341 research outputs found

    Pass-Through And The Prediction Of Merger Price Effects

    Get PDF
    We use Monte Carlo experiments to study how pass-through can improve merger price predictions, focusing on the first order approximation (FOA) proposed in Jaffe and Weyl [2013]. FOA addresses the functional form misspecification that can exist in standard merger simulations. We find that the predictions of FOA are tightly distributed around the true price effects if pass-through is precise, but that measurement error in pass-through diminishes accuracy. As a comparison to FOA, we also study a methodology that uses pass-through to select among functional forms for use in simulation. This alternative also increases accuracy relative to standard merger simulation and proves more robust to measurement error

    Upward Pricing Pressure As A Predictor Of Merger Price Effects

    Get PDF
    We use Monte Carlo experiments to evaluate whether “upward pricing pressure” (UPP) accurately predicts the price effects of mergers, motivated by the observation that UPP is a restricted form of the first order approximation derived in Jaffe and Weyl (2013). Results indicate that UPP is quite accurate with standard log-concave demand systems, but understates price effects if demand exhibits greater convexity. Prediction error does not systematically exceed that of misspecified simulation models, nor is it much greater than that of correctly-specified models simulated with imprecise demand elasticities. The results also support that UPP provides accurate screens for anticompetitive mergers

    Use of a Tungsten Filament Lamp as a Pirani Gauge for Continuous Gas Analysis

    Get PDF
    Reported herein is a thermal conductivity technique by which continuous and quantitative data have been obtained in a cataphoretic system without sample withdrawal

    Plant based dietary supplement increases urinary pH

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research has demonstrated that the net acid load of the typical Western diet has the potential to influence many aspects of human health, including osteoporosis risk/progression; obesity; cardiovascular disease risk/progression; and overall well-being. As urinary pH provides a reliable surrogate measure for dietary acid load, this study examined whether a plant-based dietary supplement, one marketed to increase alkalinity, impacts urinary pH as advertised.</p> <p>Methods</p> <p>Using pH test strips, the urinary pH of 34 healthy men and women (33.9 +/- 1.57 y, 79.3 +/- 3.1 kg) was measured for seven days to establish a baseline urinary pH without supplementation. After this initial baseline period, urinary pH was measured for an additional 14 days while participants ingested the plant-based nutritional supplement. At the end of the investigation, pH values at baseline and during the treatment period were compared to determine the efficacy of the supplement.</p> <p>Results</p> <p>Mean urinary pH statistically increased (p = 0.03) with the plant-based dietary supplement. Mean urinary pH was 6.07 +/- 0.04 during the baseline period and increased to 6.21 +/- 0.03 during the first week of treatment and to 6.27 +/- 0.06 during the second week of treatment.</p> <p>Conclusion</p> <p>Supplementation with a plant-based dietary product for at least seven days increases urinary pH, potentially increasing the alkalinity of the body.</p

    Exploring the differences in cloud properties observed by the Terra and Aqua MODIS Sensors

    Get PDF
    The aerosol-cloud interaction in different parts of the globe is examined here using multi-year statistics of remotely sensed data from two MODIS sensors aboard NASA&apos;s &lt;i&gt;Terra&lt;/i&gt; (morning) and &lt;i&gt;Aqua&lt;/i&gt; (afternoon) satellites. Simultaneous retrievals of aerosol loadings and cloud properties by the MODIS sensor allowed us to explore morning-to-afternoon variation of liquid cloud fraction (CF) and optical thickness (COT) for clean, moderately polluted and heavily polluted clouds in different seasons. Data analysis for seven-years of MODIS retrievals revealed strong temporal and spatial patterns in morning-to-afternoon variation of cloud fraction and optical thickness over different parts of the global oceans and the land. For the vast areas of stratocumulus cloud regions, the data shows that the days with elevated aerosol abundance were also associated with enhanced afternoon reduction of CF and COT pointing to the possible reduction of the indirect climate forcing. A positive correlation between aerosol optical depth and morning-to-afternoon variation of trade wind cumulus cloud cover was also found over the northern Indian Ocean, though no clear relationship between the concentration of Indo-Asian haze and morning-to-afternoon variation of COT was established. Over the Amazon region during wet conditions, aerosols are associated with an enhanced convective process in which morning shallow warm clouds are organized into afternoon deep convection with greater ice cloud coverage. Analysis presented here demonstrates that the new technique for exploring morning-to-afternoon variability in cloud properties by using the differences in data products from the two daily MODIS overpasses is capable of capturing some of the major features of diurnal variations in cloud properties and can be used for better understanding of aerosol radiative effects

    High (but Not Low) Urinary Iodine Excretion Is Predicted by Iodine Excretion Levels from Five Years Ago

    Get PDF
    Background: It has not been investigated whether there are associations between urinary iodine (UI) excretion measurements some years apart, nor whether such an association remains after adjustment for nutritional habits. The aim of the present study was to investigate the relation between iodine-creatinine ratio (ICR) at two measuring points 5 years apart. Methods: Data from 2,659 individuals from the Study of Health in Pomerania were analyzed. Analysis of covariance and Poisson regressions were used to associate baseline with follow-up ICR. Results: Baseline ICR was associated with follow-up ICR. Particularly, baseline ICR >300 mu g/g was related to an ICR >300 mu g/g at follow-up (relative risk, RR: 2.20; p < 0.001). The association was stronger in males (RR: 2.64; p < 0.001) than in females (RR: 1.64; p = 0.007). In contrast, baseline ICR <100 mu g/g was only associated with an ICR <100 mu g/g at follow-up in males when considering unadjusted ICR. Conclusions: We detected only a weak correlation with respect to low ICR. Studies assessing iodine status in a population should take into account that an individual with a low UI excretion in one measurement is not necessarily permanently iodine deficient. On the other hand, current high ICR could have been predicted by high ICR 5 years ago. Copyright (C) 2011 S. Karger AG, Base

    Brief report: Using global positioning system (GPS) enabled cell phones to examine adolescent travel patterns and time in proximity to alcohol outlets

    Get PDF
    As adolescents gain freedom to explore new environments unsupervised, more time in proximity to alcohol outlets may increase risks for alcohol and marijuana use. This pilot study: 1) Describes variations in adolescents' proximity to outlets by time of day and day of the week, 2) Examines variations in outlet proximity by drinking and marijuana use status, and 3) Tests feasibility of obtaining real-time data to study adolescent proximity to outlets. U.S. adolescents (N = 18) aged 16–17 (50% female) carried GPS-enabled smartphones for one week with their locations tracked. The geographic areas where adolescents spend time, activity spaces, were created by connecting GPS points sequentially and adding spatial buffers around routes. Proximity to outlets was greater during after school and evening hours. Drinkers and marijuana users were in proximity to outlets 1½ to 2 times more than non-users. Findings provide information about where adolescents spend time and times of greatest risk, informing prevention efforts

    Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    Get PDF
    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region

    Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation

    Get PDF
    The NASA moderate resolution imaging spectroradiometer (MODIS) instrument will provide a global and improved source of information for the study of land surfaces with a spatial resolution of up to 250 m
    • …
    corecore