m and 45◦, respectively, because conduction
currents are dominant.

Next, we vary the angle of incidence for the plane wave impinging on the air–Earth interface. For this wave we assume that the electric
field E p

x is polarized in the x-direction, with the magnetic field polarized in the y–z plane of propagation (TE-mode). Three separate angles of
inclination are investigated, � = 0◦, 30◦, 90◦ (measured w.r.t. z-axis), for frequencies from f = 10 to 300 kHz. The standard BEM approach
is used. All computations use the same mesh with 760 nodes and 1425 triangles. The computational domain is [−300 m, 300 m]2, and the
computational time for each case is about 180.0 s, and the memory cost is about 1.6 GB. Fig. 6 shows the numerical solutions for this E p

x
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Figure 5. (a) Apparent resistivities ρa and phases φ on a homogeneous half-space with a resistivity of 10000 �m and a relative dielectric permittivity of 5.0 at
frequencies of f = 0.001 Hz to 300 kHz and at normal incidence, that is, at an angle of incidence � = 0◦ (Benchmark 1 example). (b) Deviations of our BEM
solutions from the analytical 1-D solutions from Ward & Hohmann (1987).

Figure 6. Apparent resistivities ρa (a) and phases φ (b) of the TE-mode on a homogeneous half-space with a resistivity of 10 000 �m and a relative dielectric
permittivity of 5.0 at frequencies of f = 10 to 300 kHz for three angles of incidence � = 0◦, 30◦, 90◦ (Benchmark 1 example). Panels (c) and (d) show
deviations of our BEM solutions from the analytical 1-D solutions (Ward & Hohmann 1987).

polarization case obtained from the new BEM approach, and the corresponding analytical 1-D solutions (Ward & Hohmann 1987). The
relative errors of the apparent resistivities are less than 0.25 per cent and the phase errors are less than 0.03◦, for all three incidence angles.
The apparent resistivities and phases decrease smoothly with increasing frequency, reaching values of 7678 �m and 25.1◦, respectively, at
300 kHz, for the vertical incidence case. Due to Snell’s law, with an increasing incidence angle � (away from the vertical) the horizontal
wavenumber gets larger and the vertical wavenumber gets smaller, causing the apparent resistivities and phases for � = 90◦ and 30◦ to be



BEM for broad-band 3-D EM modelling 487

Figure 7. Geometry of the trapezoidal hill models [(a) top-view and (b) cross-section] in the Cartesian (x, y, z) coordinate system. The size of the hilltop square
is w1 × w1, and that of the base square is w2 × w2, with h being the height of the hill. A geometrical approximation is made to reduce the infinite air–Earth
interface to a finite square of size w0 × w0. The resistivity of the free space is ρ0, ε0 is the free space dielectric permittivity, and μ0 is the free space magnetic
permeability; ρ1, ε1 and μ1 are the corresponding electromagnetic parameters for the Earth. Receiver positions are indicated by black crosses.

Table 1. Parameters of the trapezoidal hill model.

w0 (km) w1 (m) w2 (m) h (m) ρ1 (�m) ε1/ε0 μ1/μ0 f (Hz)

Model I 40 450 2000 450 100 1 1 2
Model II 4 45 200 45 3 × 104 5 1 3 × 105

larger than the values for � = 0◦. The percentage deviation between the curves is minimal at f = 10 kHz and reaches its maximum value of
about 10 per cent at f = 300 kHz.

Benchmark 2: trapezoidal hill model I

The trapezoidal hill model I shown in Fig. 7 and Table 1 was chosen to compare the numerical solutions obtained from our standard BEM
approach and our new AMFM-BEM approach against those from the independent 3-D edge-based FEM (Nam et al. 2007). The same
geometry for the hill is adopted as was used in the model of Nam et al. (2007). The size of the hilltop square is 450 × 450 m, the size of the
square base is 2000 × 2000 m, and the height of this hill is 450 m. A geometrical approximation is made to cut off the horizontally infinite
air–Earth interface into a finite square of size 40 × 40 km. The resistivity of the Earth is ρ1( = 1/σ 1) = 102 �m; the dielectric permittivity
of the Earth is ε0 and the magnetic permeability is μ0.

The trapezoidal hill surface is discretized into 298 nodes and 565 triangles. Hence, 3390 complex-valued unknowns are distributed over
the surface. Side lengths of the triangles near the trapezoidal hill are less than 10 per cent of the skin depth at the considered frequency of
2 Hz and the longest side length is about 1.0 skin depth. At this frequency and medium conductivity the electromagnetic field diffuses into
the Earth vertically at a speed of about 10−4c, where c is the speed of light. The fields are measured right beneath the air–Earth interface. In
addition to the solutions of the standard surface integral equations obtained by direct solvers, the solutions of the AMFM-BEM computed
with GMRES solvers (Balay et al. 2010) are also presented in Fig. 8. The results displayed are for the profile along the y-axis as shown in
Fig. 7(a). Apparent resistivities and phases for both the xy-component (Figs 8 b and d) and the yx-component (Figs 8 a and c) of the impedance
tensor are given for each algorithm, whereas the magnetic transfer functions Tx (Fig. 8e) and Ty (Fig. 8f) are given only for the standard BEM
approach, because the AMFM approach yields the same patterns. The two numerical solutions are in close agreement. Furthermore, they are
verified by the reference solutions which were redrawn from the edge-based FEM solutions of Nam et al. (2007), also presented in Fig. 8.
Away from the hill on the flat topography, the apparent resistivity approaches the true value of the Earth resistivity of 100 �m, while the phase
reaches its homogeneous flat earth model value of 45◦. Over the top of the hill the apparent resistivity ρxy

a drops appreciably by a factor of 2
whereas ρ yx

a shows an oscillatory pattern, with higher values on the flanks and lower values beneath the hill top. This overall drop in apparent
resistivity for positions above the hill is due to the decrease in current density associated with such topography. A valley type structure would
produce the opposite effect, concentrating the current lines and increasing the apparent resistivity (Jiracek 1990). The cusps on the ρ yx

a plot
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Figure 8. Numerical results for apparent resistivities [(a) and (b)) and phases ((c) and (d)] of the off-diagonal impedance tensor elements as well as the VMTs
Tx and Ty [(e) and (f)] for the trapezoidal hill model I. Numerical solutions of the apparent resistivities and phases from our standard BEM method (green
crosses) and our AMFM-BEM approach (red circles) are in good agreement with the solutions for a 3-D edge-based FEM code (Nam et al. 2007, dashed blue
lines) using structured meshes, where the green crosses are overlapping with red circles. As in Nam et al. (2007), the modelling results are given w.r.t. a global
Cartesian co-ordinate system. Because of the similarity of patterns of VMTs from the standard BEM method and the AMFM-approach, we only plot results of
VMTs from the standard BEM algorithm, with the real components shown by solid curves and the imaginary components shown by the dashed curves.

Table 2. Comparison of memory and time costs of the standard BEM algorithm and the AMFM-BEM
method on the trapezoidal hill model I. For the AMFM-BEM method, the number of expansion terms is
6, the maximum number of triangles in the leaf cluster is 50 and the admissibility condition is 2.5.

BEM AMFM-BEM

Memory (MB) 737.3 196.6
Time (s) 93.1 131.0

For right-hand side vectors Y 71.1 For right-hand side vectors Y 71.1
For system matrix A 10.3 Set up cluster tree 0.1
For solver MUMPS 11.7 Banded matrix Anear 5.1

Pre-compute multipole moments 5.8
For solver GMRES in 18 iterations 48.9

occur at changes in slope of the surface topography. The phase in both cases increases by about 5◦ above the hill. Note the symmetry of the
patterns which is due to the profile being taken across the centre of the structure and an angle of incidence of 0◦. The Tx component of the
VMT is zero in accordance with theory because of the symmetry of the body and the orientation of the profile. The Ty component is zero at
the very top of the hill and approaches zero well away from the sloping sides but changes sign as the hill is crossed.

Compared to the large number of unknowns used in the FEM solutions (Nam et al. 2007), our new BEM approach needs less unknowns.
In both standard BEM and AMFM-BEM methods, errors only arise from the surface mesh discretization. Numerical errors from a volume
discretization of the air and Earth domains are avoided. Therefore, our surface integral approach may provide more accurate results than the
FEM methods (Nam et al. 2007). As shown in Table 2, the computation time of the standard BEM approach is about 93.1 s (two source
polarizations are considered). It is 131 s for the AMFM-BEM approach on a PC with Intel(R) Xeon(TM) CPU 3.20 GHz and RAM 8.0 GB.
About 71.1 s are spent on computing the right-hand side vectors for both BEM and AMFM-BEM methods. The time complexity of computing
the right hand side vector is O(mn), where m is the number of triangles on the air–Earth interface � and n is the number of triangles on �0

and �1. In this experiment, we only applied the fast multipole concept on the air–Earth interface. Therefore, if the fast multipole method was
applied to the evaluation of right-hand side vectors, the total computational time would be dramatically reduced.

In addition, this example shows that our standard BEM approach and AMFM-BEM approaches can provide model responses (apparent
resistivities and phases) that are in good agreement with the quasi-static FEM computations at low frequency. Shown in Table 2, the memory
cost for the standard BEM is about 737.3 MB, whereas it is only 196.6 MB for the AMFM-BEM method. It should be noted that for this small
scale model under consideration, the standard BEM method is faster than the fast multipole accelerated BEM approach (see Table 2). The
reason is that the cost of pre-computation of expansion coefficients and the cost of M2M and M2L and L2L transformations is much higher
than the cost of direct integrations since the number of triangles is sufficiently small. However, with increasing model size, the standard BEM
becomes increasingly expensive in terms of speed and memory cost and reaches a point where it can no longer be used. This will be illustrated
in the next example.
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Table 3. Numbers of M2M, M2L and L2L transformations performed at each level on the cluster
tree for the trapezoidal hill model-II and total execution times for all three transformations. The
cluster tree contained 2515 clusters and 1895 leaf clusters at 9 levels. The above transformations
required 257 seconds at each iteration of the GMRES solver. The GMRES solver stopped after
less than 30 iterations for both E p

x and H p
x polarizations, with a relative tolerance of 10−5. About

94 per cent of the computational time was spent by the M2L transformations at each iteration.
This implies that faster M2L transformations are needed to further improve the efficiency of our
AMFM algorithm. The total memory cost of our AMFM approach was about 700 MB.

Level of cluster tree M2M (upward pass) M2L (downward pass) L2L (downward pass)

2 64 124 0
3 256 1436 64
4 1024 7804 256
5 96 35 516 1024
6 276 2472 96
7 695 9684 276
8 83 21 616 695
9 0 1281 83
Total 2494 79 933 2494
Time (s) 7.45 85.10 7.45

Figure 9. Comparison of apparent resistivities ρa and phases φ and VMT Ty for the trapezoidal hill model II for two cases, with (black curves) and without
(red curves) displacement currents, at f = 300 kHz. The solid curves stand for the real components of the VMT Ty and the dashed curves are for the imaginary
components.

Effects of displacement currents

We now turn our attention to the effects of displacement currents on a scaled-down version of the trapezoidal hill model (shown in Fig. 7 and
Table 1) but still involving significant topography (dip variations of about 30◦). Here we use a much higher frequency than in the previous
section, that is, f = 300 kHz, and a much higher Earth resistivity, that is, ρ = 30 k�m. The hill surface is discretized into 4324 nodes
and 8487 triangles. Consequently, 50 922 complex-valued unknowns are distributed over the surface. The side length of the triangles near
the trapezoidal hill is less than 0.1 skin depth and the longest side length far away from the hill is about 1.0 skin depth. Due to this dense
surface mesh, the standard BEM approach cannot solve this problem on a personal computer. The total memory requirement for the standard
BEM approach is about 38.6 GB, which exceeds the capacity of a typical personal computer. For larger models with sizes of half a million
unknowns the total memory cost would approach about 3800 GB, which would even exceed the capacity of a modern computer cluster. In
contrast, the AMFM-BEM approach required only about 0.7 GB of computer memory (see Table 3 for detailed run-time parameters), and for
a large model with half a million unknowns approximately 7 GB computer memory would be occupied. Since both resistivity and frequency
are much higher than in the low frequency Benchmark 2 example, displacement currents are highly relevant in this example.

In Fig. 9, we compare the apparent resistivities, phases and VMTs along the y profile over the centre of the hill (Fig. 7 a) for two cases:
allowing for displacement currents, and the quasi-static approximation in which displacements currents are ignored. For such a situation the
displacement currents ought to be about half as strong as the conduction currents and the speed of the EM disturbance in the rock about 0.86c.
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Figure 10. Comparison of horizontal x and y components of the E and H fields and vertical z component of the H field on the Earth side of the topography for
a profile along the y-axis for the trapezoidal hill model II. Results shown are for cases with (black curves) and without (red curves) displacement currents, for
the two incident polarizations E p

x and H p
x . The dashed and solid curves stand for the real and imaginary components of the electromagnetic fields, respectively.

Figure 11. Apparent resistivities ρa, phases φ, and VMT Tt for the trapezoidal hill model II, where electromagnetic responses are computed in the local
coordinate system, in which t is the direction along the profile, and n is the normal to the topographic surface. Black curves are for the case with displacement
currents and red curves are for the quasi-static case (without displacement currents). The solid curves stand for the real components of the VMT Tt and the
dashed curves are for its imaginary components.

The results for apparent resistivity and phase of the yx-component of the impedance tensor are presented in Figs 9(a) and (c), respectively,
whereas the corresponding results for the xy-component of the impedance tensor are plotted in Figs 9(b) and (d). For the VMT, only the y
component is shown (Fig. 9e). For Zyx, we once again find cuspidal effects at breaks in surface topography on the apparent resistivity and
phase plots, but the effect is more pronounced than in the previous example. The changes in slope are more subdued for Zxy. Due to the
high frequency and Earth resistivity in this example, the effect of displacement currents is strong, not just in phase (Figs 9c and d) but also
in apparent resistivity and Ty (Figs 9 a, b and e). The behaviour of the different components of the electromagnetic field along the profile is
shown in Fig. 10 for further insight and clarification.

In actual MT and RMT field surveying, the electromagnetic responses are normally measured in a local coordinate system (x, t, n)
along the profile, with the ‘vertical’ component in the direction normal (n) to the topography and the radial component (t) along the profile
in the tangential direction. Component x is horizontal and perpendicular to the profile direction. Therefore, we wish to present the apparent
resistivities, phases and VMTs (Fig. 11) in the local coordinate system along the profile. The fields computed in the y and z directions are
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Figure 12. (a) A local view of the central part of the surface mesh for the Smørgrav RMT field example (after Kalscheuer et al. 2012) in a global (x, y, z)
coordinate system. Triangles are colour coded according to the angle of the slope of the topography as measured against the zenith. The maximum angle of
slope is 28.9◦. A local (u, v, n) coordinate system is introduced on measuring sites, where u and v directions are perpendicular and parallel to the receiver line,
respectively, and the direction of n is normal to the air–Earth interface pointing into the Earth. A total of 151 computational sites are located along the profile
(in red) at 2.46 m intervals. (b) The topographic variations along the profile, observe the rapid increase in topographic height at the southeast end of the profile.

Table 4. Mesh and execution parameters for the Norway field example, Tt is the total time cost for the M2M, M2L and L2L translations
in each iteration. The number of expansion terms p = 10 is used to guarantee more accurate results (increasing Tt). The maximum
number of triangles in the leaf cluster is 20 and the admissibility condition is γ = 2.0.

Case Frequency (Hz) #Model Domain (km2) #Triangles #Unknowns Iterations Tt (s) Memory (GB)

2 × 103 1 [−2, 2]2 15 414 92 484 36 700.5 4.8
ρ = 30 �m 2 × 104 2 [−1, 1]2 8087 48 522 47 577.0 3.6

2.26 × 105 3 [−1, 1]2 14 851 89 106 137 588.0 4.6

2 × 103 4 [−5, 5]2 15 458 92 748 18 758.5 5.0
ρ = 3000 �m 2 × 104 5 [−2, 2]2 15 414 92 484 21 698.5 4.8

2.26 × 105 6 [−2, 2]2 15 414 92 484 53 701.0 4.8

transformed to the new values in the t and n local reference directions by rotation factors (cos θ , sin θ ) where θ is the angle of the slope. In
terms of these rotation factors, the approximate shapes of the slopes are directly reflected in the patterns, as shown for the trapezoidal hill
model in Fig. 11.

The numerical examples presented in the above two sections clearly illustrate the pronounced effects of topography on MT responses
and also the strong effects of displacements currents in RMT surveying.

Smørgrav field example

Last, we applied our newly developed algorithms to study the topographic effect for a RMT field example of the Smørgrav site which is
located about 65 km southwest of Oslo in southern Norway (Kalscheuer et al. 2012). The inversion algorithm utilized by Kalscheuer et al.
(2012) assumes a flat air–Earth interface. Assuming two resistivity values of 30 and 3000 �m as they are typically encountered at Smørgrav,
we assess the topographic effect of the measured field responses and provide guidelines for data editing to mitigate topographic effect on the
inverse models of Kalscheuer et al. (2012). As shown in Fig. 12(a), RMT fields are simulated at 151 RMT sites (marked in red) at 2.46 m
spacing. Fig. 12(b) depicts the topographic variations along the profile. The starting site close to the Vestfosselva river is marked as RMT #1
and the last site close to Smørgrav is marked as RMT #151. The actual field profile starts at RMT #4 and ends at RMT #135; and the actual
station spacing employed in the field was 10 m. Derived from Fig. 12(a), the maximum angle of slope is 28.9◦. The slopes close to the starting
sites (nearby the Vestfosselva river) and the ending sites and the middle sites are rather steep. The calculations are carried out in a local (u, v,
n) coordinate system (Fig. 12 a), where u and v are perpendicular and parallel to the receiver line, respectively. The direction of n is normal
to the air–Earth interface pointing into the Earth.

Three frequencies, 2.0 × 103, 2.0 × 104 and 2.26 × 105 Hz, are tested. Two values of the resistivity for the homogeneous Earth, 30 and
3000 �m, are used. The mesh and execution parameters of these six examples are listed in Table 4. A local mesh section of the example with
a frequency of 2.0 × 103 Hz and a 30 �m Earth is shown in Fig. 12.
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Figure 13. Apparent resistivities ρa and phases φ of impedances Zuv and Zvu and VMTs Tu and Tv of the Smørgrav model. The resistivity of the Earth is
30 �m. The solid and dashed curves stand for the real and imaginary components of the VMTs, respectively.

Figure 14. Apparent resistivities ρD and phases φD of the determinant impedance ZD of the Smørgrav model. The resistivity of the Earth is 30 �m.

The apparent resistivies and phases of Zuv and Zvu and the VMTs Tu and Tv for a 30 �m Earth are shown in Fig. 13. In the 30 �m case, the
maximum mismatches (deviations from data calculated for flat topography) due to the topographic effect on the apparent resistivies (Fig. 13)
are about 6.0 �m (∼20.0 per cent), which occur at the middle and end sites. The maximum mismatches for the phases (Fig. 13) are about 2◦.
The apparent resistivies and phases of the determinant impedance Z D = √

Zuu Zvv − Zuv Zvu are shown in Fig. 14. As to be expected from
calculations of Pedersen & Engels (2005), the apparent resistivies and phases of ZD (Fig. 14) are less sensitive to the topographic effects,
where the maximum mismatches for apparent resistivies and phases reduce to less than 10.0 per cent and 1.5◦, respectively. This suggests the
use of ZD data in the RMT inversion (Kalscheuer et al. 2012) and furthermore, it could be beneficial to remove or downweight the field RMT
data around the middle of the profile (sites at #75) and the start and endpoints of the profile (at sites #12 and #124, respectively). Similar
results of the determinant impedance for the case of a 3000 �m Earth are shown in Fig. 15. Here, the relative deviations of the apparent
resistivities (up to 26.7 per cent) and absolute deviations in phases (up to 2.0◦) are much more pronounced than for a 30 �m Earth. These
deviations exceed typical measurement errors of 5 per cent and 1.43◦. Hence, to mitigate topographic effects in inverse models constructed
under the assumption of a flat air–Earth interface, it is advisable to assume error floors of 26.7 per cent and 2.0◦ for apparent resistivities and
phases on resistive ground of about 3000 �m. Furthermore, the small-scale variations evident in Figs 13–15 suggest that the site spacing of
10 m should be refined.
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Figure 15. Apparent resistivities ρD and phases φD of the impedance ZD of the Smørgrav model. The resistivity of the Earth is 3000 �m.

As indicated by the iteration numbers of model #5 and model #6, that share the same mesh (see Table 4), the condition numbers of
the system matrix increase with increasing frequency. In our experience, when the sizes of triangles which are far away from the central
topographic surface are quite different from those of the central topographic region, iteration numbers of the GMRES solver increase
dramatically. The entries in the system matrix are computed in the form of surface integrals over triangles. If triangle sizes are large, then
the entries arising from these large triangles will be dominant. Therefore, grids with gradually increasing triangle sizes would lead to large
condition numbers. To solve this problem, it is better to refine these areas outside the main region with topographic undulations while keeping
the computational domain on an reasonable scale.

C O N C LU S I O N S

We developed a generalized surface integral formula for wide-band 3-D electromagnetic problems. It was successfully applied to solve 3-D
plane-wave electromagnetic induction problems. Such an approach is the most attractive and suitable option for pure topographical problems
from the accuracy point of view, because it avoids the need for volume discretization of the air and Earth domain. However, unlike the FEM
method, it cannot easily deal with complex geometrical models such as arbitrary conductivity distributions underground. The 2-D surface
discretization not only leads to an easy implementation of mesh triangulation but also reduces the number of unknowns. To derive this novel
surface integral formula, which avoids the instability problems at low frequency for 3-D electromagnetic modelling (Zhao & Chew 2000),
the full set of four boundary conditions is employed simultaneously such that the requirement of vanishing current flow out of the Earth into
the air is satisfied at low frequency. In addition, a rescaling technique is employed for both the MFIE and EFIE to have the same order of
magnitude. This avoids the generation of an ill-conditioned system of linear equations.

The standard BEM, which could be used to solve this surface integral formula quickly exceeds the memory capacity of modern computers
for problems involving hundreds of thousands of unknowns. To make our surface integral formula capable of dealing with large-scale 3-
D geo-electromagnetic problems, a novel optimal and simplified matrix-free adaptive multilevel fast multipole BEM has been developed
and implemented. In co-operation with iterative solvers such as the GMRES technique, this matrix-free AMFM algorithm only needs an
O(m log m) time complexity to compute the multiplication of the system of linear equations and an initial solution vector and a O(m) memory
cost to store all expansion coefficients and basis functions.

Comparisons of our BEM results against the FEM results of Nam et al. (2007) for a trapezoidal hill model at a frequency of 2 Hz (MT
range) and the analytical solutions for a half-space model over the frequency range 0.001 Hz to 300 kHz (Ward & Hohmann 1987) confirm
the validity and applicability of our new BEM algorithm to low frequency problems. For highly resistive environments, our numerical results
confirm that displacement currents can have similar strength to the conductive currents in the RMT frequency rage. Under such conditions,
electromagnetic fields, impedance tensor elements and vertical magnetic transfer functions are strongly affected, compared with solutions
under the quasi-static assumption. Therefore, it can become critical that computed RMT responses incorporate the effects of displacements
currents to avoid false interpretation of RMT data.

As demonstrated for the Smørgrav field example, the determinant impedance is less sensitive to topographic effects, than the impedance
tensor and the vertical magnetic transfer function. At many sites, the errors caused by topographic effects are in the range of the measuring
errors, which implies the validity of a 2-D inversion approach under the assumption of a flat air–Earth interface. For sites with topographic
errors of the size of or larger than the measuring errors, an increase of data errors or data removal have to be performed prior to 2-D inversion
to reduce topographic effects on inverse models.

It should be emphasized that the purpose of this study is not only to develop a code to accurately compute the electromagnetic responses
for 3-D steep topographical problems at both MT and RMT frequency ranges, but also to act as the first step to eliminate the volume
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discretization of the air domain with the help of the surface integral formula. The elimination of the air space becomes critical for high
frequency RMT applications, because a nearly globally dense mesh is required to discretize the air space for the FEM and FDM methods.
This not only increases the computational cost but also leads to large numerical errors arising from the improper discretization of the air
space. Although the implementation of the presented surface integral formula is limited to the two connected bodies case (which is a pure
topographical problem only involving the air space and the homogeneous Earth), it is still possible to apply the surface integral formula to
solve problems with anomalous bodies embedded in the homogeneous Earth. In this case, the surface integral formula needs to be individually
applied in each anomalous body with constant electrical parameters. However this will increase the implementation complexity of the surface
integral approach. Therefore, to deal with complex models, the next step in our research is to develop a hybrid modelling scheme integrating
the surface integral approach described here for the air space with an unstructured mesh FEM solver to compute the subsurface responses
in highly complex environments. Besides the capability of solving for responses of complex models, this hybrid approach is expected to be
more accurate than the FEM and FDM methods due to the absence of numerical errors arising from a volume discretization of the air space,
especially at high frequencies.

Although only numerical examples of plane-wave electromagnetic problems are tested, our presented surface integral formula is
applicable to controlled-source problems. For the controlled-source case, a volume integral term accounting for the spatial source would have
to be added into the surface integral formula.
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Taskinen, M. & Ylä-Oijala, P., 2006. Current and charge integral equation
formulation, IEEE Trans. Antennas Propag., 54, 58–67.

Tezkan, B. & Saraev, A., 2008. A new broadband radiomagnetotelluric in-
strument: applications to near surface investigations, Near Surf. Geophys.,
6, 245–252.

Tezkan, B., Goldman, M., Greinwald, S., Hördt, A., Müller, I., Neubauer, F.
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Algorithm 1 : Construction of a cluster tree (�, lmax, nmax, ϒ). Given �, lmax and nmax, find ϒ .

Step 1: l = 0, form root cluster τ 0
0 . Find a minimal axis-parallel cuboid C0

0 enclosing the surface �, τ 0
0 =∑i ∈ C0

0 ;

Step 2: l = 1, form a set of child clusters τ 1
k of τ 0

0 , with indices 0 ≤ k ≤ 7. Subdivide C0
0 into eight subcuboids C1

k , delete empty cuboids;

Step 3: l = l + 1, l ≤ lmax, find a set of clusters τ l
k . For all clusters τ l−1

k of level l − 1, if τ l−1
k is not identified as a leaf cluster (numbers of triangles in

τ l−1
k is less than or equal to nmax), then find the child clusters of τ l−1

k by the subdivision approach used in Step 2. Thus, a set of clusters τ l
k for level l is

obtained. If all clusters in τ l
k are leaf clusters (numbers of triangles in τ l

k are less than or equal to nmax), go to Step 4; else go to Step 3;

Step 4: Eventually, the cluster tree ϒ has the form of ϒ =∑lmax
l=0

∑
k τ l

k . Stop.

A P P E N D I X A : D E TA I L S O N T H E A DA P T I V E M U LT I L E V E L FA S T M U LT I P O L E
A L G O R I T H M

A1 Construction of a cluster tree

The common surface � is divided into a set of disjoint triangles � =∑N−1
i=0 i . The sizes of the triangles are non-uniformly distributed

with a small size around the regions of interest. To deal with this non-uniform triangulation, a cluster tree is adaptively constructed. In the
cluster tree ϒ , each cell contains a cluster. A cluster τ is a union of several triangles τ = 1 ∪ 2 ∪ · · · ∪ nτ , where nτ is the number of
triangles enclosed in the cluster τ . The deepest level of this cluster tree is lmax, the level for the root cluster is 0, and τ l

k denotes the kth
cluster (or cell) at the level l of ϒ . At level l, we assume a total of nl clusters to exist so that the surface � is a union of nl clusters, that is,
� = τ l

1 ∪ τ l
2 ∪ · · · ∪ τ l

nl
. For a cluster to be identified as a leaf cluster (i.e. a cluster that is not allowed to be further divided into child clusters),

the number of triangles enclosed is required to be less than or equal to a predefined maximum number nmax. Assuming Ll
k is the kth leaf cluster

at level l, the summation of all leaf clusters from all levels also forms a complete cover of the surface �, that is, for
∑lmax

l=0

∑nL
l

k=1 Ll
k = �,

where nL
l is the total number of leaf clusters at level l.

At the level l = 0 of the cluster tree ϒ , the root cluster τ 0
0 contains a complete set of all triangles pertaining to �, which are confined by

a minimal axis-parallel cuboid that entirely encloses the surface �. To find the clusters at level l = 1 of the cluster tree ϒ , the entire cuboid is
then subdivided in eight small cuboids, by dividing the side lengths of the original cuboid by a factor of 2. Hence, all eight cuboids share the
midpoint of the original cuboid as a common point. Each small cuboid enclosing a cluster τ 1

k . Possibly, some of these small cuboids do not
contain any part of the surface �. These empty cuboids must be deleted so that the number of clusters τ 1

k at the level l = 1 of ϒ is less than
or equal to 8. The subdivision is then performed on all clusters of level l = 1 to generate a set of child clusters which are located at the next
level. This iterative procedure is terminated when the number of triangles in these child clusters approaches a maximum permissible number
of triangles nmax or the number of the next level equals a maximum level number lmax. Unlike the recursive tree generating algorithm given in
Blome et al. (2009) and Hackbusch & Nowak (1989), a loop-based algorithm is designed for simplified implementation which is described
in Algorithm (1).

A2 Identification of near-field, far-field and interaction-field clusters

Given a cluster τ , we need to find its optimal sets of near-field clusters Pnear, far-field clusters Pfar and interaction-field clusters Pinter. For the
root cluster τ 0

0 , Pnear(τ 0
0 ) = τ 0

0 , Pfar(τ 0
0 ) = ∅, Pinter(τ 0

0 ) = ∅. For clusters τ 1
k at level l = 1, Pnear(τ 1

k ) = τ 1
k , Pfar(τ 1

k ) = ∅, Pinter(τ 1
k ) = ∅. Observe

that all clusters τ 1
k are classified as near-field clusters, because their confining cuboids share the midpoint of the cuboids of τ 0

0 as a common
point. For each cluster τ l

k at level lmax ≥ l ≥ 2, we first obtain its parent far-field clusters Pfar(τ
l−1
k ) and near-field clusters Pnear(τ

l−1
k ); then the

far-field clusters for τ l
k are its parent far-field clusters, Pfar(τ l

k) = Pfar(τ
l−1
k ), because any cluster that is far away from the parent cluster must

be far away from the child clusters. In its parent’s near-field clusters Pnear(τ
l−1
k ), some clusters might be the far-field cluster with respect to

τ l
k . Here, an admissible factor γ is introduced to identify the far-field relationship between two clusters (Hackbusch & Nowak 1989), shown

in Fig. 3

D(τi , τ j )

max
[
R(τi ), R(τ j )

] ≥ γ, (A1)

where D(τ i, τ j) is the distance between two clusters τ i and τ j, and R(τ i) is the diameter of cluster τ i. If a cluster in Pnear(τ
l−1
k ) satisfies the

admissibility condition given in eq. (A1) with respect to τ l
k , this cluster is put into the interaction field clusters Pinter(τ l

k) of τ l
k . The remaining

clusters in Pnear(τ
l−1
k ) are classified into Pnear(τ l

k) .
It is valuable to point out that for any cluster τ , the combination of its far-field, and near-field, and interaction clusters forms a complete

coverage of all triangles of the whole cluster tree ϒ . Here, for a cluster at level l ≥ 2, the number of near-field clusters is kept to an
optimal minimum value compared to others approaches (Bapat & Liu 2010), and its admissible far-field and interaction-field clusters are
fully identified. For the purpose of an easy implementation, this simple and optimal procedure is described in Algorithm (2).
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Algorithm 2 : Identify (ϒ , γ , Pfar, Pnear, Pinter). Given ϒ and γ , find Pfar, Pnear, Pinter for all clusters in ϒ

Step 1: l = 0, Pnear(τ 0
0 ) = τ 0

0 , Pfar(τ 0
0 ) = ∅, Pinter(τ 0

0 ) = ∅;

Step 2: l = 1, for each cluster τ 1
k , 0 ≤ k ≤ 7, Pnear(τ 1

k ) = τ 1
k , Pfar(τ 1

k ) = ∅, Pinter(τ 1
k ) = ∅;

Step 3: l = 2, l ≤ lmax, for each cluster τ l
k , Pnear(τ l

k ) = χ , Pinter(τ l
k ) = Pnear(τ

l−1
k ) − χ , Pfar(τ l

k ) = Pfar(τ
l−1
k ), Pnear(τ

l−1
k ) is the near-field clusters of

cluster τ l
k ’s parent, Pfar(τ

l−1
k ) is the far-field clusters of cluster τ 1

k ’s parent, χ is a set of clusters of Pnear(τ
l−1
k ) not satisfying the admissibility

condition in eq. (A1);

Step 4: Stop.

A3 Upward pass, downward pass

Upward pass: for a given initial set of distributions of surface currents and charges, the upward pass algorithm (Liu 2009) is used to compute
all the multipole moments Mnm

I and Mnm
II in eq. (44) for each cluster with level l ≥ 2 on the cluster tree. Starting from the deepest level

l = lmax on which all clusters must be leaf clusters, the direct evaluation of multipole moments centred at the geometrical centre of these leaf
clusters is performed. Then, we move to the clusters at the level l = lmax − 1. If one of these clusters is a leaf cluster, the direct evaluation of
multipole moments is applied, otherwise we search for its child clusters. From the multipole moments of these child clusters, the multipole
moments of their parent clusters at level l = lmax − 1 are computed by the M2M transformation in eq. (52). This upward pass procedure is
performed recursively to clusters on level l = 2.

Downward pass: starting from a cluster τ at level l = 2, we obtain its far-field and interaction field lists from Algorithm (2). If the
interaction field list is not empty, the local expansion coefficients Lnm

I and Lnm
II of τ in eq. (54) are computed by the multipole moments of

clusters in its interaction field list in terms of the M2L transformation. If the far-field list is not empty, then we should request the parent of
cluster τ for the parent’s local expansion coefficients which must be already computed according to this algorithm. Hence, in terms of the
L2L transformation in eq. (61), the local expansion coefficients of cluster τ computed from the far-field list are available. Adding these two
local expansion coefficients, the total local expansion coefficients for cluster τ are obtained. This downward pass procedure is performed
recursively to clusters on level lmax and to each leaf cluster.

A4 Convergence rates of the GMRES solver

Looping over each leaf cluster, the multiplication of its local expansion coefficients and its local expansion basis functions plus the contributions
from the banded sparse matrix Anear, successively form Yt , where t means the tth iteration of the generalized minimal residual (GMRES)
solver. The time complexity of the AMFM method is proportional to the number of iterations (t ≤ nit) used by the GMRES solver. It is
well known that the convergence rate of the GMRES solver might be accelerated with some pre-conditioners. However, we use the non
pre-conditioned GMRES solver in our AMFM-BEM algorithm, because our system of linear equations is well-conditioned.

Eigenvalue spectrum analysis and a comparison between the convergence rates of the GMRES solver and the Jacobian-GMRES solver
for two examples are shown in Fig. A1. In Fig. A1, we plot the absolute values of the eigenvalues and the relative residuals (difference in
solutions between successive iterations) versus iteration number for the two numerical examples. The first example (diagrams a and b) is for
a halfspace model (see Section 4.1) and the second example (diagrams c and d) is for a topographic hill model (see Section 4.2). In Figs
A1(a) and A1(c), the eigenvalues are bounded and far-away from zero. Most singular values are distributed around the hypothetical unit
value. The spectral condition number estimated in terms of the SVD decomposition is less than 3 and 100 in cases (a) and (c), respectively.
For the half-space model (Fig. A1b), the relative residual behaviour is presented for the GMRES and the preconditioned GMRES solver with
Jacobian pre-conditioners (Balay et al. 2010), for both E p

x and H p
x polarizations. Both solvers converge rapidly to a small relative error of

10−10 after six iterations. For the topographical hill model (Fig. A1d), since the condition number is larger than that for the half-space model,
the GMRES and Jacobian-GMRES solvers converge more slowly, requiring 18 iterations to achieve relative errors of 10−5. More importantly,
these results show that due to the well-conditioned surface integral formulae presented in eqs (23) and (24), there is no critical requirement
to apply the pre-conditioner techniques to accelerate the iterative GMRES algorithms. Such desirable behaviour further implies that we can
simply use the original GMRES solver, in co-operation with the adaptive multilevel fast multipole method, to avoid the increased complexity
of implementation involved in specific pre-conditioning techniques (Lee et al. 2004).

A P P E N D I X B : E VA LUAT I O N O F M O M E N T I N T E G R A L S

For clarity, we rewrite the moment integrals in eqs (47) and (48) over a triangle as

M∇nm
i (k, rc) =

∫∫
r∈i

∇ Rm
n (k, r − rc) ds (B1)

Mnm
i (k, rc) =

∫∫
r∈i

Rm
n (k, r − rc) ds, (B2)
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Figure A1. Eigenvalue spectral distributions of the two system matrices of sizes 4644 × 4644 and 3390 × 3390 for Benchmark 1 (a) and Benchmark 2 (c),
respectively, at a frequency f = 2 Hz; the convergence rates of the standard BEM using both GMRES and Jacobian-GMRES solvers and the AMFM-BEM
approach using the non-preconditioned GMRES algorithm, for the E p

x polarization (similar results obtained from the H p
x polarization are omitted here), on

Benchmark 1(b) and Benchmark 2(d).

Here, Rm
n are the solid harmonics defined in the spherical coordinate system centred on the expansion point rc. Since there is no spherical

symmetry for any triangle, we have to evaluate these moments in a global coordinate system. The coordinates of the expansion point are
rc = (xc, yc, zc), the coordinates of a general point r ∈ i are r = (x, y, z). The relationship between the global coordinates and the spherical
coordinates of a point r is given by

x − xc = r cos ϕ sin θ r ≥ 0

y − yc = r sin ϕ sin θ π ≥ θ ≥ 0

z − zc = r cos θ 2π ≥ ϕ ≥ 0.

The gradient operator ∇ on r is

⎛
⎜⎜⎝

∂

∂x

∂

∂y

∂

∂z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

sin θ cos ϕ 1
r cos θ cos ϕ −1

r
sin ϕ

sin θ

sin θ sin ϕ 1
r cos θ sin ϕ −1

r
cos ϕ

sin θ

cos θ −1
r sin θ 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

∂

∂r

∂

∂θ

∂

∂ϕ

⎞
⎟⎟⎠ = J

⎛
⎜⎜⎝

∂

∂r

∂

∂θ

∂

∂ϕ

⎞
⎟⎟⎠ , (B3)

where J is the Jacobian transformation matrix.
Taking into account the explicit expression for Rm

n , we have

∂ Rm
n

∂r
= Y m

n (θ, φ)
∂ jn (kr )

∂r
= Y m

n (θ, φ)
[ n

kr
jn (kr ) − jn+1 (kr )

]
k

∂ Rm
n

∂θ
= jn (kr )

∂Y m
n (θ, φ)

∂θ
= jn (kr ) (−1)m

√
(n − |m|)!
(n + |m|)!

∂ P |m|
n (cos θ )

∂ cos θ
(− sin θ )eimφ

∂ Rm
n

∂ϕ
= imjn (kr ) Y m

n (θ, φ) ,

where the above spherical Bessel functions with complex arguments are evaluated by the open source AMOS library (Amos 1986).
To easily perform the numerical integrals over �i, a local coordinate system (ε, η, 0 ≤ ε ≤ 1, 0 ≤ η ≤ 1, 0 ≤ ε + η ≤ 1) is introduced.

In this system, a point r ∈ i has the following definition

r = r0(1 − ε − η) + r1ε + r2η,
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where r j , j = 0, 1, 2 are three vertices of triangle �i, which should be indexed in a clock-wise or a counter-clockwise manner. Now, the
moment integrals are easily evaluated as follows:

M∇nm
i (k, rc) =

∫ 1

0

∫ 1−ε

0
J

⎛
⎜⎜⎜⎝

∂ Rm
n

∂r

∂ Rm
n

∂θ

∂ Rm
n

∂ϕ

⎞
⎟⎟⎟⎠ 2 dε dη =

q−1∑
p=0

⎡
⎢⎢⎢⎣J

⎛
⎜⎜⎜⎝

∂ Rm
n

∂r

∂ Rm
n

∂θ

∂ Rm
n

∂ϕ

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

(εp ,ηp )

Wp, (B4)

Mnm
i (k, rc) =

∫ 1

0

∫ 1−ε

0
Rm

n 2 dε dη =
q−1∑
p=0

[
Rm

n

]
(εp ,ηp )

Wp, (B5)

where q is the number of Gaussian quadrature points, (εp, ηp) are the Gaussian quadrature points, W p are the weights (Jin 2002), and � is the
area of triangle �i and 2� is the determinant involved in the transformation from the global coordinate system to the local coordinate system.




