18 research outputs found

    Deep Complex U-Net with Conformer for Audio-Visual Speech Enhancement

    Full text link
    Recent studies have increasingly acknowledged the advantages of incorporating visual data into speech enhancement (SE) systems. In this paper, we introduce a novel audio-visual SE approach, termed DCUC-Net (deep complex U-Net with conformer network). The proposed DCUC-Net leverages complex domain features and a stack of conformer blocks. The encoder and decoder of DCUC-Net are designed using a complex U-Net-based framework. The audio and visual signals are processed using a complex encoder and a ResNet-18 model, respectively. These processed signals are then fused using the conformer blocks and transformed into enhanced speech waveforms via a complex decoder. The conformer blocks consist of a combination of self-attention mechanisms and convolutional operations, enabling DCUC-Net to effectively capture both global and local audio-visual dependencies. Our experimental results demonstrate the effectiveness of DCUC-Net, as it outperforms the baseline model from the COG-MHEAR AVSE Challenge 2023 by a notable margin of 0.14 in terms of PESQ. Additionally, the proposed DCUC-Net performs comparably to a state-of-the-art model and outperforms all other compared models on the Taiwan Mandarin speech with video (TMSV) dataset

    Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

    Get PDF
    CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPThe measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at root S-NN 2.76 TeV and p-Pb collisions at root S-NN 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region vertical bar eta vertical bar 0.8 as a function of centrality and transverse momentum pT using two observables, to search for evidence of PT-dependent flow vector fluctuations. For Ph-Ph collisions at 2.76 TeV, the measurements indicate that PT-dependent fluctuations are only present for the second order flow vector. Similar results have been found for p-Pb collisions at 5.02 TeV. These measurements are compared to hydrodynamic model calculations with event-by-event geometry fluctuations in the initial state to constrain the initial conditions and transport properties of the matter created in Ph-Ph and p-Pb collisions.9133CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçãoSem informaçãoThe ALICE collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung fur Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat a l'Energie Atomique (CEA) and Institut National de Physique Nucleaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE) and Council of Scientific and Industrial Research (CSIR), New Delhi, India; Indonesian Institute of Science, Indonesia; Centro Fermi Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnologia, through Fondo de Cooperacion Internacional en Ciencia y Tecnologia (FONCICYT) and Direccion General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Catolica del Peril, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba, Ministerio de Ciencia e Innovacion and Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America

    Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

    Get PDF
    The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at sNN=2.76 TeV and p-Pb collisions at sNN=5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region |η| < 0.8 as a function of centrality and transverse momentum pT using two observables, to search for evidence of pT-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that pT-dependent fluctuations are only present for the second order flow vector. Similar results have been found for p-Pb collisions at 5.02 TeV. These measurements are compared to hydrodynamic model calculations with event-by-event geometry fluctuations in the initial state to constrain the initial conditions and transport properties of the matter created in Pb–Pb and p–Pb collisions

    Fcc -> bcc -> hcp successive phase transformations in the strained ultrathin copper film: A molecular dynamic simulation study

    No full text
    The phase transformation behaviors of ultrathin Cu film under uniaxial tensile stress are investigated using molecular dynamic simulation. With the stress increasing, Cu film undergoes a successive phase transformation, i.e. firstly fcc -> bcc, then bcc -> hcp. The phase transformation process is very fast and thorough, i.e., all parents phase can transit into the new phase almost instantaneously. The crystallography mechanisms of two martensitic transformations are exactly corresponding to Bain and Burgers mechanism, respectively. By examining the formation conditions of such phase transformation in Cu film, we reveal that this fcc -> bcc -> hcp successive phase transformation will be subject to the very strict simulation conditions, namely stretching along [100] ( or [010], [001] ) direction, definitive tensile speed (1 x 10(10)/s), appropriate film thickness (0.7230-18.08 nm), low temperature (T <= 10 K), and continuous stretching process without any relaxation procedure

    An Experimental Study on the Preparation of Soft Rock Similar Materials Using Redispersible Latex Powder as a Modifier

    No full text
    The engineering geological problems of soft rock are common in large slope engineering and underground engineering surrounding rock. In order to study the change in mechanical properties of soft rock under the action of loading, excavation and rainfall, this paper carried out experimental research on similar materials of soft rock. The similar material of soft rock is prepared by using iron fine powder, barite powder and quartz sand as aggregate, gypsum as binder and redispersible latex powder as regulator. A single-factor influence test was designed with the content of redispersible latex powder as variation parameter. Analysis the influence of redispersible latex powder from the perspectives of physical and mechanical indexes, failure forms, stress&ndash;strain states and changes after water seepage. In addition, evaluate the feasibility of this similar material in geomechanical model test. Experimental results show that the density, compressive strength and Poisson&rsquo;s ratio of similar materials can be improved to a certain extent by the redispersible latex powder with low dosage. However, the above indexes show a significant downward trend with the increase in dosage when the dosage exceeds 2%. The deformation modulus always shows a downward trend, and this trend becomes more significant especially when the dosage exceeds 2%. With the increase in the redispersible latex powder, the stress&ndash;strain curves of similar materials show obvious elastic and plastic stages. The failure mode gradually changes to X-shaped conjugate failure, which is common in soft rock, and the material changes from brittle failure to plastic failure. In addition, this type of similar material with gypsum as cementing agent will cause serious damage and loss of bearing capacity after seepage. These methods produce similar materials with low strength, low deformation modulus and plastic failure form, which can be used to simulate the stability of soft rock engineering caused by loading or excavation. At the same time, it also sheds lights on preparing similar materials of hard rock

    Development of Perennial Wheat Through Hybridization Between Wheat and Wheatgrasses: A Review

    No full text
    Wheatgrasses (Thinopyrum spp.), which are relatives of wheat (Triticum aestivum L.), have a perennial growth habit and offer resistance to a diversity of biotic and abiotic stresses, making them useful in wheat improvement. Many of these desirable traits from Thinopyrum spp. have been used to develop wheat cultivars by introgression breeding. The perennial growth habit of wheatgrasses inherits as a complex quantitative trait that is controlled by many unknown genes. Previous studies have indicated that Thinopyrum spp. are able to hybridize with wheat and produce viable/stable amphiploids or partial amphiploids. Meanwhile, efforts have been made to develop perennial wheat by domestication of Thinopyrum spp. The most promising perennial wheat–Thinopyrum lines can be used as grain and/or forage crops, which combine the desirable traits of both parents. The wheat–Thinopyrum lines can adapt to diverse agricultural systems. This paper summarizes the development of perennial wheat based on Thinopyrum, and the genetic aspects, breeding methods, and perspectives of wheat–Thinopyrum hybrids. Keywords: Thinopyrum, Wheatgrass, Perennial, Triticum aestivu

    DataSheet_1_Pyroptosis relates to tumor microenvironment remodeling and prognosis: A pan-cancer perspective.docx

    No full text
    Background and aimPyroptosis is an inflammatory form of programmed cell death implicated in inflammation and disease. Moreover, inducing pyroptosis has been appreciated as anti-cancer therapy for its ability to unleash anti-cancer immune responses.MethodsUtilizing the data available in The Cancer Genome Atlas (TCGA), pyroptosis-related genes’ (PRGs) expression, genomic aberrations, and clinical significance were systematically analyzed in pan-cancer. A GSVA score was obtained to rate pyroptosis level and divide the cancers into pyroptosis-low and pyroptosis-high groups. Immunohistochemistry (IHC) was used to evaluate the differential expression of major PRGs (GSDMC, GSDMD, GSDME, NLRP3, NLRC4, IL1B) in selected tumor types (COAD, HNSC, KIRC, LIHC, LUAD, LUSC). Selection of tumors for immunohistochemistry (IHC) was based on their expression pattern in TCGA cancers, clinical relevance, tumor epidemiology, and sample availability.ResultsDifferential expression of PRGs was evident in various cancers and associated with prognosis which was driven by genomic variations and epigenetic abnormalities, such as single nucleotide variations (SNVs), copy number variation (CNV) and DNA methylation level. For example, methylation of PRGs in lower grade glioma (LGG), uveal melanoma (UVM) and kidney renal clear cell carcinoma (KIRC) were predictive of improved survival as upregulation of PRGs was risky in these cancers. Pyroptosis level significantly differentiated tumor from normal samples in 15 types of cancers, exhibited a progressive trend with cancer stage, observed variation among cancer subtypes, and showed a significant association with cancer prognosis. Higher pyroptosis level was associated with worst prognosis in majority of the cancers in terms of OS (KIRC, LGG, and UVM), PFS (GBM, KIRC, LGG, PRAD, THCA, and THYM) and DSS (KIRC and LGG) as estimated by Kaplan-Meier survival curves. Moreover, Pyroptosis level was strongly indicative of a hot tumor immune microenvironment with high presence of CD8+ T cell and other T cell subtypes. Several oncogenic pathways, such as P53 pathway, DNA repair, KRAS signaling, epithelial-mesenchymal transition (EMT), IL6 JAK STAT3 signaling, IL2 STAT5 signaling, PI3K AKT MTOR signaling and angiogenesis, were enriched in pyroptosis-hi subgroups across cancers.ConclusionsGenetic alterations in PRGs greatly influence the pyroptosis level and cancer prognosis. A relatively hot tumor immune microenvironment was associated with pyroptosis irrespective of the cancer prognosis. Overall, our study reveals the critical role of pyroptosis in cancer and highlights pyroptosis-based therapeutic vulnerabilities.</p

    DataSheet_2_Pyroptosis relates to tumor microenvironment remodeling and prognosis: A pan-cancer perspective.xlsx

    No full text
    Background and aimPyroptosis is an inflammatory form of programmed cell death implicated in inflammation and disease. Moreover, inducing pyroptosis has been appreciated as anti-cancer therapy for its ability to unleash anti-cancer immune responses.MethodsUtilizing the data available in The Cancer Genome Atlas (TCGA), pyroptosis-related genes’ (PRGs) expression, genomic aberrations, and clinical significance were systematically analyzed in pan-cancer. A GSVA score was obtained to rate pyroptosis level and divide the cancers into pyroptosis-low and pyroptosis-high groups. Immunohistochemistry (IHC) was used to evaluate the differential expression of major PRGs (GSDMC, GSDMD, GSDME, NLRP3, NLRC4, IL1B) in selected tumor types (COAD, HNSC, KIRC, LIHC, LUAD, LUSC). Selection of tumors for immunohistochemistry (IHC) was based on their expression pattern in TCGA cancers, clinical relevance, tumor epidemiology, and sample availability.ResultsDifferential expression of PRGs was evident in various cancers and associated with prognosis which was driven by genomic variations and epigenetic abnormalities, such as single nucleotide variations (SNVs), copy number variation (CNV) and DNA methylation level. For example, methylation of PRGs in lower grade glioma (LGG), uveal melanoma (UVM) and kidney renal clear cell carcinoma (KIRC) were predictive of improved survival as upregulation of PRGs was risky in these cancers. Pyroptosis level significantly differentiated tumor from normal samples in 15 types of cancers, exhibited a progressive trend with cancer stage, observed variation among cancer subtypes, and showed a significant association with cancer prognosis. Higher pyroptosis level was associated with worst prognosis in majority of the cancers in terms of OS (KIRC, LGG, and UVM), PFS (GBM, KIRC, LGG, PRAD, THCA, and THYM) and DSS (KIRC and LGG) as estimated by Kaplan-Meier survival curves. Moreover, Pyroptosis level was strongly indicative of a hot tumor immune microenvironment with high presence of CD8+ T cell and other T cell subtypes. Several oncogenic pathways, such as P53 pathway, DNA repair, KRAS signaling, epithelial-mesenchymal transition (EMT), IL6 JAK STAT3 signaling, IL2 STAT5 signaling, PI3K AKT MTOR signaling and angiogenesis, were enriched in pyroptosis-hi subgroups across cancers.ConclusionsGenetic alterations in PRGs greatly influence the pyroptosis level and cancer prognosis. A relatively hot tumor immune microenvironment was associated with pyroptosis irrespective of the cancer prognosis. Overall, our study reveals the critical role of pyroptosis in cancer and highlights pyroptosis-based therapeutic vulnerabilities.</p
    corecore