55 research outputs found
A Precious-Metal-Free Hybrid Electrolyzer for Alcohol Oxidation Coupled to CO2 -to-Syngas Conversion.
Electrolyzers combining CO2 reduction (CO2 R) with organic substrate oxidation can produce fuel and chemical feedstocks with a relatively low energy requirement when compared to systems that source electrons from water oxidation. Here, we report an anodic hybrid assembly based on a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) electrocatalyst modified with a silatrane-anchor (STEMPO), which is covalently immobilized on a mesoporous indium tin oxide (mesoITO) scaffold for efficient alcohol oxidation (AlcOx). This molecular anode was subsequently combined with a cathode consisting of a polymeric cobalt phthalocyanine on carbon nanotubes to construct a hybrid, precious-metal-free coupled AlcOx-CO2 R electrolyzer. After three-hour electrolysis, glycerol is selectively oxidized to glyceraldehyde with a turnover number (TON) of ≈1000 and Faradaic efficiency (FE) of 83 %. The cathode generated a stoichiometric amount of syngas with a CO:H2 ratio of 1.25±0.25 and an overall cobalt-based TON of 894 with a FE of 82 %. This prototype device inspires the design and implementation of nonconventional strategies for coupling CO2 R to less energy demanding, and value-added, oxidative chemistry
Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells
Hydrogenases (H2ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p-type Si photocathode for optimal loading and wiring of H2ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton-reducing Si j IO-TiO2 j H2ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias-free) water splitting by wiring Si j IO-TiO2 j H2ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si j IO-TiO2 j H2ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z-scheme that replaces the non-complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode
Host-Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO2 Reduction.
The rational control of forming and stabilizing reaction intermediates to guide specific reaction pathways remains to be a major challenge in electrocatalysis. In this work, we report a surface active-site engineering approach for modulating electrocatalytic CO2 reduction using the macrocycle cucurbit[6]uril (CB[6]). A pristine gold surface functionalized with CB[6] nanocavities was studied as a hybrid organic-inorganic model system that utilizes host-guest chemistry to influence the heterogeneous electrocatalytic reaction. The combination of surface-enhanced infrared absorption (SEIRA) spectroscopy and electrocatalytic experiments in conjunction with theoretical calculations supports capture and reduction of CO2 inside the hydrophobic cavity of CB[6] on the gold surface in aqueous KHCO3 at negative potentials. SEIRA spectroscopic experiments show that the decoration of gold with the supramolecular host CB[6] leads to an increased local CO2 concentration close to the metal interface. Electrocatalytic CO2 reduction on a CB[6]-coated gold electrode indicates differences in the specific interactions between CO2 reduction intermediates within and outside the CB[6] molecular cavity, illustrated by a decrease in current density from CO generation, but almost invariant H2 production compared to unfunctionalized gold. The presented methodology and mechanistic insight can guide future design of molecularly engineered catalytic environments through interfacial host-guest chemistry
Natural and cryptic peptides dominate the immunopeptidome of atypical teratoid rhabdoid tumors
BACKGROUND: Atypical teratoid/rhabdoid tumors (AT/RT) are highly aggressive CNS tumors of infancy and early childhood. Hallmark is the surprisingly simple genome with inactivating mutations or deletions in the SMARCB1 gene as the oncogenic driver. Nevertheless, AT/RTs are infiltrated by immune cells and even clonally expanded T cells. However, it is unclear which epitopes T cells might recognize on AT/RT cells. METHODS: Here, we report a comprehensive mass spectrometry (MS)-based analysis of naturally presented human leukocyte antigen (HLA) class I and class II ligands on 23 AT/RTs. MS data were validated by matching with a human proteome dataset and exclusion of peptides that are part of the human benignome. Cryptic peptide ligands were identified using Peptide-PRISM. RESULTS: Comparative HLA ligandome analysis of the HLA ligandome revealed 55 class I and 139 class II tumor-exclusive peptides. No peptide originated from the SMARCB1 region. In addition, 61 HLA class I tumor-exclusive peptide sequences derived from non-canonically translated proteins. Combination of peptides from natural and cryptic class I and class II origin gave optimal representation of tumor cell compartments. Substantial overlap existed with the cryptic immunopeptidome of glioblastomas, but no concordance was found with extracranial tumors. More than 80% of AT/RT exclusive peptides were able to successfully prime CD8(+) T cells, whereas naturally occurring memory responses in AT/RT patients could only be detected for class II epitopes. Interestingly, >50% of AT/RT exclusive class II ligands were also recognized by T cells from glioblastoma patients but not from healthy donors. CONCLUSIONS: These findings highlight that AT/RTs, potentially paradigmatic for other pediatric tumors with a low mutational load, present a variety of highly immunogenic HLA class I and class II peptides from canonical as well as non-canonical protein sources. Inclusion of such cryptic peptides into therapeutic vaccines would enable an optimized mapping of the tumor cell surface, thereby reducing the likelihood of immune evasion
Exploring fusion-reactor physics with high-power electron cyclotron resonance heating on ASDEX Upgrade
The electron cyclotron resonance heating (ECRH) system of the ASDEX Upgrade tokomak has been upgraded over the last 15 years from a 2MW, 2 s, 140 GHz system to an 8MW, 10 s, dual frequency system (105/140 GHz). The power exceeds the L/H power threshold by at least a factor of two, even for high densities, and roughly equals the installed ion cyclotron range of frequencies power. The power of both wave heating systems together (>10MW in the plasma) is about half of the available neutral beam injection (NBI) power, allowing significant variations of torque input, of the shape of the heating profile and of Qe/Qi, even at high heating power. For applications at a low magnetic field an X3-heating scheme is routinely in use. Such a scenario is now also forseen for ITER to study the first H-modes at one third of the full field. This versatile system allows one to address important issues fundamental to a fusion reactor: H-mode operation with dominant electron heating, accessing low collisionalities in full metal devices (also related to suppression of edge localized modes with resonant magnetic perturbations), influence of Te/Ti and rotational shear on transport, and dependence of impurity accumulation on heating profiles. Experiments on all these subjects have been carried out over the last few years and will be presented in this contribution. The adjustable localized current drive capability of ECRH allows dedicated variations of the shape of the q-profile and the study of their influence on non-inductive tokamak operation (so far at q>5.3). The ultimate goal of these experiments is to use the experimental findings to refine theoretical models such that they allow a reliable design of operational schemes for reactor size devices. In this respect, recent studies comparing a quasi-linear approach (TGLF) with fully non-linear modeling (GENE) of non-inductive high-beta plasmas will be reported
Confinement in electron heated plasmas in Wendelstein 7-X and ASDEX Upgrade; the necessity to control turbulent transport
In electron (cyclotron) heated plasmas, in both ASDEX Upgrade (L-mode) and Wendelstein 7-X, clamping of the ion temperature occurs at Ti ∼ 1.5 keV independent of magnetic configuration. The ions in such plasmas are heated through the energy exchange power as , which offers a broad ion heating profile, similar to that offered by alpha heating in future thermonuclear fusion reactors. However, the predominant electron heating may put an additional constraint on the ion heat transport, as the ratio Te/Ti > 1 can exacerbates ITG/TEM core turbulence. Therefore, in practical terms the strongly 'stiff' core transport translates into Ti-clamping in electron heated plasmas. Due to this clamping, electron heated L-mode scenarios, with standard gas fueling, in either tokamaks or stellarators may struggle to reach high normalized ion temperature gradients required in a compact fusion reactor. The comparison shows that core heat transport in neoclassically optimized stellarators is driven by the same mechanisms as in tokamaks. The absence of a strong H-mode temperature edge pedestal in stellarators, sofar (which, like in tokamaks, could lift the clamped temperature-gradients in the core), puts a strong requirement on reliable and sustainable core turbulence suppression techniques in stellarators.EC/H2020/633053/EU/Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium/Eurato
Novel Roles for the AIDA Adhesin from Diarrheagenic Escherichia coli: Cell Aggregation and Biofilm Formation
Diarrhea-causing Escherichia coli strains are responsible for numerous cases of gastrointestinal disease and constitute a serious health problem throughout the world. The ability to recognize and attach to host intestinal surfaces is an essential step in the pathogenesis of such strains. AIDA is a potent bacterial adhesin associated with some diarrheagenic E. coli strains. AIDA mediates bacterial attachment to a broad variety of human and other mammalian cells. It is a surface-displayed autotransporter protein and belongs to the selected group of bacterial glycoproteins; only the glycosylated form binds to mammalian cells. Here, we show that AIDA possesses self-association characteristics and can mediate autoaggregation of E. coli cells. We demonstrate that intercellular AIDA-AIDA interaction is responsible for bacterial autoaggregation. Interestingly, AIDA-expressing cells can interact with antigen 43 (Ag43)-expressing cells, which is indicative of an intercellular AIDA-Ag43 interaction. Additionally, AIDA expression dramatically enhances biofilm formation by E. coli on abiotic surfaces in flow chambers
Recommended from our members
Data for "A One-Pot Route to Faceted FePt-Fe3O4 Dumbbells: Probing Morphology-Catalytic Activity Effects in O2 Reduction Catalysis"
The design and synthesis of faceted nanoparticles with a controlled composition is of enormous importance to modern catalyst engineering. Faceted FePt-Fe3O4 dumbbell nanoparticles have been prepared by a simple, one-pot technique that avoids the need for expensive additives or preformed seeds. The faceted product consists of an FePt octopod and a cubic Fe3O4 lobe, of mean diameter 13.6 and 14.9 nm, respectively. The mass normalized activity for electrocatalytic oxygen reduction shows that this new structure-type outperforms related catalysts in alkaline media. This work illustrates the power of morphology control and tailoring crystal facet abundance at the nanoparticle surface for enhancing catalytic performance
- …