193 research outputs found

    Neuroethology of olfactory-guided behavior and its potential application in the control of harmful insects

    Get PDF
    Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra-and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and-kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.Fil: Reisenman, Carolina Esther. University of California at Berkeley; Estados UnidosFil: Lei, Hong. University of Arizona; Estados UnidosFil: Guerenstein, Pablo Gustavo. Provincia de Entre RĂ­os. Centro de Investigaciones CientĂ­ficas y Transferencia de TecnologĂ­a a la ProducciĂłn. Universidad AutĂłnoma de Entre RĂ­os. Centro de Investigaciones CientĂ­ficas y Transferencia de TecnologĂ­a a la ProducciĂłn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Centro de Investigaciones CientĂ­ficas y Transferencia de TecnologĂ­a a la ProducciĂłn; Argentina. Universidad Nacional de Entre RĂ­os. Facultad de IngenierĂ­a; Argentin

    Feeding and defecation behavior of Triatoma rubida (Uhler, 1894) (Hemiptera: Reduviidae) under laboratory conditions, and its potential role as a vector of chagas disease in Arizona, USA

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi, which is transmitted to humans by blood-sucking triatomine insects. This disease is endemic throughout Mexico and Central and South America, but only a few autochthonous cases have been reported in the United States, despite the fact that infected insects readily invade houses and feed on humans. Competent vectors defecate during or shortly after feeding so that infective feces contact the host. We thus studied the feeding and defecation behaviors of the prevalent species in southern Arizona, Triatoma rubida. We found that whereas defecation during feeding was frequent in females (93%), it was very rare in immature stages (3%), and absent in males. Furthermore, more than half of the immature insects that exhibited multiple feeding bouts (62%) defecated during interruptions of feeding, i.e., while likely on or near the host. These results indicate that T. rubida potentially could transmit T. cruzi to humans.Fil: Reisenman, Carolina Esther. University of Arizona; Estados UnidosFil: Gregory, Teresa. University of Arizona; Estados UnidosFil: Guerenstein, Pablo Gustavo. Provincia de Entre RĂ­os. Centro de Investigaciones CientĂ­ficas y Transferencia de TecnologĂ­a a la ProducciĂłn. Universidad AutĂłnoma de Entre RĂ­os. Centro de Investigaciones CientĂ­ficas y Transferencia de TecnologĂ­a a la ProducciĂłn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Centro de Investigaciones CientĂ­ficas y Transferencia de TecnologĂ­a a la ProducciĂłn; ArgentinaFil: Hildebrand, John. University of Arizona; Estados Unido

    Effects of starvation on the olfactory responses of the blood-sucking bug Rhodnius prolixus

    Get PDF
    Blood-sucking insects use olfactory cues in a variety of behavioral contexts, including host-seeking and aggregation. In triatomines, which are obligated blood-feeders, it has been shown that the response to CO2, a host-associated olfactory cue used almost universally by blood-sucking insects, is modulated by hunger. Host-finding is a particularly dangerous task for these insects, as their hosts are also their potential predators. Here we investigated whether olfactory responses to host-derived volatiles other than CO2 (nonanal, α-pinene and (−)-limonene), attractive odorant mixtures (yeast volatiles), and aggregation pheromones (present in feces) are also modulated by starvation in the blood-sucking bug Rhodnius prolixus. For this, the responses of both non-starved and starved insects were individually tested at the beginning of the scotophase using a dual-choice “T-shaped” olfactometer, in which one of its arms presented odor-laden air and the other arm presented odorless air. We found that the response of non-starved insects toward host-odorants and odorant mixtures was odor-dependent: insects preferred the odor-laden arm of the maze when tested with α-pinene, the odorless arm of the maze when tested with (−)-limonene, and distributed at random when tested with yeast volatiles or nonanal. In contrast, starved insects significantly preferred the odor-laden arm of the maze when tested with host-odorants or yeast volatiles. When tested with aggregation be, while starved insects preferred the odorless arm of the maze; insects that were even more starved (8–9 weeks post-ecdysis) significantly preferred the odor-laden arm of the maze. We postulate that this odor- and starvation-dependent modulation of sensory responses has a high adaptive value, as it minimizes the costs and risks associated with the associated behaviors. The possible physiological mechanisms underlying these modulatory effects are discussed.Fil: Reisenman, Carolina Esther. University of Arizona; Estados UnidosFil: Lee, Yan. University of Arizona; Estados UnidosFil: Gregory, Teresa. University of Arizona; Estados UnidosFil: Guerenstein, Pablo Gustavo. Provincia de Entre RĂ­os. Centro de Investigaciones CientĂ­ficas y Transferencia de TecnologĂ­a a la ProducciĂłn. Universidad AutĂłnoma de Entre RĂ­os. Centro de Investigaciones CientĂ­ficas y Transferencia de TecnologĂ­a a la ProducciĂłn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Centro de Investigaciones CientĂ­ficas y Transferencia de TecnologĂ­a a la ProducciĂłn; Argentina. Universidad Nacional de Entre RĂ­os; Argentin

    Spiking Patterns and Their Functional Implications in the Antennal Lobe of the Tobacco Hornworm \u3cem\u3eManduca sexta\u3c/em\u3e

    Get PDF
    Bursting as well as tonic firing patterns have been described in various sensory systems. In the olfactory system, spontaneous bursts have been observed in neurons distributed across several synaptic levels, from the periphery, to the olfactory bulb (OB) and to the olfactory cortex. Several in vitro studies indicate that spontaneous firing patterns may be viewed as “fingerprints” of different types of neurons that exhibit distinct functions in the OB. It is still not known, however, if and how neuronal burstiness is correlated with the coding of natural olfactory stimuli. We thus conducted an in vivo study to probe this question in the OB equivalent structure of insects, the antennal lobe (AL) of the tobacco hornworm Manduca sexta. We found that in the moth\u27s AL, both projection (output) neurons (PNs) and local interneurons (LNs) are spontaneously active, but PNs tend to produce spike bursts while LNs fire more regularly. In addition, we found that the burstiness of PNs is correlated with the strength of their responses to odor stimulation – the more bursting the stronger their responses to odors. Moreover, the burstiness of PNs was also positively correlated with the spontaneous firing rate of these neurons, and pharmacological reduction of bursting resulted in a decrease of the neurons\u27 responsiveness. These results suggest that neuronal burstiness reflects a physiological state of these neurons that is directly linked to their response characteristics

    Substrate texture properties induce triatomine probing on bitten warm surfaces

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this work we initially evaluated whether the biting process of <it>Rhodnius prolixus </it>relies on the detection of mechanical properties of the substrate. A linear thermal source was used to simulate the presence of a blood vessel under the skin of a host. This apparatus consisted of an aluminium plate and a nickel-chrome wire, both thermostatized and presented at 33 and 36°C, respectively. To evaluate whether mechanical properties of the substrate affect the biting behaviour of bugs, this apparatus was covered by a latex membrane. Additionally, we evaluated whether the expression of probing depends on the integration of bilateral thermal inputs from the antennae.</p> <p>Results</p> <p>The presence of a latex cover on a thermal source induced a change in the biting pattern shown by bugs. In fact, with latex covered sources it was possible to observe long bites that were never performed in response to warm metal surfaces. The total number of bites was higher in intact versus unilaterally antennectomized insects. These bites were significantly longer in intact than in unilaterally antennectomized insects.</p> <p>Conclusions</p> <p>Our results suggest that substrate recognition by simultaneous input through thermal and mechanical modalities is required for triggering maxillary probing activity.</p

    Genetic basis of triatomine behavior: lessons from available insect genomes

    Full text link

    Adaptations for nocturnal vision in insect apposition eyes

    Get PDF
    Due to our own preference for bright light, we tend to forget that many insects are active in very dim light. The reasons for nocturnal activity are most easily seen in tropical areas of the world, where animals face severe competition for food and nocturnal insects are able to forage in a climate of reduced competition and predation. Generally nocturnal insects possess superposition compound eyes. This eye design is truly optimized for dim light as photons can be gathered through large apertures comprised of hundreds of lenses. In apposition eyes, on the other hand, the aperture consists of a single lens resulting in a poor photon catch and unreliable vision in dim light. Apposition eyes are therefore typically found in day-active insects and according to theoretical calculations should render bees blind by mid dusk. Nevertheless, the tropical bee Megalopta genalis and the wasp Apoica pallens have managed the transition to a nocturnal lifestyle while retaining their highly unsuitable apposition eye design. Far from being blind, these bees and wasps forage at extremely low light intensities. Moreover, M. genalis is the first insect shown to use landmark navigation at light intensities less than starlight. How do their apposition eyes permit such complex visual behaviour in so little light? Optical adaptations can significantly enhance sensitivity in apposition eyes. In bees and wasps, the major effect comes from their extremely wide photoreceptors, which are able to trap light reaching the eye from a large visual angle. These optical adaptations lead to a 30-fold increase in sensitivity compared to diurnal bees and wasps. This however is not sufficient for the 8 log units difference in light intensity between day and night. Our hypothesis is that neural adaptations in the form of spatial and temporal summation must be involved. By means of spatial summation the eyes could sum signals from large groups of visual units (ommatidia), in order to improve sensitivity at the cost of coarser spatial resolution. In nocturnal bees, spatial summation could be mediated via their wide laterally-spreading first-order interneurons (L-fibres) present in the first optic ganglion (lamina). These L-fibres have significantly larger dendritic fields than equivalent neurons in diurnal bees and the potential to sum photons from up to 18 visual units. Theoretical modelling further supports this hypothesis, as the optimal dendritic field size predicted by the model agrees well with the anatomical data
    • 

    corecore