
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Thermal distribution in cancerous breast with anisotropic properties via a semi-analytical homogenization approach /
Ramirez-Torres, Ariel; Grillo, Alfio; Preziosi, Luigi; Rodriguez-Ramos, Reinaldo; Bravo-Castillero, Julian; Guinovart-Diaz,
Raul; Sabina, Federico J.. - 4(2017), pp. 704-717. ((Intervento presentato al convegno 23rd Conference of the Italian
Association of Theoretical and Applied Mechanics, AIMETA 2017 tenutosi a ita nel 2017.

Original

Thermal distribution in cancerous breast with anisotropic properties via a semi-analytical
homogenization approach

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2720495 since: 2020-06-04T10:08:32Z

Centro Servizi d'Ateneo S.r.l.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234925679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


AIMETA 2017
XXIII Conference

The Italian Association of Theoretical and Applied Mechanics
Luigi Ascione, Valentino Berardi, Luciano Feo, Fernando Fraternali and Antonio Michele Tralli (eds.)

Salerno, Italy, 4–7 September 2017

THERMAL DISTRIBUTION IN CANCEROUS BREAST WITH
ANISOTROPIC PROPERTIES VIA A SEMI-ANALYTICAL

HOMOGENIZATION APPROACH

Ariel Ramı́rez-Torres1, Alfio Grillo1, Luigi Preziosi1, Reinaldo Rodrı́guez-Ramos2,
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e-mail: fjs@mym.iimas.unam.mx

Keywords: heterogeneous breast cancer, thermography, asymptotic homogenization, anisotropic
thermal conductivity

Abstract. Cancer is the second leading cause of death worldwide and breast cancer is one
of the most frequently diagnosed cancers. Nowadays, thermography technique has emerged
as a noninvasive and prospective method to complement mammography and to improve the
efficiency of early and overall detection of breast cancer. In this work, analytical and numerical
strategies are employed to solve a bioheat transfer equation with rapidly oscillating coefficients.
The macroscale thermal conductivity is computed by applying the asymptotic homogenization
technique, the local cell problem is solved analytically and the macro-scale problem is solved
via finite element method. We considered thermal anisotropy and found that it provides extra
information regarding the thermal profile on the breast surface near the cancerous area.
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1 INTRODUCTION

Cancer is the second leading cause of death worldwide and breast cancer is one of the most
frequently diagnosed. Particularly, fibroadenoma is the most common surgically treated breast
mass in adolescents, accounting for 44-94% of biopsied breast lesions [1] and it has been found
out that fibroadenomas raise the breast surface temperature so that it can be detected using ther-
mal imaging [2]. Breast infrared thermography is a noninvasive procedure that does not involve
compression of the breast tissue or exposure to radiation, and works through an assessment of
physiological functions, via high resolution surface temperature measurements [3, 4]. Mam-
mography and ultrasound are ones of the most used clinical protocols employed to detect and
provide a diagnosis of breast cancer. However, they present a range of known limitations (see
e.g. [5]). Then, a combination of therapies that incorporates thermography may boost both
sensitivity and specificity. In several works the temperature distribution over breasts with and
without tumors have been studied, wherein heat transfer in the biological tissue is modeled us-
ing Pennes bioheat equation [6]. For instance, we can cite the works [7, 8, 9], among others. In
a recent work [9], we took into account the heterogeneity of the tumor and studied its influence
on the breast surface temperature. Particularly, we observed that the increase of the cancerous
tissue volume fraction induces an augment in the breast surface temperature.

In the present work we aim to extend the model in [9] by considering an anisotropic con-
ductivity tensor. Likewise, the breast is supposed to be a multilayered structure consisting of
muscle, fat and gland, where the cancerous region is considered embedded in the glandular
tissue. Analytical and finite element computations are integrated to solve the bioheat transfer
equation with rapidly oscillating coefficients. In this sense, the macroscale thermal conductivity
is computed by applying the asymptotic homogenization technique [10, 11] exploiting the sharp
length scale separation between the local malignant hetereogeneities and the characteristic size
of the whole tissue. Specifically, the local cell problem is solved analytically by using a pro-
cedure analogous to that in [12], but formulating conveniently the cell problems. Finally, the
macro-scale problem is solved via finite element method. Numerical results show that the con-
sideration of anisotropy induces temperature profile alterations in the region near the tumor and
on the breast surface. Actually, the fundamental importance of including anisotropic properties
on tumor progression have been demonstrated [13, 14]. For example, in [13] the authors pro-
pose a continuous mechanical model for simulating the invasion of the glioblastoma multiforme
and use medical images to introduce the diffusion tensor presenting an anisotropic form.

2 PHYSICAL MODEL

Woman’s breasts are considered to present different density compositions and can be divided
into four categories, namely, extremely dense (ED), heterogeneously dense (HD), scattered fatty
(SF) and predominantly fatty (PF) [15]. Here, we focus on the ED case, that is when the breast
is considered to have a higher composition of fibrous and connective tissues with low fatty
tissue content. Moreover, we modeled the cancerous breast cross-section composed by muscle,
glandular and fat tissues (denoted by Ωm, Ωg and Ωf , respectively) and the tumorous region
is assumed to be encapsulated, round, and composed by glandular and fibrous tissue (in fact,
fibroadenomas present this structure [16]). The heterogeneous tissue is characterized by two
regions of different thermophysical properties: the glandular tissue (Ωε

g) and a periodically
square lattice of arranged circular cancerous inclusions (Ωε

c) (see Fig. 1). We emphasize that
our model is two-dimensional.
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Raúl Guinovart-Dı́az, and Federico J. Sabina

Figure 1: Decomposition of the macroscopic two-dimensional domain (left) and the corresponding unit periodic
cell (right). The breast cross-section is assumed to be hemispherically shaped with a diameter L = 0.14 m. The
cancerous region will consist of a periodic microstructure associated with the open, bounded and connected domain
Ωε = Ωε

g ∪ Ωε
c ∪ ∂Ωε. The reference periodic cell will be denoted by Y , which contains a cancerous inclusion

occupying the domain Yc such that Y = Yg ∪ Yc ∪ Γ, with Y c ⊂ Y and Yg ∩ Yc = ∅. Then, the cancerous breast
is represented by Ω = Ωm ∪ Ωg ∪ Ωε ∪ Ωf .

3 MATHEMATICAL STATEMENT OF THE PROBLEM

The aim is to find the temperature fields described by Pennes bioheat transfer equation [6],

(P i) ρici
∂ui

∂t
= ∇ ·

(
ki∇ui

)
− ρbcbωib(ui − ua) + qim in Ωi×(0, T ), (1)

where the index i = m, g, f, ε indicates that the specified variable belongs to the corresponding
Ωi domain, ua is the arterial blood temperature and ρb and cb are the density and the specific heat
capacity of blood, respectively. In addition, tissue density, specific heat, thermal conductivity,
blood perfusion and metabolic heat generation are given by ρi, ci, ki, ωib and qim, respectively
for each domain Ωi. Particularly, the rapidly oscillating material coefficients kε, ωεb and qεm, are
supposed to be piecewise constant and defined by,

kε =

{
diag[kg1 , k

g
2 ], x ∈ Ωε

g

diag[kc1, k
c
2], x ∈ Ωε

c

, ωεb =

{
ωgb x ∈ Ωε

g

ωcb x ∈ Ωε
c

and qεm =

{
qgm x ∈ Ωε

g,

qcm x ∈ Ωε
c,

where kj1, kj2, ωjb and qjm (j = g, c) are constants.
Boundary conditions for equation (1) are heat transfer by convection between the surface of

the tissue and the external environment on ∂Ωn and a prescribed temperature value on ∂Ωd,

−kf∇uf · n = h
(
uf − ue

)
on ∂Ωn×(0, T ),

um = up on ∂Ωd×(0, T ),

where h denotes the combined effective heat transfer coefficient due to convection, radiation
and evaporation, ue is the surrounding temperature and up is a prescribed temperature between
the breast and the chest. The initial condition is

ui = ũ in Ω for T = 0.

Moreover, heat flux and temperature continuity at the interface of the tissue layers is imposed
and described by the following equations

ki∇ui · n = ki+1∇ui+1 · n, (2)

ui = ui+1, (3)
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as well as in the circular interface Γ in the periodic cell, i.e.,

JuεK = 0 and Jkε∇uε · nK = 0 on Γ,

where J•K denotes the contrast across the interface taken from the matrix to the inclusions. In
(2) and (3) the following order must be understood {i, j} = {{m, g}, {g, ε}, {g, f}}.

4 SOLUTION PROCEDURE

It can be noted from Fig. 1 that problems (P i) (i 6= ε) are already set in a macro-scaled
framework. On the other hand, in the heterogeneous tissue (the cancerous area), we must first
deal with problem (Pε) via asymptotic homogenization technique in order to obtain a homog-
enized representation of it (denoted by (Ph)). Macroscale boundary conditions are then found
for the homogenized problem allowing us to coupled it with (P i). Finally, we can merged the
coupled macro problems (that is (P i) and (Ph)) into a single one and solve it numerically.

4.1 Homogenization technique

The homogenized formulation of (Pε) in the heterogeneous tissue Ωε can be obtained by
applying the two-scale homogenization technique ([10, 11]). With this aim, let ε > 0 be the
size of the microstructure and introduce the fast scale coordinate y = x/ε. An asymptotic
expansion of uε is sought as a function of ε for ε→ 0 in the form

uε(x) = u0(x,y) + εu1(x,y) + ε2u2(x,y) + . . . , (4)

where the functions ui(x,y) are periodic in y. The fact that

y =
x

ε
,

implies that

∇ = ∇x + ε−1∇y. (5)

The substitution of expansion (4) into problem (Pε) and use of the chain rule (5) leads to a
sequence of problems in powers of ε to be solved.

(i) To O(ε−2),

∇y · (kε∇yu0) = 0. (6)

Using the solvability condition in [10] (the average of the right hand side of (6) is zero),

u0(x,y) = u0(x). (7)

(ii) To O(ε−1) and from result (7), we can write

∇y · (kε∇yu1) = −∇y · (kε∇xu0) .

By the y-periodicity of kε and the solvability condition, the last equation has a Y -periodic
solution which is unique up to an additive constant. Since the problem is linear and
u0 = u0(x), then u1 can be written as

u1(x,y) = χ(y) · ∇xu0(x), (8)
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whereχ(y) is a Y -periodic vector function with 〈χ〉 = 0 (〈•〉 denotes the volume average
over the periodic cell), satisfying the local problem

∇y · (kε∇y(χ+ y)) = 0 in Y \ Γ,

JχK = 0 on Γ,

J(kε∇y(χ+ y)) · nK = 0 on Γ.

(9)

(iii) To O(ε0), using results (7), (8), and applying the volume average operator, it is obtained
that u0(x) is the solution of the homogenized problem

(Ph)


〈ρεcε〉 ∂u0

∂t
= ∇x ·

(
k̂∇xu0

)
− 〈gε〉u0 + 〈f ε〉 in Ωε×(0, T ),

k̂∇xu0 · n = kg∇xu
g · n on ∂Ωε×(0, T ),

u0 = ug on ∂Ωε×(0, T ),

(10)

where

k̂ = 〈kε + kε∇yχ〉 (11)

denotes the effective thermal conductivity tensor and

〈gε〉 = ρbcbω
g
b

|Yg|
|Y |

+ ρbcbω
t
b

|Yt|
|Y |

,

〈f ε〉 = (qgm + ρbcbω
g
bua)

|Yg|
|Y |

+
(
qtm + ρbcbω

t
bua
) |Yt|
|Y |

,

with | • | denoting the volume measure of •.

4.1.1 Solution of the cell problem

In order to have problem (Ph) completely determined, we need to find the effective property
k̂. From equation (11) it is noted that it is first necessary to find the solution χ of the cell
problem (9). Here, we adopt a procedure similar to that given in [12]. In this sense, the cell
problem (9) is written (in index notation) as the following two problems

(Lp)


k

(γ)
ij

∂2χ
(γ)
p

∂yi∂yj
= 0 in Yγ,

JχpK = 0 on Γ,r
kij

∂χp
∂yj
ni

z
= − JkipniK on Γ,

(12)

with p = 1, 2; γ = g, c and i, j = 1, 2. Both problems in (12) can be conveniently rewritten as
follows

(Lp)


∆χ

(γ)
p = αγp

∂2χ
(γ)
p

∂y22
p

in Yγ,

JχpK = 0 on Γ,
r
kpp

∂χp
∂yi
ni

z
= − JkipniK +

s
kppαp

∂χ2

∂y 2
p

n 2
p

{
on Γ,

(13)
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where

αγp =

{
1− kγ2/k

γ
1 for p = 1,

1− kγ1/k
γ
2 for p = 2.

In (13) no summation on the index p is performed. Moreover, n 2
p

= n2 and y 2
p

= y2 for p = 1,
and n 2

p
= n1 and y 2

p
= y1 for p = 2. Here we note that the problem formulation (13) slightly

differs of the one inferred in [12]. However, its solution is found similarly as in [12]. In this
way, each αγp is written in terms of one small parameter β and known integers Lpγk (k = 1, 2, 3)
as follows

αγp = Lpγ1β + Lpγ2β
2 + Lpγ3β

3. (14)

Moreover, the following ansatz is proposed

χ(γ)
p = 0χ

(γ)
p + 1χ

(γ)
p β + 2χ

(γ)
p β3 + ... (15)

Then, substituting (14) and (15) into (13) and equaling in powers of β, problem (13) rewrites as
the following pair of recurrent problems,

(
L0
p

) 
∆(0χ

(γ)
p ) = 0 in Yγ,

J0χpK = 0 on Γ,r
kpp

∂(0χp)

∂yi
ni

z
= − JkipniK on Γ

(16)

and

(
L1
p

)


∆(1χ
(γ)
p ) = Lpγ1

∂2(0χ
(γ)
p )

∂y22
p

in Yγ,

J1χpK = 0 on Γ,
r
kpp

∂(1χp)

∂yi
ni

z
=

s
kppL

p
1
∂(0χp)

∂y 2
p

n 2
p

{
on Γ.

(17)

We remark that no summation on the index p is performed in Eqs. (16) and (17). For each
p, the solution of (16)-(17) can be found by solving the following infinite linear systems for
Âp = (âp1, â

p
2, . . .)

T , B̂p = (b̂p1, b̂
p
2, . . .)

T (see Appendix A),(
L0
p

) (
I + (−1)p+1ξpWp

)
Âp = Vp, (18)(

L1
p

) (
I + (−1)p+1ξpWp

)
B̂p = Yp +

(
Up + (−1)p+1

Lpg1
4

W′
p

)
Âp. (19)

In order to determine the effective thermal conductivity k̂, it is necessary to truncate the systems
(18)-(19) at an appropriate order N . In fact, only ap1, ap3 and bp1 will be needed (see Appendix
B), given that

k̂pp = kgp
(
1− (−1)p+12πap1

)
− (−1)p+1

(
kgp − kcp

)
πRλpβ. (20)
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4.2 Solution of the macroscopic problem

Once the effective coefficient is found, problems (P i) and (Ph) can be solved. For this we
first introduce the characteristic functions Φi ∈ Ωi (i = m, f, g, ε), namely

Φi =

{
1 if x ∈ Ωi

0 if x /∈ Ωi

and define

k = kmΦm + kgΦg + kfΦf + k̂Φε,

G = gmΦm + ggΦg + gfΦf + 〈gε〉Φε,

F = fmΦm + f gΦg + f fΦf + 〈f ε〉Φε,

C = ρmcmΦm + ρgcgΦg + ρfcfΦf + 〈ρεcε〉Φε,

U = umΦm + ugΦg + ufΦf + uεΦε,

where gi = ρbcbω
i
b, f

i = qim + ρbcbω
i
bua for i = m, g, f and

〈ρεcε〉 = ρgcg
|Yg|
|Y |

+ ρccc
|Yc|
|Y |

.

Then, (P i) and (Ph), can be merged into one single problem as follows,

(P)


C ∂U

∂t
= ∇x · (k∇xU)−GU + F in Ω,

−kf∇xU · n = h (U − ue) on ∂Ωn,

U = up on ∂Ωd,

(21)

with initial condition U = ũ. In order to find the solution of of problem (P) we use FreeFem++.
In particular, equation (21) is written in its weak form and the involved functions are approxi-
mated by piecewise linear continuous finite elements. The existence, uniqueness and regularity
of the problem weak solution (P) can be proved by standard methods using the Lax-Milgram
theorem [17].

5 RESULTS AND DISCUSSION

In the present section the internal and surface temperature of a cancerous breast are studied.
The thermophysical parameters were taken from [18, 19, 20] and presented in Tab. 1. In
particular, the data presented in Tab. 1 for the tumor and the glandular tissues refer to the
specific portion they occupy in Ωε and not the entire tumor region. Moreover, h is set equal

Table 1: Thermophysical parameters

Muscle Gland Fat Tumor
k (W/m °C) diag[0.48, 0.48] diag[0.48, 0.48] diag[0.21, 0.21] diag[0.48, 0.48]
ωb (1/s) 0.0009 0.0006 0.0002 0.012
c (J/kg °C) 3800 3770 2770 3852
ρ (kg/m3) 1100 1050 930 1050
qm (Wm−3) 700 700 400
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to 13.5 W/m°C, ua = up = 37 °C, ue = 26 °C, ũ = 37 °C, cb = 4200 J/kg°C [8] and
ρb = 1060 kg/m3 [8]. The metabolic heat value for different tumor sizes is calculated using the
following relation: qtm = C/(468.6 ln(100D) + 50) ([7]), where C = 3.27 × 106 Wday/m3

and D is the tumor diameter. To mimic the in situ heterogeneous tumor, a circle with radius
r = 0.01 m was embedded in the breast model at a depth of d = 0.02 m and a relative large
tumor volume measure |Yt| = 0.7 is considered in the cancerous region.

5.1 Isotropic case

As it can be observed in Tab. 1 the thermal conductivity tensor of the tumorous tissue
presents an isotropic form. For this case, we can use the results in Section 4.1.1 making the
corresponding changes. Figure 2 shows the temperature distribution of a cancerous breast when
the thermal conductivity tensor k is isotropic for different depths and off-axis positions. As it

Figure 2: Temperature distribution of a cancerous breast tissue for different positions of the tumor.

can be noted temperature anomalies in the region where the tumor is located and on the breast
surface near to the tumor location are observed. Moreover, depth and off-axis positions of the
tumor affect the thermal distribution in the breast and the temperature profile on its boundary.
Indeed, when the tumor is nearer to the boundary, the surface temperature increases. On the
other hand, with the presence of Fig. 2, the authors would like to amend the figures reported in
[21], which were wrongly printed. The reader could also refer to [9].

5.2 Anisotropic case

It is known that most soft biological tissues possess highly anisotropic properties. Further-
more, the importance of including anisotropic properties on tumors has been demonstrated in
[13, 14]. In this sense, and given the lack of experimental data, we introduce the constant pa-
rameter δ such that the components of the conductivity tensor kc are given by kc1 and kc2 + δ.
First, Fig. 3 shows the estimated the temperature difference (∆u = uaniso − uiso) in the breast
domain between the temperature distributions of the isotropic (uiso) and anisotropic (uaniso)
formulations for different values of δ. At a first glance it can be noted that near the tumor re-
gion surrounding it the thermal profile becomes distorted. In particular, the anisotropic model
induces higher temperatures compared to the isotropic one. Moreover, the increment of the
parameter δ is directly related to the augment of the breast temperature where major differences
are perceived in the direction of the anisotropy. In fact, the increase in the temperature distri-
bution is also visible on the breast surface near the tumor. As it can be observed in Fig. 4 the
effect of the anisotropic assumption on the breast surface temperature distribution is illustrated.
The core assumption of thermography is to find local breast surface temperature anomalies that
points to a probable tumor site. Then, results in Fig. 4 show that the consideration of anisotropy
in the thermal conductivity tensor constitutes one of the key factors to be considered in the
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Figure 3: Estimated temperature difference between the isotropic and anisotropic models for different values of δ.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

0.01

0.02

0.03
 = 0.1 W/m°C
 = 0.21 W/m°C
 = 0.32 W/m°C

Figure 4: Estimated breast surface temperature for different values of δ.

study of cancerous breast thermal profiles, and therefore, for providing a helpful framework in
the detection of breast tumors using thermography technique.

6 Conclusions

In the present work, the temperature distribution in a cross-section of a cancerous breast
is studied by means of a semi-analyical approach combining asymptotic homogenization and
finite element computations. The cross-section is supposed to be multilayered consisting of
muscle, fat gland and a cancerous region embedded in the glandular tissue. It is also considered
an anisotropic form for tumor’s thermal conductivity. In particular, the cell problem for the
periodically heterogeneous region is solved analytically by using an analogous procedure to
that in [12], but formulating conveniently the cell problems. The assumption of anisotropy
induces temperature profile alterations in the region near the tumor and on the breast surface
and consequently, represent one of the key factors to be considered in the study of the surface
temperature distribution of cancerous breasts.

The proposed approach facilitates a best understanding of the complex mechanism underly-
ing the temperature profile on cancerous breasts by integrating mathematical and computational
tools. Future research directions are the consideration of topological and hydraulic properties
of the tumor microvasculature (see [22]) and the conception of a three-dimensional setting by
using the results in [23].

The incorporation of the thermography technique in clinical proceedings may boost both
sensitivity and specificity since no single tool provides excellent predictability.
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Raúl Guinovart-Dı́az, and Federico J. Sabina

Talenti” (HR Excellence in Research). JM and RP acknowledges support from the Ministerio
de Ciencia in Spain under the project reference DPI2014-58885-R. Thanks to the Project (7515)
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A SOLUTION OF THE CELL PROBLEM

The solution of the cell problem is sought by solving the following recurrent auxiliary cell
problems (16) and (17). Problem (16) consists of finding a doubly-periodic harmonic function
with null average over the periodic cell. Consequently, the method of complex variables in
terms of two harmonic functions 0ϕ

(g)
p (z) and 0ψ

(c)
p (z) and the Kolosov-Muskhelishvili complex

potentials are applicable (see [9] for further details). Once the harmonic functions 0χ
(γ)
p are

known, the solution to problem (17) can be sought to satisfy a biharmonic equation with the
same double periodicity, since the right-hand-side of Eq. (17) is harmonic. Following [12],
the function 1χ

(γ)
p can be found by adapting Goursat’s method, used in the context of plane

elastic problems to solve the biharmonic equation in terms of two harmonic function 1ϕ
(g)
p (z)

and 1ψ
(c)
p (z).

The complex potentials 0ϕ
(g)
p , 0ψ

(c)
p , 1ϕ

(g)
p and 1ψ

(c)
p are sought in the form

0ϕ
(g)
p (z) = ap0z +

∞ o∑
k=1

apk
ζ(k−1)(z)

(k − 1)!
(22)

0ψ
(c)
p (z) =

∞ o∑
k=1

cpkz
k, (23)

1ϕ
(g)
p (z) =

Lpg1
4

d(0ϕ
(g)
p (z))

dz
z̄ + bp0z +

∞ o∑
k=1

(
bpk
ζ(k−1)(z)

(k − 1)!
+ apk

Lpg1
4

Q(k−1)(z)

(k − 1)!

)
, (24)

1ψ
(c)
p (z) =

Lpc1
4

d(0ψ
(c)
p (z))

dz
z̄ +

∞ o∑
k=1

dpkz
k, (25)

where apk, c
p
k, bpk and dpk are real coefficients to be determined, ζ represents the quasi-periodic

Weierstrass functions of periods w1 = 1 and w2 = i [?], Q represents the quasi-periodic Natan-
zon’s function [?], ζ(k) and Q(k) denote the kth derivative of ζ and Q and the superscript o
specifies that the sum is carried out over odd indices only. Using Legendre’s relations, the
quasi-periodicity of Q, the periodicity conditions for 0ϕp and pϕ1 are satisfied if

ap0 = (−1)pap1π and bp0 =
Lpg1
4

(
π + (−1)p+1 5S4

π

)
+ (−1)pbp1π,

respectively. Moreover, the Laurent series of ζ(k−1) and Q(k−1) in zero are given by

ζ(k−1)

(k − 1)!
=

1

zk
−
∞ o∑
l=1

kηklz
l with ηkl =

(k + l − 1)!

k!l!
Sk+l for k ≥ 0 and k odd,

Q(k−1)(z)

(k − 1)!
=
∞ o∑
l=1

kη′klz
l with η′kl =

(k + l)!

k!l!
Tk+l for k ≥ 3 and k odd,
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where Sk are the reticulate sums defined as Sk =
∑

w∈L∗
1
wk

(k ≥ 3, k odd), w = mw1 + nw2

with m,n ∈ Z and L∗ represents the lattice excluding w = 0, moreover Tk =
∑

w∈L∗
w̄

wk+1 .
Then, proposing the following ansatz for each problem (L0

p) (p = 1, 2),

(L0
1)

0χ
(g)
1 = R

(
0ϕ

(g)
1

)
0χ

(c)
1 = R

(
0ψ

(c)
1

) and (L0
2)

0χ
(g)
2 = I

(
0ϕ

(g)
2

)
0χ

(c)
2 = I

(
0ψ

(c)
2

) (26)

where R and I define the real and imaginary parts of the involved functions. Moreover, for
each problem (L1

p) (p = 1, 2),

(L1
1)

1χ
(g)
1 = R

(
1ϕ

(g)
1

)
1χ

(c)
1 = R

(
1ψ

(c)
1

) and (L1
2)

1χ
(g)
2 = I

(
1ϕ

(g)
2

)
1χ

(c)
2 = I

(
1ψ

(c)
2

) . (27)

We substitute formulae (26), (27) into the interface conditions of (16), (17) respectively. Then,
for each p, the solution of (16)-(17) can be found by solving the following recurrent infinite
linear systems for Âp = (âp1, â

p
2, . . .)

T and B̂p = (b̂p1, b̂
p
2, . . .)

T ,(
L0
p

) (
I + (−1)p+1ξpWp

)
Âp = Vp,(

L1
p

) (
I + (−1)p+1ξpWp

)
B̂p = Yp +

(
Up + (−1)p+1

Lpg1
4

W′
p

)
Âp,

with Vp = ((−1)p+1R, 0, . . .)T , Yp = (Np1R, 0, . . .)
T , Up = diagsup

{
N2
pl

√
l(l + 2)

}
+

diag
{
N0
pll
}

+ diaginf
{
N−2
pl

√
l(l − 2)

}
, ξp =

kgp−kcp
kgp+kcp

and

Wp =

(−1)p+1πR2 for k + l = 2,
∞ o∑
k=1

√
klηklR

k+l for k + l > 2,
W′

p =


(
π + (−1)p+1 5S4

π

)
R2 for k + l = 2,

∞ o∑
k=1

√
klη′klR

k+l for k + l > 2.

Note that, given a tridiagonal matrix, diagsup denotes the “line” of entries of the matrix that
stays above the principal diagonal. Analogously, diaginf indicates the “line” of entries that finds
itself below the principal diagonal. Furthermore, defining ξgp =

kgpL
p
g1

kgp+kcp
and ξcp =

(
1 + δ1l

2

) kcpL
p
21

kgp+kcp
,

Npl =
Lpg1
4

+ ξgp − ξcp

N−2
pl =

1

2

(
Lpg1
2

+
ξgp
l

)
N0
pl = −

ξ−1
p Lpg1

4l
δ1l +

ξgp
2l

[
1− ξ−1

p (1 + δ1l)
]

+
ξcp
l

(1 + ξ−1
p )

N2
pl =

1

2

(
Lpg1
2
−
ξ̄gp
l

)
with ξ̄gp =

kgpL
p
g1

kgp − kcp
.

B ANISOTROPIC EFFECTIVE COEFFICIENTS

Using Green’s theorem

k̂pp = kgp |Yg|+ kcp |Yc| −
(
kgp − kcp

) ∫
Γ

0χ
g
pdy 2

p
(28)
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and from (26), the effective coefficients for the isotropic case are given by

k̂pp = kgp
(
1− (−1)p+12πap1

)
.

Now, in the anisotropic case we can truncate to order β in (28),

k̂pp = kgp |Yg|+ kcp |Yc| −
(
kgp − kcp

) ∫
Γ

(
0χ

g
p + 1χ

g
pβ
)

dy 2
p
. (29)

Then, from (27)

k̂pp = kgp
(
1− (−1)p+12πap1

)
− (−1)p+1

(
kgp − kcp

)
λpπRβ,

where

λp =−
(
Lpg1
4

+ ξ−1
p Np1

)
R +

(
(−1)p+1

Lpg1ξ
−1
p

4
− ξ−1

p N0
p1

)
ap1R

−1 +
(
1 + ξ−1

p

)
bp1R

−1

+

(
3Lpg1ξ

−1
p

4
− 3ξ−1

p N2
p1

)
ap3R

−3.
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