10 research outputs found

    Early paradoxical increase of dopamine: A neurochemical study of olfactory bulb in asymptomatic and symptomatic MPTP treated monkeys

    Full text link
    Parkinson’s disease (PD) is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive. Olfactory bulb (OB) pathology shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. In this study we examined tissue levels of dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) and their metabolites, of noradrenaline (NA) and of the amino acid neurotransmitters aspartate, glutamate, taurine and γ-aminobutyric acid in OBs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated Macaca fascicularis in different stages, includin g monkeys who were always asymptomatic, monkeys who recovered from mild parkinsonian signs, and monkeys with stable moderate or severe parkinsonism. DA was increased compared to controls, while neither NA and 5-HT nor the amino acid neurotransmitters were significantly changed. Furthermore, DA increased before stable motor deficits appear with +51% in asymptomatic and +96% in recovered monkeys. Unchanged DA metabolites suggest a special metabolic profile of the newly formed DA neurons. Significant correlation of homovanillic acid (HVA) with taurine single values within the four MPTP groups and of aspartate with taurine within the asymptomatic and recovered MPTP groups, but not within the controls suggest interactions in the OB between taurine and the DA system and taurine and the excitatory neurotransmitter triggered by MPTP. This first investigation of OB in various stages after MPTP administration suggests that the DA increase seems to be an early phenomenon, not requiring profound nigrostriatal neurodegeneration or PD symptoms.This work was funded by grants from the Ministerio de Economía y Competitividad: SAF2015-67239-P; Instituto de Salud Carlos III (CIBERNED) SAF2016-78207, Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III—Fondos FEDER, a way to build Europe FIS PIE14/00034 to JAO and by the chair UAM-Fundación Tatiana Pérez de Guzmán el Bueno to C

    Is Parkinson's disease a vesicular dopamine storage disorder?: Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum

    Full text link
    The cause of degeneration of nigrostriatal dopamine (DA) neurons in idiopathic Parkinson’s disease (PD) is still unknown. Intraneuronally, DA is largely confined to synaptic vesicles where it is protected from metabolic breakdown. In the cytoplasm, however, free DA can give rise to formation of cytotoxic free radicals. Normally, the concentration of cytoplasmic DA is kept at a minimum by continuous pumping activity of the vesicular monoamine transporter (VMAT)2. Defects in handling of cytosolic DA by VMAT2 increase levels of DA-generated oxy radicals ultimately resulting in degeneration of DAergic neurons. Here, we isolated for the first time, DA storage vesicles from the striatum of six autopsied brains of PD patients and four controls and measured several indices of vesicular DA storage mechanisms. We found that (1) vesicular uptake of DA and binding of the VMAT2-selective label [ 3H]dihydrotetrabenazine were profoundly reduced in PD by 87–90% and 71– 80%, respectively; (2) after correcting for DA nerve terminal loss, DA uptake per VMAT2 transport site was significantly reduced in PD caudate and putamen by 53 and 55%, respectively; (3) the VMAT2 transport defect appeared specific for PD as it was not present in Macaca fascicularis (7 MPTP and 8 controls) with similar degree of MPTP-induced nigrostriatal neurodegeneration; and (4) DA efflux studies and measurements of acidification in the vesicular preparations suggest that the DA storage impairment was localized at the VMAT2 protein itself. We propose that this VMAT2 defect may be an early abnormality promoting mechanisms leading to nigrostriatal DA neuron death in P

    The psychostimulant (±)-cis-4,4'-dimethylaminorex (4,4'-DMAR) interacts with human plasmalemmal and vesicular monoamine transporters

    Get PDF
    (±)-cis-4,4'-Dimethylaminorex (4,4'-DMAR) is a new psychoactive substance (NPS) that has been associated with 31 fatalities and other adverse events in Europe between June 2013 and February 2014. We used in vitro uptake inhibition and transporter release assays to determine the effects of 4,4'-DMAR on human high-affinity transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). In addition, we assessed its binding affinities to monoamine receptors and transporters. Furthermore, we investigated the interaction of 4,4'-DMAR with the vesicular monoamine transporter 2 (VMAT2) in rat phaeochromocytoma (PC12) cells and synaptic vesicles prepared from human striatum. 4,4'-DMAR inhibited uptake mediated by human DAT, NET or SERT, respectively in the low micromolar range (IC; 50; values < 2 μM). Release assays identified 4,4'-DMAR as a substrate type releaser, capable of inducing transporter-mediated reverse transport via DAT, NET and SERT. Furthermore, 4,4'-DMAR inhibited both the rat and human isoforms of VMAT2 at a potency similar to 3,4-methylenedioxymethylamphetamine (MDMA). This study identified 4,4'-DMAR as a potent non-selective monoamine releasing agent. In contrast to the known effects of aminorex and 4-methylaminorex, 4,4'-DMAR exerts profound effects on human SERT. The latter finding is consistent with the idea that fatalities associated with its abuse may be linked to monoaminergic toxicity including serotonin syndrome. The activity at VMAT2 suggests that chronic abuse of 4,4'-DMAR may result in long-term neurotoxicity

    Ornipressin in the treatment of functional renal failure in decompensated liver cirrhosis

    Get PDF
    In 11 patients with decompensated cirrhosis and deteriorating renal function, the effect of the vasoconstrictor substance 8-ornithin vasopressin (ornipressin; POR 8; Sandoz, Basel, Switzerland) on renal function, hemodynamic parameters, and humoral mediators was studied. Ornipressin was infused at a dose of 6 IU/h over a period of 4 hours. During ornipressin infusion an improvement of renal function was achieved as indicated by significant increases in inulin clearance (+65%), paraaminohippuric acid clearance (+49%), urine volume (+45%), sodium excretion (+259%), and fractional elimination of sodium (+130%). The hyperdynamic circulation was reversed to a nearly normal circulatory state. The increase in systemic vascular resistance (+60%) coincided with a decrease of a previously elevated renal vascular resistance (-27%) and increase in renal blood flow (+44%). The renal fraction of the cardiac output increased from 2.3% to 4.7% (P less than 0.05). A decline of the elevated plasma levels of noradrenaline (2.08-1.13 ng/mL; P less than 0.01) and renin activity (27.6-14.2 ng.mL-1.h-1; P less than 0.01) was achieved. The plasma concentration of the atrial natriuretic factor increased in most of the patients, but slightly decreased in 3 patients. The decrease of renal vascular resistance and the increase of renal blood flow and of the renal fraction of cardiac output play a key role in the beneficial effect of ornipressin on renal failure. These changes develop by an increase in mean arterial pressure, the reduction of the sympathetic activity, and probably of an extenuation of the splanchnic vasodilation. A significant contribution of atrial natriuretic factor is less likely. The present findings implicate that treatment with ornipressin represents an alternative approach to the management of functional renal failure in advanced liver cirrhosis

    Dopamine and vesicular monoamine transport loss supports incidental Lewy body disease as preclinical idiopathic Parkinson

    No full text
    Abstract Incidental Lewy body disease (ILBD) is a neuropathological diagnosis of brains with Lewy bodies without clinical neuropsychiatric symptoms. Dopaminergic deficits suggest a relationship to preclinical Parkinson’s disease (PD). We now report a subregional pattern of striatal dopamine loss in ILBD cases, with dopamine found significantly decreased in the putamen (−52%) and only to a lower extent in the caudate (−38%, not statistically significant); this is similar to the pattern in idiopathic PD in various neurochemical and in vivo imaging studies. We aimed to find out if our recently reported impaired storage of dopamine in striatal synaptic vesicles prepared from striatal tissue of cases with idiopathic PD might be an early or even causative event. We undertook parallel measurements of [3H]dopamine uptake and vesicular monoamine transporter (VMAT)2 binding sites by the specific label [3H]dihydrotetrabenazine on vesicular preparation from caudate and putamen in ILBD. Neither specific uptake of dopamine and binding of [3H]dihydrotetrabenazine, nor mean values of the calculated ratios of dopamine uptake and VMAT2 binding, a measure of uptake rate per transport site, were significantly different between ILBD and controls. ATP-dependence of [3H]dopamine uptake revealed significantly higher rates in putamen than in caudate at saturating concentrations of ATP in controls, a subregional difference lost in ILBD. Our findings support a loss of the normally higher VMAT2 activity in putamen as a contributing factor to the higher susceptibility of the putamen to dopamine depletion in idiopathic PD. Moreover, we suggest ILBD postmortem tissue as a valuable source for testing hypotheses on processes in idiopathic PD

    Early Paradoxical Increase of Dopamine: A Neurochemical Study of Olfactory Bulb in Asymptomatic and Symptomatic MPTP Treated Monkeys

    No full text
    Parkinson’s disease (PD) is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive. Olfactory bulb (OB) pathology shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. In this study we examined tissue levels of dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) and their metabolites, of noradrenaline (NA) and of the amino acid neurotransmitters aspartate, glutamate, taurine and γ-aminobutyric acid in OBs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated Macaca fascicularis in different stages, including monkeys who were always asymptomatic, monkeys who recovered from mild parkinsonian signs, and monkeys with stable moderate or severe parkinsonism. DA was increased compared to controls, while neither NA and 5-HT nor the amino acid neurotransmitters were significantly changed. Furthermore, DA increased before stable motor deficits appear with +51% in asymptomatic and +96% in recovered monkeys. Unchanged DA metabolites suggest a special metabolic profile of the newly formed DA neurons. Significant correlation of homovanillic acid (HVA) with taurine single values within the four MPTP groups and of aspartate with taurine within the asymptomatic and recovered MPTP groups, but not within the controls suggest interactions in the OB between taurine and the DA system and taurine and the excitatory neurotransmitter triggered by MPTP. This first investigation of OB in various stages after MPTP administration suggests that the DA increase seems to be an early phenomenon, not requiring profound nigrostriatal neurodegeneration or PD symptoms

    Induction by low Na(+) or Cl(−) of cocaine sensitive carrier-mediated efflux of amines from cells transfected with the cloned human catecholamine transporters

    No full text
    1. COS-7 cells transfected with the cDNA of the human dopamine transporter (DAT cells) or the human noradrenaline transporter (NAT cells) were loaded with [(3)H]-dopamine or [(3)H]-noradrenaline and superfused with buffers of different ionic composition. 2. In DAT cells lowering the Na(+) concentration to 0, 5 or 10 mM caused an increase in (3)H-efflux. Cocaine (10 μM) or mazindol (0.3 μM) blocked the efflux at low Na(+), but not at 0 Na(+). Lowering the Cl(−) concentration to 0, 5 or 10 mM resulted in an increased efflux, which was blocked by cocaine or mazindol. Desipramine (0.1 μM) was without effect in all the conditions tested. 3. In NAT cells, lowering the Na(+) concentration to 0, 5 or 10 mM caused an increase in (3)H-efflux, which was blocked by cocaine or mazindol. Desipramine produced a partial block, its action being stronger at 5 or 10 mM Na(+) than at 0 mM Na(+). Efflux induced by 0, 5 or 10 mM Cl(−) was completely blocked by all three uptake inhibitors. 4. In cross-loading experiments, 5 mM Na(+)- or 0 Cl(−)-induced efflux was much lower from [(3)H]-noradrenaline-loaded DAT, than NAT cells and was sensitive to mazindol, but not to desipramine. Efflux from [(3)H]-dopamine-loaded NAT cells elicited by 5 mM Na(+) or 0 Cl(−) was blocked by mazindol, as well as by desipramine. 5. Thus, cloned catecholamine transporters display carrier-mediated efflux of amines if challenged by lowering the extracellular Na(+) or Cl(−), whilst retaining their pharmacological profile. The transporters differ with regard to the ion dependence of the blockade of reverse transport by uptake inhibitors
    corecore