19 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    U.: Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles

    No full text
    Abstract The aim of presenting this paper is to evaluate the effective material properties of spherical particle reinforced composites for different volume fractions up to 60%. A numerical homogenization technique based on the finite element method (FEM) with representative volume element (RVE) was used to evaluate the effective material properties with periodic boundary conditions. The numerical approach is based on the FEM and it allows the extension of the composites with arbitrary geometrical inclusion configurations, providing a powerful tool for fast calculation of their effective material properties. Modified random sequential adsorption algorithm (RSA) was used to generate the three-dimensional RVE models of randomly distributed spherical particles. The effective material properties obtained using the numerical homogenization techniques were compared with different analytical methods and good agreement was achieved. Several investigations had been conducted to estimate the influence of the size of spherical particles and of the RVE on effective material properties of spherical particle reinforced composites

    Analytical formulae for electromechanical effective properties of 3-1 longitudinally porous piezoelectric materials

    No full text
    A unidirectional fiber composite is considered here, the fibers of which are empty cylindrical holes periodically distributed in a transversely isotropic piezoelectric matrix, The empty-fiber cross-section is circular and the periodicity is the same in two directions at an angle pi/2 or pi/3. Closed-form formulae for all electromechanical effective properties of these 3-1 longitudinally periodic porous piezoelectric materials are presented. The derivation of such expressions is based on the asymptotic homogenization method as a limit of the effective properties of two-phase transversely isotropic parallel fiber-reinforced composites when the fibers properties tend to zero. The plane effective coefficients satisfy the corresponding Schulgasser-Benveniste-Dvorak universal type of relations, A new relation among the antiplane effective constants from the solutions of two antiplane strains and potential local problems is found. This relation is valid for arbitrary shapes of the empty-fiber cross-sections. Based on such a relation, and using recent numerical results for isotropic conductive composites, the antiplane effective properties are computed for different geometrical shapes of the empty-fiber cross-section. Comparisons with other analytical and numerical theories are presented. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Analysis of fibrous elastic composites with nonuniform imperfect adhesion

    No full text
    International audienceIn most composites, the fiber–matrix adhesion is imperfect; the continuity conditions for stresses and displacements are not satisfied. In this contribution, effective elastic moduli are obtained by means of the asymptotic homogenization method (AHM), for three-phase fibrous composites (matrix/mesophase/fiber) with parallelogram periodic cell. Interaction between fiber and matrix is considered, and this is called the mesophase model where the nonuniform mesophase is studied. Besides, there is another type of matrix–fiber contact which is called nonuniform spring imperfect contact. In this case, the contrast or jump of the displacements in the boundary of each phase is proportional to the corresponding component of the tension in the interface in terms of a parameter given by a certain function that depends on the position. The constituents of the composites exhibit transversely isotropic properties. A doubly periodic parallelogram array of cylindrical inclusions under longitudinal shear is considered. The three-phase model is validated by the Finite Element Method and the AHM both approaches applied to two-phase composites with nonuniform spring imperfect contact. Comparisons with theoretical and experimental results verified that the present model is efficient for the analysis of composites with presence of nonuniform imperfect interface and parallelogram cell. The effect of the nonuniform imperfection on the shear effective property is observed. The present method can provide benchmark results for other numerical and approximate methods

    Characterization of piezoelectric composites with mechanical and electrical imperfect contacts

    No full text
    International audienceThe aim of the present work is to study the influence of the mechanical and electrical imperfections in reinforced piezoelectric composite materials with unidirectional cylindrical fibers periodically distributed in rhombic cells under mechanical and electrical imperfect contacts. The behavior of the composites is studied through two approaches: the two-scale asymptotic homogenization method and the finite element method. The asymptotic homogenization method is applied to a two-phase composite with mechanical and electrical imperfect contacts and to a three-phase composite with perfect contact in the interphase. The constituents of the composite are homogeneous piezoelectric materials with transversely isotropic properties. The local problems are formulated for the spring-capacitor and three-phase models by the asymptotic homogenization method. The solution of each plane local problem is found using potential methods of a complex variable and the properties of doubly periodic Weierstrass elliptic functions. Closed-form formulae are obtained for the effective properties of the composites with both types of imperfect contacts and different configuration of the cells. The finite element method is implemented for analysis of piezoelectric composite materials with unidirec-tional cylindrical fibers periodically distributed in rhombic cells under mechanical and electrical imperfect contacts. Some numerical examples are given under the presence of both imperfect contacts and different arrangement of the cells. Comparisons between the numerical results reported by asymptotic homogenization method and finite element method are provided
    corecore