23 research outputs found

    Translational Read-Through Therapy of RPGR Nonsense Mutations

    Get PDF
    X-chromosomal retinitis pigmentosa (RP) frequently is caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We evaluated the potential of PTC124 (Ataluren, Translama(TM)) treatment to promote ribosomal read-through of premature termination codons (PTC) in RPGR. Expression constructs in HEK293T cells showed that the efficacy of read-through reagents is higher for UGA than UAA PTCs. We identified the novel hemizygous nonsense mutation c.1154T > A, p.Leu385* (NM_000328.3) causing a UAA PTC in RPGR and generated patient-derived fibroblasts. Immunocytochemistry of serum-starved control fibroblasts showed the RPGR protein in a dot-like expression pattern along the primary cilium. In contrast, RPGR was no longer detectable at the primary cilium in patient-derived cells. Applying PTC124 restored RPGR at the cilium in approximately 8% of patient-derived cells. RT-PCR and Western blot assays verified the pathogenic mechanisms underlying the nonsense variant. Immunofluorescence stainings confirmed the successful PTC124 treatment. Our results showed for the first time that PTC124 induces read-through of PTCs in RPGR and restores the localization of the RPGR protein at the primary cilium in patient-derived cells. These results may provide a promising new treatment option for patients suffering from nonsense mutations in RPGR or other genetic diseases

    Quantitative analysis of fundusimage sequences reveals phase of spontaneous venous pulsations. Trans Vis Sci

    Get PDF
    Purpose: Spontaneous venous pulsation correlates negatively with elevated intracranial pressure and papilledema, and it relates to glaucoma. Yet, its etiology remains unclear. A key element to elucidate its underlying mechanism is the time at which collapse occurs with respect to the heart cycle, but previous reports are contradictory. We assessed this question in healthy subjects using quantitative measurements of both vein diameters and artery lateral displacements; the latter being used as the marker of the ocular systole time. Methods: We recorded 5-second fundus sequences with a near-infrared scanning laser ophthalmoscope in 12 young healthy subjects. The image sequences were coregistered, cleaned from microsaccades, and filtered via a principal component analysis to remove nonpulsatile dynamic features. Time courses of arterial lateral displacement and of diameter at sites of spontaneous venous pulsation or proximal to the disk were retrieved from those image sequences and compared. Results: Four subjects displayed both arterial and venous pulsatile waveforms. On those, we observed venous diameter waveforms differing markedly among the subjects, ranging from a waveform matching the typical intraocular pressure waveform to a close replica of the arterial waveform. Conclusions: The heterogeneity in waveforms and arteriovenous phases suggests that the mechanism governing the venous outflow resistance differs among healthy subjects. Translational relevance: Further characterizations are necessary to understand the heterogeneous mechanisms governing the venous outflow resistance as this resistance is altered in glaucoma and is instrumental when monitoring intracranial hypertension based on fundus observations

    Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing

    Get PDF
    Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes

    Data from: Quantitative analysis of fundus-image sequences reveals phase of spontaneous venous pulsations

    No full text
    Purpose: Spontaneous venous pulsation correlates negatively with elevated intracranial pressure and papilledema, and it relates to glaucoma. Yet, its etiology remains unclear. A key element to elucidate its underlying mechanism is the time at which collapse occurs with respect to the heart cycle, but previous reports are contradictory. We assessed this question in healthy subjects using quantitative measurements of both vein diameters and artery lateral displacements; the latter being used as the marker of the ocular systole time. Methods: We recorded 5-second fundus sequences with a near-infrared scanning laser ophthalmoscope in 12 young healthy subjects. The image sequences were coregistered, cleaned from microsaccades, and filtered via a principal component analysis to remove nonpulsatile dynamic features. Time courses of arterial lateral displacement and of diameter at sites of spontaneous venous pulsation or proximal to the disk were retrieved from those image sequences and compared. Results: Four subjects displayed both arterial and venous pulsatile waveforms. On those, we observed venous diameter waveforms differing markedly among the subjects, ranging from a waveform matching the typical intraocular pressure waveform to a close replica of the arterial waveform. Conclusions: The heterogeneity in waveforms and arteriovenous phases suggests that the mechanism governing the venous outflow resistance differs among healthy subjects. Translational relevance: Further characterizations are necessary to understand the heterogeneous mechanisms governing the venous outflow resistance as this resistance is altered in glaucoma and is instrumental when monitoring intracranial hypertension based on fundus observations

    Fundus image sequences

    No full text
    12 Fundus image sequences recorded in 12 young (age 22-31) healthy subjects with a scanning laser ophthalmoscope under near-infrared illumination. Sequences of 5.0 to 5.5 s length, collected at 9 images/s, resulting in 45 to 50 images trimmed to vertical bands (386 x 768 pixels) centered on optic nerve head. Data provided as zipped uncompressed TIFF stacks file

    Dysfunction of cGMP signalling in photoreceptors by a macular dystrophy-related mutation in the calcium sensor GCAP1

    No full text
    Macular dystrophy leads to progressive loss of central vision and shows symptoms similar to age-related macular degeneration. Genetic screening of patients diagnosed with macular dystrophy disclosed a novel mutation in the GUCA1A gene, namely a c.526C > T substitution leading to the amino acid substitution p.L176F in the guanylate cyclase-activating protein 1 (GCAP1). The same variant was found in three families showing an autosomal dominant mode of inheritance. For a full functional characterization of the L176F mutant we expressed and purified the mutant protein and measured key parameters of its activating properties, its Ca(2+)/Mg(2+)-binding, and its Ca(2+)-induced conformational changes in comparison to the wildtype protein. The mutant was less sensitive to changes in free Ca(2+), resulting in a constitutively active form under physiological Ca(2+)-concentration, showed significantly higher activation rates than the wildtype (90-fold versus 20-fold) and interacted with an higher apparent affinity with its target guanylate cyclase. However, direct Ca(2+)-binding of the mutant was nearly similar to the wildtype; binding of Mg(2+ )occurred with higher affinity. We performed molecular dynamics simulations for comparing the Ca(2+)-saturated inhibiting state of GCAP1 with the Mg(2+)-bound activating states. The L176F mutant exhibited significantly lower flexibility, when three Ca(2+ )or two Mg(2+ )were bound forming probably the structural basis for the modified GCAP1 function

    The mutation p. E113K in the Schiff base counterion of rhodopsin is associated with two distinct retinal phenotypes within the same family

    No full text
    The diagnoses of retinitis pigmentosa (RP) and stationary night blindness (CSNB) are two distinct clinical entities belonging to a group of clinically and genetically heterogeneous retinal diseases. The current study focused on the identification of causative mutations in the RP-affected index patient and in several members of the same family that reported a phenotype resembling CSNB. Ophthalmological examinations of the index patient confirmed a typical form of RP. In contrast, clinical characterizations and ERGs of another affected family member showed the Riggs-type CSNB lacking signs of RP. Applying whole exome sequencing we detected the non-synonymous substitution c.337G > A, p. E113 K in the rhodopsin (RHO) gene. The mutation co-segregated with the diseases. The identification of the pathogenic variant p. E113 K is the first description of a naturally-occurring mutation in the Schiff base counterion of RHO in human patients. The heterozygous mutation c. 337G > A in exon 1 was confirmed in the index patient as well as in five CSNB-affected relatives. This pathogenic sequence change was excluded in a healthy family member and in 199 ethnically matched controls. Our findings suggest that a mutation in the biochemically well-characterized counterion p.E113 in RHO can be associated with RP or Riggs-type CSNB, even within the same family

    Mutation-Dependent Pathomechanisms Determine the Phenotype in the Bestrophinopathies

    No full text
    Best vitelliform macular dystrophy (BD), autosomal dominant vitreoretinochoroidopathy (ADVIRC), and the autosomal recessive bestrophinopathy (ARB), together known as the bestrophinopathies, are caused by mutations in the bestrophin-1 (BEST1) gene affecting anion transport through the plasma membrane of the retinal pigment epithelium (RPE). To date, while no treatment exists a better understanding of BEST1-related pathogenesis may help to define therapeutic targets. Here, we systematically characterize functional consequences of mutant BEST1 in thirteen RPE patient cell lines differentiated from human induced pluripotent stem cells (hiPSCs). Both BD and ARB hiPSC-RPEs display a strong reduction of BEST1-mediated anion transport function compared to control, while ADVIRC mutations trigger an increased anion permeability suggesting a stabilized open state condition of channel gating. Furthermore, BD and ARB hiPSC-RPEs differ by the degree of mutant protein turnover and by the site of subcellular protein quality control with adverse effects on lysosomal pH only in the BD-related cell lines. The latter finding is consistent with an altered processing of catalytic enzymes in the lysosomes. The present study provides a deeper insight into distinct molecular mechanisms of the three bestrophinopathies facilitating functional categorization of the more than 300 known BEST1 mutations that result into the distinct retinal phenotypes
    corecore