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The magnetotelluric response function can be severely disturbed by cultural
electromagnetic noise. The preselection strategy is one of the effective ways
to remove the influence of noise when calculating the response function. This
study proposed three new parameters (the amplitude ratio predicted amplitude
ratio and linear coherence (PLcoh) between the predicted and observed electric
fields and the dispersion degree of the magnetic polarization direction (DDpol)) to
detect noisy data, making the preselection strategy automatic. The first two were
used to evaluate the linearity of binary linear regression to constrain incoherent
noise, while the last was used to evaluate the magnetic polarization direction to
constrain coherent noise. Finally, the technique is illustrated by applying it to two
field datasets and comparing it with the previous studies. The results showed that
these parameters can be used to effectively identify contaminated data, and a
reliable response function can be obtained by using these parameters to extract
high-quality data when intermittent noise contaminates field data.
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1 Introduction

The magnetotelluric (MT) method is an electromagnetic (EM) geophysical method used
to infer the subsurface electrical conductivity from the natural geomagnetic and geoelectric
fields obtained at the Earth’s surface (Tikhonov, 1950; Cagniard, 1953). There is a linear
relationship between the geoelectric and geomagnetic fields in the frequency domain, and it
can be expressed as follows (Tikhonov and Berdichevsky, 1966):

Ex ω( )
Ey ω( )( ) � Zxx ω( )Zxy ω( )

Zyx ω( )Zyy ω( )( ) Hx ω( )
Hy ω( )( ), (1)
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where E and H are the horizontal electric and magnetic field
components at a specific frequency, respectively, ω denotes the
angular frequency, and Z represents the MT impedance. The
subscripts x and y denote two orthogonal directions. The
conventional MT impedance estimator first transforms the time-
series data into the frequency domain by the windowed Fourier
transformation and then performs regression in the frequency
domain to calculate the impedance (Jones et al., 1989; Smirnov,
2003; Chave and Jones, 2012). The least-squares (LS) estimator
(Sims et al., 1971) is a basic method used for linear regression; it
requires the magnetic field to be noise-free, and the residuals
between the predicted and observed electric fields are
uncorrelated and follow a multivariate normal probability
distribution (Chave and Thomson, 1989). However, field data
consist of natural sources and local cultural noise (Szarka, 1988;
Junge, 1996), these assumptions often fail, and the LS estimator can
be severely disturbed by cultural noise.

Methods to remove these disturbances are mainly based on robust
statistical algorithms, remote reference processing, multistation
analyses or time series modification. The robust statistical methods
are based on data-adaptive weighting schemes, which aim to detect
and reject outliers from a majority of well-behaved samples (Egbert
and Booker, 1986; Chave and Thomson, 2004; 2003; 1989; Jones et al.,
1989). These methods require reasonable proportions of normal data
to yield reliable results, e.g., data with no more than 50%
contamination (Smirnov, 2003). If a noise source is more
persistent, it can easily result in a distribution of the majority of
the data, which is wrong (Weckmann et al., 2005). The remote
reference method requires simultaneously recorded EM fields from
at least two sites. Remote reference processing uses cross-power
spectra instead of auto-power spectra when performing regression
based on the least-squares estimator (Goubau et al., 1978; Gamble
et al., 1979). The remote reference method cannot always improve the
results, as a successful application requires a horizontal magnetic field
at a remote site without correlated noise. It is difficult to find a suitable
reference site because cultural noise signals can be widespread and
coherent over large areas (Weckmann et al., 2005), and we are faced
with single-site robust processing. Moreover, MT researchers have
proposed multistation analyses. Larsen et al. (1996) and Oettinger
et al. (2001) proposed the signal-noise separation (SNS) method. SNS
uses the remote magnetic field to estimate the interstation transform
function as the separation tensor; they separated the local magnetic
field into signal and noise parts and then calculated the impedance.
Egbert (1997) proposed a robust multivariate errors-in-variables
estimator (RMEV) to separate field data into signal and noise
components using principal component analysis. A more recent
application of the method is shown in Smirnov and Egbert (2012).
Both the RMEV and SNSmethods use a robust approach to their data
processing. Those methods may be biased when the majority of the
data are contaminated and the noise is coherent between the local and
remote sites. In a strong noise environment, the time series
modification method is also effective in suppressing the influence
of noise (Chen et al., 2022; Li et al., 2022; Li et al., 2023; Li et al., 2018;
Zhang et al., 2022; Zhang et al., 2021; Zhou et al., 2022; Wang et al.,
2017; Kappler, 2012). These methods identify abnormal waveforms in
the time domain and modify the original time series, and they are
useful for data contaminated by strong noise with an abnormal
waveform.

In a noisy EM environment, as an alternative method, it is practical
to use a preselection strategy (Jones and Jödicke, 1984; Travassos and
Beamish, 1988; Smirnov, 2003; Chave and Thomson, 2004;Weckmann
et al., 2005; Platz and Weckmann, 2019) to reduce the EM noise to a
level that the robust statistic method can handle. All of the studies,
e.g., Platz and Weckmann (2019), Weckmann et al. (2005), and Garcia
and Jones (2002), demonstrated substantially better performance for
data-adaptive weighting schemes after prescreening. In theory, if the
noise does not contaminate the local site all the time, we can extract high
signal-to-noise ratio (SNR) data and obtain a reliable result. The
multiple coherence (Jones and Jödicke, 1984; Travassos and
Beamish, 1988; Egbert and Livelybrooks, 1996; Bendat and Piersol,
2011) and bivariate coherence (Ritter et al., 1998; Weckmann et al.,
2005) are widely used to evaluate the data quality under the assumption
that the dataset follows a linear relationship. In this research, we propose
a newmethod, which performs similarly withmultiple coherence and is
superior to the bivariate coherence, to evaluate the linearity by
comparing the similarity between the observed and predicted electric
fields. The parameters based on the linearity are effective for detecting
incoherent noise, but coherent noise may also have high linearity
(Weckmann et al., 2005). In addition, Weckmann et al. (2005)
showed the effectiveness of magnetic polarization direction (MPD)
in visualizing coherent noise. However, their preselection strategy
cannot be performed automatically. Platz and Weckmann (2019)
attempted to perform data preselection automatically and used
statistical information on the magnetic polarization direction
(SMPD) to constrain coherent noise with strong polarization
direction. They removed all the data whose polarization directions
fall in a bin which is much higher than the threshold. However, the data
fall in out of the bin also may correspond to the coherent noise. We
proposed a new parameter based on the dispersion degree of the
magnetic polarization direction (DDpol) to identify the coherent
noise, and the case study shows that it is superior to the criteria
based on SMPD. The new parameters are tested on approximately
500 site data from the USArray project (Schultz et al., 2018; Kelbert,
2019) and data collected in China. Finally, two case studies are used to
show the effectiveness of the parameters in detecting noisy data and the
preselection strategy in improving the quality of the impedance tensor
calculation.

The following sections are organized as follows. Section 2
introduces the new parameters proposed to detect noise. Section
3 shows the effectiveness of the parameters to detect noise and
compares the new parameters with the previous study.

2 Parameters proposed for the
preselection strategy

The method to obtain the spectra of EM fields in different
frequencies is similar to the method used in the bounded influence
remote reference processing (BIRRP) code (Chave and Thomson,
1989; Chave and Thomson, 2004; 2003). The time series is prewhited
and divided into adjacent segments. These segments are cosine
tapered before the Fourier transformation. Then, the Fourier
coefficients are corrected for the influence of the instrument
response. Next, selected frequencies within each segment are
extracted to calculate the impedance tensor and uncertainty
followed by the robust estimator created by Neukirch and García
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(2014). At last, the segment length is variable, the previous steps are
repeated to calculate the impedance in different frequencies. During
data processing, one segment corresponds to one data in the
frequency domain. In the following, we refer to one data as one
event in the frequency domain. The key to obtaining a reliable
impedance from the noisy site is detecting and removing the noise
before the impedance estimation. This section introduces the
parameters used to detect noisy events from the perspective of
linearity and MPD.

2.1 Noise detection based on linearity

From the perspective of whether the data follow the linear
relationship in Eq. 1, the field data (E and H) can be subdivided
into three parts as follows:

E � EMT ,EHLN ,ELLN{ }, (2)
H � HMT ,HHLN ,HLLN{ }, (3)

where the superscript HLN denotes the data dominated by noise
with high linearity, the superscript LLN denotes the data dominated
by noise with low linearity, and the superscriptMT denotes the high-
quality data with high linearity. Noise with low linearity can be
identified from the similarity between the observed electric field and
that predicted by the linear relationship. It is similar to the single-
input/single-output linear model to evaluate the linearity, as shown
in Figure 1. The difference between the data with high linearity and
low linearity is that most of the predicted and observed values of the
output are similar.

Assuming the data are highly linear related, the observed
electric field (E) should be similar to the predicted electric field
(Ep), where Ep =ZH and Z are obtained by the least-squares
estimator. We can identify noisy data with low linearity by
comparing the measured electric field (E) and the predicted
electric field (Ep). The complex number has two properties:
the amplitude and phase. In this study, we use the linear
coherence defined by the phase difference between the
predicted and observed electric fields to confirm the phase
similarity and use the amplitude ratio between the predicted
and observed electric fields to confirm the amplitude similarity.

The linear coherence (Lcoh) between two spectra Ai and Bi is
defined by the cosine of the phase difference (PD) as follows:

cos θi( ) � Re ej φAi−φBi( )( ) � Re
Ai

�Bi

A| i

���Bi

∣∣∣∣( ), (4)

where Ai and Bi denote the spectrum calculated from the ith

segment, �Bi represents a conjugate of Bi, and θi denotes the
angle of the phase difference (PD) between Ai and Bi. According
to Euler’s formula, Lcoh equals the real part of ej(φAi−φBi). Re denotes
the real part of the complex number. The value of Lcoh lies in the
range of (−1,1). When the PD is close to 0 °, the Lcoh is high and
close to 1. In this study, the predicted linear coherence (P Lcoh)
between the measured electric field (E) and the predicted electric
field (Ep) is calculated as follows:

PLcoh � Re
Ypi

�Yi

Ypi

����Yi

∣∣∣∣ ∣∣∣∣( ), (5)

where Ypi and Yi are the predicted and measured electric fields
corresponding to the ith segment, and Y is associated with either Ex

FIGURE 1
Single-input/single-output linear model y=a*x+b. x is the input, and y is the output. The blue points denote the observed data, and the red line is the
model calculated by regression. The difference between the data with high linearity and low linearity is that most of the predicted values (a*x+b)
calculated by the model and the output (y) are similar, as shown in (A) and (B).
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or Ey. The predicted electric field and the observed electric field should
be similar when the linearity is high, and PLcoh should be close to 1.

The high predicted linear coherence can ensure the phase
similarity. We also use the predicted amplitude ratio (PAR) to
ensure the amplitude similarity, and it is defined as follows:

PAR �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ypi

∣∣∣∣ ∣∣∣∣
Yi| | , Ypi

∣∣∣∣ ∣∣∣∣< Yi| |, or
Yi| |
Ypi

∣∣∣∣ ∣∣∣∣, Yi| |< Ypi

∣∣∣∣ ∣∣∣∣.
(6)

The PAR ranges from 0 to 1; the higher PAR is, the higher the
similarity between the two spectra in terms of the amplitude.

There is a problem that the energy of the signal and noise
changes with time, and the linearity may change. Suppose we
perform regression with all the available data; the linearity may
be low in the presence of a large amount of noise and provide
misleading information. It is similar to the single-input/single-
output linear model, as shown in Figure 2. There are six datasets,
and only dataset 1 has high linearity. When we perform regression
with all the available data, the linearity is low, and we cannot extract
data with high linearity. To solve this problem, we subdivide the data
into small groups and calculate the PAR and PLcoh values separately.
We rename the predicted linear coherence and amplitude ratio as
PLcohsz and PARsz, where the subscript SZ means we calculate the
predicted electric field (Ep =ZH) by the impedance (Z) obtained by
the subdivided data. In this research, the field data are subdivided

into small groups with 20 samples when evaluating the linearity. It is
necessary to divide the data into groups when evaluating linearity
(see Supplementary Figures S2, S3).

2.2 Noise detection based on the magnetic
polarization directions

Fowler et al. (1967) proposed the polarization direction, and
Weckmann et al. (2005) showed the effectiveness of MPD in
detecting coherent noise. The MPD (αHi) at a specific frequency
is defined as follows:

αHi � tan−1
2Re Hxi

�Hyi( )
Hxi

∣∣∣∣ ∣∣∣∣2 − Hyi

∣∣∣∣ ∣∣∣∣2 � tan−1
2

Hyi| |
Hxi| | · cos θi( )
1 − Hyi| |

Hxi| |( )2 , (7)

where i (=1,2, . . . , N) is the number index of the event,Hxi andHyi

are the spectra of the magnetic field calculated from the ith segment,
and θi denotes the PD between Hxi and Hyi. The polarization
direction is related to the PD and amplitude ratio (AR) between
the two orthogonal fields. Various sources generate natural
magnetic signals that vary in incident directions and energy,
and the PD and AR between the two orthogonal fields vary with
time; thus, the magnetic field has no preferred polarization
direction (Weckmann et al., 2005). In contrast, the local EM
noise source usually has a constant location; the incident
direction and energy have similar properties that change with

FIGURE 2
Single-input/single-output linear model y=a*x+b. (A–F) show the regression results for six datasets separately; each dataset has 50 points, and only
dataset 1 has high linearity. The blue points denote the observed data, and the red line is the model calculated by regression. (G) shows the regression
results for all the available data, including 300 points. The red solid line denotes themodel calculated by all the available data, and the dashed line denotes
the model calculated by dataset 1.
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time. Suppose there is a preferred polarization direction for the
magnetic field; we can consider that the coherent noise
contaminates the data. On the other hand, when incoherent
noise contaminates the field data, the magnetic field has no
preferred polarization direction. Therefore, the polarization
direction for the magnetic field can only detect coherent noise.

To quantify the dispersion degree of MPD, the dispersion degree
of the polarization directions (DDpol) is proposed as follows:

DDpol � Nin

N
, (8)

whereNin denotes the number of samples falling in the range of (mi

+ 30 °, mi-30 °). mi is the median for each αHi with its surrounding
2k samples (k is set to 20 in this study), and it is calculated as follows:

mi � median αHi−k, αHi−k−1, . . . , αHi, . . . , αHi+k−1, αHi+k( ). (9)
When the polarization direction has a preferred direction, mi

approximately equal to the preferred direction. mi is calculated by
the surrounding 2k samples, and there are two sides; we hope half of
the data is beyond a specific range, which means the threshold is set
as 0.5; therefore, the expected value ofDDpol should be smaller than
0.5, and 1/3 is chosen in this research, which means the range is 60 °
(180 °× 1/3), and the specific range is set as (mi + 30 °,mi-30 °). If the
polarization directions vary randomly from −90 ° to 90 °, DDpol

should be close to 1/3, andDDpol increases when there is a preferred

direction. DDpol can be used to automatically detect coherent noise
with a strong polarization direction.

3 Case studies for the preselection
strategy

Usually, data dominated by incoherent noise do not have a
stable relationship; therefore, the linearity should be low. We can
identify the incoherent noise using the parameters PLcohsz and
PARsz. According to the linearity and MPD of the data, the data
quality can be classified into three types, as shown in Table 1.
Combining the linearity and the MPD, we can constrain both
coherent and incoherent noise simultaneously.

The preselection strategy based on linearity and the MPD is
tested on approximately 500 site data from the USArray project
(Schultz et al., 2018; Kelbert, 2019) and data collected in China. It
can improve the quality of the impedance tensor when intermittent
noise contaminates the field data. Two typical field datasets are
chosen to demonstrate the effectiveness of those parameters to
identify noisy events. The location map is shown in Figure 3.
The first data are contaminated by incoherent noise, which
contains a geomagnetic storm, the energy from the natural EM
signal increases significantly, and high signal-to-noise ratio (SNR)
data appear during the storm. The second dataset is contaminated
by coherent noise and incoherent noise simultaneously, the noise
decreases during the local nighttime, and high SNR data appear.

3.1 Case study 1: Data contaminated by
intermittent incoherent noise

The first case study used the data observed at TVN48 from the
USArray project. The time-series data can be downloaded from the
Incorporated Research Institutions for Seismology (IRIS) website.

TABLE 1 Classification of the data quality based on the linearity and MPD.

Linearity MPD

High-quality data PLcohsz >0.8; PARsz >0.8 DDpol < 0.5

Incoherent noise PLcohsz < 0.8; or PARsz <0.8 DDpol < 0.5

Coherent noise PLcohsz >0.8; PARsz >0.8 DDpol > 0.5

FIGURE 3
Locationmap of the field data. (A) shows the location of the first field data; the blue triangles denote the observation site. TNV48 is used as the locale
site, and ALW48 is set as the remote reference site. The lower right corner in (A) shows the survey location of the USArray, and the red star denotes the
location of site TNV48. (B) shows the location map of the second field data observed in China. Y0625 is the remote reference site, and L7-158 is the local
site. The lower left corner in (B) shows the survey area in China, and the red star denotes the local site.
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The data sampling period is 1 s, and the used times-series data are
observed from July 19 to 24 July 2015. First, we examine the
variation in the parameters at different frequencies. Figure 4
shows the parameter variation in the period of 13.1 s. Figures 4A,
B show the variation in PLcohsz and PARsz associated with

Ex-component, respectively. The events in which both PLcohsz
and PARsz are larger than 0.8 are shown in red, and the other is
shown in blue. Red denotes an event with high linearity, and blue
denotes an event with low linearity. Figure 4C shows that theMPD is
scattered for all the events. Figure 4D shows the variation in the hat

FIGURE 4
Parameters variation at TVN48 in the period of 13.1 s. The horizontal axis denotes the event count. Panels (A, B) show the variation in PLcohsz and
PARsz associated with Ex-component, respectively. The red color denotes the events in which both PLcohsz and PARsz are higher than 0.8, and the other
events are shown in blue. (C) shows the variation in the MPD. (D) shows the variation in the hat matrix’s diagonal element, and the hat matrix’s diagonal
element is normalized by the expected value.

FIGURE 5
Parameters variation at TVN48 in the period of 105.4 s. (A, B) show the variation in PLcohsz and PARsz associated with Ex-component, respectively.
The red color denotes the events with high linearity, and the other events are shown in blue. (C) shows the variation in MPD. (D) shows the variation in the
hat matrix’s diagonal element.
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matrix’s diagonal element. The hat matrix is an N by N matrix (N
denotes the number of events) defined as follows (Chave and
Thomson, 2004; 2003):

Hhat � H H†H( )−1H†, (10)

where H represents N by two matrices of the horizontal magnetic
field (Hx,Hy) at a specific frequency. The superscript † denotes the
complex conjugate transpose. The expected value of the hat matrix’s
diagonal element is 2/N. The variation in the diagonal elements of
the hat matrix has the same trend as the magnetic field amplitude
(Chen et al., 2022; Li et al., 2022; Li et al., 2023; Li et al., 2018; Zhang
et al., 2022; Zhang et al., 2021). Therefore, we can use the hat matrix
to visualize the energy variation in the magnetic field. Figure 4D
shows that the red events have high energy. This is caused by the
geomagnetic storm (see Supplementary Figure S1). Since the natural
EM signal is relatively low in the dead band (0.1–10 s), local noise
can easily influence it during non-storm periods. When there is a
geomagnetic storm, the natural EM signal strength increases, and
high SNR events appear. In conclusion, the blue events are
dominated by incoherent noise in the period of 13.1 s, and
PLcohsz and PARsz can identify incoherent noise. Figure 5 shows
the parameter variation in the period of 105.4 s. Most of the events
have high linearity, and the MPD is scattered for all the events. This
indicates that only a small part of the events are contaminated by
incoherent noise. After analyzing the variation in the parameters in
different periods, we found that most of the events are dominated by
incoherent noise between 5 and 20 s.

Then, we compare the MT sounding curves calculated by the
different methods, as shown in Figure 6. All of those responses are
estimated by M-estimator (Egbert and Booker, 1986; Neukirch and
García, 2014; Maronna et al., 2019). The result using the data
preselection strategy with PLcohsz and PARsz coincides with the
remote reference result, and they are regarded as the true model. It
shows that a reliable result can be obtained even if we do not use the

remote site data by the preselection method. On the other hand, the
apparent resistivity of the robust results is downbiased between 6 and
20 s. According to the analysis of Figure 4, more than half of the events
are contaminated by incoherent noise. The underestimation of the
apparent resistivity was probably attributed to the auto-power spectra of
the noise in the denominator of the response function, which is a well-
known limitation of the single-site data processing (Sims et al., 1971;
Simpson and Bahr, 2005).

3.2 Comparison of the parameters used to
evaluate the linearity

This subsection compares the performance of the related
parameters used to evaluate linearity, e.g., multiple coherence
(Travassos and Beamish, 1988; Egbert and Livelybrooks, 1996;
Bendat and Piersol, 2011) and bivariate coherence (Ritter et al.,
1998; Weckmann et al., 2005). All of those parameters can be
indicators of the data quality under the assumption that the
dataset follows a linear relationship.

Multiple coherence is defined as the ratio of the ideal output
spectrum due to the measured inputs in the absence of noise to the
total output spectrum, which includes the noise (Bendat and Piersol,
2011). In equation form, the multiple coherence associated with Ex

is calculated as follows:

r2m � 1 − Eerrxi
�Eerrxi

Exi
�Exi

, (11)

where Eerrxi
� Epxi

− Exi, Epxi
andExi denote the predicted and

observed electric field calculated by the ith segment. The bar
denotes the conjugate of a complex number. Because the error
between the predicted and observed electric field may be larger than
the observed electric field. The right part of Eq. 11 may be a negative

value. We take the square root of the absolute value of 1 − Eerrxi
�Eerrxi

Exi
�Exi

as

FIGURE 6
MT sounding curves calculated by the different methods using the data observed at site TNV48. The upper figures show the apparent resistivity, and
the lower figures show the impedance phase. All the responses are estimated by aM-estimator. The blue curves denote the remote reference results. The
red curves denote the single-site robust result. The black curves are calculated by the preselection strategy using PLcohsz and PARsz , and the threshold is
set to 0.8 for both PLcohsz and PARsz . The apparent resistivity of the robust results is downbiased compared with other results between 5 and 20 s.
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the multiple coherence (rm), and regard the event, which rm larger
than 0.8 and smaller than 1, are in high linearity. The red events in
Figure 7C show the event in high linearity based on the multiple
coherence.

Bivariate coherence is defined as a function of the amplitude
ratio and phase difference between the predicted and the observed
electric field. In equation form, bivariate coherence associated with
Ex is calculated as follows (Weckmann et al., 2005):

r2b �
Zxx*Hxi

�Exi + Zxy*Hyi
�Exi

Exi
�Exi

� Epxi
�Exi

Exi
�Exi

� Epxi

∣∣∣∣∣ ∣∣∣∣∣
Exi

∣∣∣∣ ∣∣∣∣ · cos θi( ), (12)

where Exi,Hxi and Hyi represent the EM field corresponding to the
ith segment. θi is the phase difference between Epxi

and Exi. Because
the predicted electric field may be larger than the observed electric
field, and bivariate coherence may be larger than 1. We regard the
event, which rb larger than 0.8 and smaller than 1, are in high
linearity. The red events in Figure 7D show the data in high linearity
based on the bivariate coherence.

The comparison of the parameters used to evaluate the linearity is
shown in Figure 7. First, the events are divided into groups that contain
N samples, e.g., 20 samples. We calculate the predicted electric field for
each group, separately. If the data quality is high, all of the parameters
should be close to one under the assumption that the data follow a linear
relationship. All of the parameters can identify the high-quality data
corresponding to the magnetic storm. However, the parameters
(PLcohsz and PARsz) proposed in the research and multiple
coherence perform better than bivariate coherence. Some parts of
the high-quality events, which rb larger but close to 1 are regarded
as in low linearity based on the bivariate coherence. The MT sounding

curves calculated by the different preselection strategies are shown in
Figure 8. All of the preselection strategies can reduce the influence of
noise compared with the robust result in Figure 6. While the apparent
resistivity in Figure 8B around the period of 7.9 s is downbiased
compared with other results in Figures 8A, C. It may be caused by
some parts of the high-quality events being removed when using the
bivariate coherence to prescreen data.

3.2 Case study 2: Data contaminated by
intermittent coherent Noise and incoherent
noise

The second case study uses data observed in northeastern China
on 26 June 2020. Phoenix Geophysics Instruments were used to
collect the MT time-series data. These data are provided by the
Institute of Geophysical and Geochemical Exploration, China
Geological Survey. Time-series data from 3:00 to 22:00 UTC
were used in this case study. The sampling rate is 15 Hz. The
observation area is in the GMT+8 time zone, and the local
midnight time is approximately 16:00.

First, we examine the variation in the parameters at different
frequencies. Figure 9 shows the variation in the period of 6.7 s. Red
denotes events with high linearity, and blue denotes events with low
linearity. The previous 2,500 events in the daytime have a preferred
polarization direction of approximately −30 °, as shown in Figure 9C,
and the polarization direction becomes scattered at nighttime (the
events are approximately 2,500 to 4,000). This indicates that the
daytime event is dominated by coherent noise, and most of the
events have high linearity; in contrast, the event at nighttime is

FIGURE 7
Parameters variation at TVN48 in the period of 7.9 s. The red color denotes the events in high linearity based on different parameters, and the other
events are shown in blue. All the parameters are determined from the bivariate equations whose dependent variable is the Ex-component. (A, B) show the
variation in PLcohsz and PARsz. The high linearity events are in which both PLcohsz and PARsz are higher than 0.8. (C) shows the variation in multiple
coherence. The high linearity events are in which the multiple coherence is higher than 0.8 and smaller than 1. (D) shows the variation in bivariate
coherence. The high linearity events are in which the bivariate coherence is higher than 0.8 and smaller than 1.
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FIGURE 8
MT sounding curves calculated by the different preselection strategies corresponding to Zxy component using the data observed at site TNV48. The
upper figures show the apparent resistivity, and the lower figures show the impedance phase. The red curves denote the remote reference results. The
black curves denote the result calculated by the different preselection strategies. (A, D) are calculated by the preselection strategy using PLcohsz and
PARsz . (B, E) are calculated by the preselection strategy using bivariate coherence. (C, F) are calculated by the preselection strategy using multiple
coherence. The apparent resistivity in (B) at 7.9 s is downbiased compared with other results in (A, C).

FIGURE 9
Parameters variation at L7-158 in the period of 6.7 s. (A, B) show the variation in PLcohsz and PARsz associated with Ex-component, respectively. The
red color denotes the events with high linearity, and the other events are shown in blue. (C) shows the variation in the MPD. (D) shows the variation in the
hat matrix’s diagonal element.
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relatively quiet. Figure 10 shows the variation in the period of 33.4 s. The
previous 300 events in the daytime have low linearity, and the
polarization direction is scattered. In contrast, the events during the
nighttime between 300 and 500 have a high linearity, and the
polarization direction is scattered. This indicates that the daytime
event is dominated by incoherent noise and that the nighttime
events are relatively quiet. After analyzing the parameter variation at
different frequencies, we find that most of the events are dominated by
coherent noise between 2 and 20 s and dominated by incoherent noise

between 20 and 100 s. The field data are contaminated by coherent and
incoherent noise simultaneously.

Then, we compare the MT sounding curves calculated by the
different methods. First, we compare the result calculated by the
SSMT-2000 and the results with and without the preselection
strategy based on linearity, as shown in Figure 11. SSMT-2000 is
one of the standard Phoenix software sets. After comparing all the
results, we think all the impedance results are biased between 2 and
20 s, and there is a rapid rise and fall in the apparent resistivities. The

FIGURE 10
Parameters variation at L7-158 in the period of 33.4 s. (A, B) show the variation in PLcohsz and PARsz associated with Ex-component, respectively.
The red color denotes the events with high linearity, and the other events are shown in blue. (C) shows the variation in the MPD. (D) shows the variation in
the hat matrix’s diagonal element.

FIGURE 11
MT sounding curves calculated by the different methods using the data observed at site L7-158. SSMT-2000 is used to calculate the blue curves.
SSMT-2000 is one of the standard Phoenix software sets. The robust single-site processing approach is used to calculate the red curves. The preselection
strategy using PLcohsz and PARsz is used to calculate the black curves.
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SSMT-2000 result coincides with the preselection strategy result
between 20 and 100 s and changes smoothly. The single-site robust
result is improved between 20 and 100 s after using the preselection
strategy with PLcohsz and PARsz. According to the data quality

analysis in different periods, most of the events are contaminated by
incoherent noise between 20 and 100 s, and PLcohsz and PARsz are
effective in removing incoherent noise. Most of the events are
contaminated by coherent noise, which is highly linear, between

FIGURE 12
Variation in the polarization direction and the corresponding variation inDDpol at 6.7 and 33.4 s. (A, B) show the variation in the polarization direction,
and (C, D) show the corresponding dispersion degree. The horizontal axis denotes the event count. The red color denotes the events whose dispersion
degrees are higher than 0.5, and the other events are shown in blue.

FIGURE 13
Histogram of the MPD and the corresponding variation in the MPD at site L7-158 in the period of 6.7 s. (A) shows the histogram of the MPD; the
horizontal axis denotes the bins of the MPD, the vertical axis denotes the number falling in the corresponding bin, and the red dashed line denotes the
threshold. (B) shows the variation in the MPD. The horizontal axis denotes the event count. The red color denotes the events that fall into a bin with a
higher than expected value, and the other events are shown in blue. The quiet event may be removed at nighttime (the event from 2,500 to 4,000)
and many of the events in the daytime remain based on the criteria of SMPD.
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2 and 20 s. We also try to use the remote reference method to
improve the result but fail (see Supplementary Figure S5), and it
needs a different strategy to suppress the noise.

Next, we try to use the information on MPD to constrain the
coherent noise. Figure 12 shows the variation in the MPD and the
corresponding variation in DDpol in the periods of 6.7 and 33.4 s. The
expected value of DDpol is 1/3, and DDpol increases when the
polarization direction has a preferred direction. It shows that DDpol

is effective in differentiating the events with and without a preferred
polarization direction.

We also compare the criteria proposed by Platz and Weckmann
(2019) which is based on the statistical information on magnetic
polarization direction (SMPD). They subdivided the polarization
direction into 180 bins with a bin width of 1 °. In general, the
polarization direction is randomly distributed in each bin. Therefore,
the expected value (Number of events

180 ) is the same for each bin. They
removed all the events whose polarization directions fall into bins that
are much higher than the expected value. Figure 13 shows the statistical
analyses of the polarization direction; the threshold k (k = 1.5σ) is used
to detect abnormal values, where σ is the standard deviation (Chave and
Thomson, 2003). The corresponding abnormal events are drawn in red.
According to the criteria based on SMPD, the quiet event may be
removed at nighttime (the event from 2,500 to 4,000) and many of the
events in the daytime remain.

At last, we compare the MT sounding curves calculated by
the different preselection strategies based on the information on
MPD, as shown in Figure 14. The robust estimator combining
PLcohsz, PARsz for the preselection strategy is used to calculate
the blue curve, which prescreens the data only based on the
linearity. The robust estimator combining PLcohsz, PARsz and
SMPD for the preselection strategy is used to calculate the red
curve. The criteria proposed by Platz and Weckmann (2019) do
not improve the result, the rapid rise and rapid fall between
2 and 20 s remain. The robust estimator combining PLcohsz,
PARsz and DDpol for the preselection strategy is used to

calculate the black curve, and the threshold for DDpol is set
to 0.5. The rapid rise and rapid fall between 2 and 20 s are
removed. Comparing the two criteria between DDpol and
SMPD, most of the events in the daytime are removed based
on theDDpol, while many events in the daytime remain based on
the SMPD, and those events in the daytime may also correspond
to the coherent noise and dominate the regression, making the
preselection strategy fail. This shows the superiority of DDpol

for detecting coherent noise with a strong magnetic polarization
direction.

4 Conclusion

Robust single-site data processing may work well unless a
large fraction of the data is quiet. On the other hand, the remote
reference method may also fail to obtain a reliable result when the
noise is correlated between local and remote sites. In a noisy EM
environment, it is practical to use a preselection strategy to
extract high signal-to-noise ratio (SNR) data, and a reliable
response function can be obtained if the noise does not
contaminate the local site all the time.

We proposed three new parameters for the preselection
strategy from the perspectives of linearity and magnetic
polarization, making the preselection process automatic. The
predicted linear coherence (PLcohsz) and amplitude ratio
(PARsz) are combined to evaluate the linearity. We compared
the performance with related parameters, e.g., multiple
coherence and bivariate coherence. It shows that new
parameters proposed in this research (PLcohsz and PARsz)
perform similarly with multiple coherence and better than
the bivariate coherence. Linearity can be a general criterion
for detecting noisy data with low linearity, which corresponds to
incoherent noise. However, coherent noise may also have high
linearity (see Supplementary Figure S4). The dispersion degree

FIGURE 14
MT sounding curves calculated by the different preselection strategies using the data observed at site L7-158. The robust estimator combining
PLcohsz , and PARsz for the preselection strategy is used to calculate the blue curves. The robust estimator combining PLcohsz, PARsz and SMPD for the
preselection strategy is used to calculate the red curves. The robust estimator combining PLcohsz , PARsz andDDpol for the preselection strategy is used to
calculate the black curves.
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of the magnetic polarization direction (DDpol) is proposed to
detect coherent noise with a preferred polarization direction,
which performs better than the criteria proposed by Platz and
Weckmann (2019). It can quantify the polarization change over
time. Suppose noise contaminates the local site intermittently;
using those parameters may improve the quality of the response
function.
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