48 research outputs found
The defeat of the German universities 1933
Die deutschen Universitäten haben immer noch Schwierigkeiten, wenn sie über ihre Geschichte von 1933 bis 1945 sprechen. Interpretationen, die die Bedeutung dieser Geschichte herunterspielen oder sie sogar ignorieren oder verdrängen, setzen sich gegen Versuche einer nochmaligen kritischen Prüfung durch. In hochtrabenden Gedenkschriften kann man viel über Glanzzeiten von Wissenschaft und Lehre erfahren, aber nur wenig oder überhaupt nichts über die dunkelste Phase in der Geschichte der deutschen Universität. Was liegt dieser Schwierigkeit im Umgang mit der eigenen Vergangenheit zugrunde? Die Universität würde in ihrer Selbstachtung erschüttert werden, wenn herauskäme, daß Institutionen höherer Bildung nicht einfach Zwangsakten des Nationalsozialismus unterworfen waren, sondern daß vielmehr im Jahr 1933 ein Prozeß der 'Selbst-Gleichschaltung' einsetzte, d. h. ein Prozeß freiwilliger Mitarbeiter mit einer Angleichung an die nationalsozialistische Maschinerie von Staat und Macht. Die Selbstachtung würde außerdem erschüttert werden, wenn angegeben würde, daß die Universitäten den ideologischen Steigbügel für den Nationalsozialismus hielten - daßsie diesen Steigbügel wegen bestimmter wissenschaftlicher und politischer Traditionen halten konnten, die sie heute- noch oder wieder - aufrechterhalten. (KWübers.)'The German universities still have difficulties when they approach their history from 1933 to 1945. Prevailing over attempts at a critical reexamination are interpretations which downplay the significance of, or even ignore or repress this history. In lofty commemorative volumes one can learn much about brilliant periods of science and scholarship, but only little or nothing about the darkest phase in the history of the German university. What lies at the root of this difficulty in dealing with its own past? The university would be shaken in its selfregard if it should turn out that institutions of higher learning were not simply subjugated through acts of coercion by National Socialism, but rather that in 1933 a process of 'Selbst-Gleichschaltung' (1) (K. D. Bracher) took place, that is, a process of voluntary cooperation with an assimilation into the National Socialist machinery of state and power. This self-regard would furthermore be shaken if it were to be shown that the universities held the ideological stirrup for National Socialism - that they could hold this stirrup because of certain scientific and political traditions, which they (stiff or once again) uphold today.' (author's abstract
Distinct muscle imaging patterns in myofibrillar myopathies
Objective: To compare muscle imaging findings in different subtypes of myofibrillar myopathies (MFM) in order to identify characteristic patterns of muscle alterations that may be helpful to separate these genetic heterogeneous muscular disorders. Methods: Muscle imaging and clinical findings of 46 patients with MFM were evaluated (19 desminopathy, 12 myotilinopathy, 11 filaminopathy, 1 alpha B-crystallinopathy, and 3 ZASPopathy). The data were collected retrospectively in 43 patients and prospectively in 3 patients. Results: In patients with desminopathy, the semitendinosus was at least equally affected as the biceps femoris, and the peroneal muscles were never less involved than the tibialis anterior (sensitivity of these imaging criteria to detect desminopathy in our cohort 100%, specificity 95%). In most of the patients with myotilinopathy, the adductor magnus showed more alterations than the gracilis muscle, and the sartorius was at least equally affected as the semitendinosus (sensitivity 90%, specificity 93%). In filaminopathy, the biceps femoris and semitendinosus were at least equally affected as the sartorius muscle, and the medial gastrocnemius was more affected than the lateral gastrocnemius. The semimembranosus mostly showed more alterations than the adductor magnus (sensitivity 88%, specificity 96%). Early adult onset and cardiac involvement was most often associated with desminopathy. In patients with filaminopathy, muscle weakness typically beginning in the 5th decade of life was mostly pronounced proximally, while late adult onset (> 50 years) with distal weakness was more often present in myotilinopathy. Conclusions: Muscle imaging in combination with clinical data may be helpful for separation of distinct myofibrillar myopathy subtypes and in scheduling of genetic analysis
Semiconductor Spintronics
Spintronics refers commonly to phenomena in which the spin of electrons in a
solid state environment plays the determining role. In a more narrow sense
spintronics is an emerging research field of electronics: spintronics devices
are based on a spin control of electronics, or on an electrical and optical
control of spin or magnetism. This review presents selected themes of
semiconductor spintronics, introducing important concepts in spin transport,
spin injection, Silsbee-Johnson spin-charge coupling, and spindependent
tunneling, as well as spin relaxation and spin dynamics. The most fundamental
spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling.
Depending on the crystal symmetries of the material, as well as on the
structural properties of semiconductor based heterostructures, the spin-orbit
coupling takes on different functional forms, giving a nice playground of
effective spin-orbit Hamiltonians. The effective Hamiltonians for the most
relevant classes of materials and heterostructures are derived here from
realistic electronic band structure descriptions. Most semiconductor device
systems are still theoretical concepts, waiting for experimental
demonstrations. A review of selected proposed, and a few demonstrated devices
is presented, with detailed description of two important classes: magnetic
resonant tunnel structures and bipolar magnetic diodes and transistors. In most
cases the presentation is of tutorial style, introducing the essential
theoretical formalism at an accessible level, with case-study-like
illustrations of actual experimental results, as well as with brief reviews of
relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure
SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
Reconstruction and simulation of neocortical microcircuitry
We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm3 containing ∼31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ∼8 million connections with ∼37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies
SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to
genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility
and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component.
Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci
(eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene),
including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform
genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer
SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the
diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease