43 research outputs found

    Scalar-on-Image Regression using Iterative Methods

    Get PDF

    Diagnostic Utility of Temporal Muscle Thickness as a Monitoring Tool for Muscle Wasting in Neurocritical Care

    Get PDF
    Temporalis muscle (TM) atrophy has emerged as a potential biomarker for muscle wasting. However, its diagnostic utility as a monitoring tool in intensive care remains uncertain. Hence, the objective of this study was to evaluate the diagnostic value of sequential ultrasound- and computed tomography (CT)-based measurements of TM thickness (TMT). With a prospective observational design, we included 40 patients without preexisting sarcopenia admitted to a neurointensive care unit. TMT measurements, performed upon admission and serially every 3–4 days, were correlated with rectus femoris muscle thickness (RFT) ultrasound measurements. Interrater reliability was assessed by Bland Altmann plots and intraclass correlation coefficient (ICC). Analysis of variance was performed in subgroups to evaluate differences in the standard error of measurement (SEM). RFT decline was paralleled by ultrasound- as well as CT-based TMT measurements (TMT to RFT: r = 0.746, p < 0.001; CT-based TMT to ultrasound-based RFT: r = 0.609, p < 0.001). ICC was 0.80 [95% CI 0.74, 0.84] for ultrasound-based assessment and 0.90 [95% CI 0.88, 0.92] for CT-based TMT measurements. Analysis of variance for BMI, Heckmatt score, fluid balance, and agitation showed no evidence of measurement errors in these subgroups. This study demonstrates the clinical feasibility and utility of ultrasound- and CT-based TMT measurements for the assessment of muscle wasting

    Nanoscale hydroxyl radical generation from multiphoton ionization of tryptophan

    Get PDF
    Exposure of solutions containing both tryptophan and hydrogen peroxide to a pulsed (~180 fs) laser beam at 750 nm induces luminescence characteristic of 5 hydroxytryptophan. The results indicate that 3-photon excitation of tryptophan results in photoionization within the focal volume of the laser beam. The resulting hydrated electron is scavenged by the hydrogen peroxide to produce the hydroxyl radical. The latter subsequently reacts with tryptophan to form 5-hydroxytryptophan. The involvement of hydroxyl radicals is confirmed by use of ethanol and nitrous oxide as scavengers and their effects on the fluorescence yield in this system. It is postulated that such multiphoton ionization of tryptophanyl residues in cellular proteins may contribute to the photodamage observed during imaging of cells and tissues using multiphoton microscopy

    Versatile Preparation of Fluorescent Particles Based on Polyphosphazenes: From Micro- to Nanoscale

    Full text link
    A series of intrinsically fluorescent hydrophobic and amphiphilic polyphosphazenes with ethyl tryptophan (EtTrp) and poly(N-isopropylacrylamide) (PNIPAAm) or poly(ethylene glycol) (PEG) as hydrophobic and hydrophilic segments, respectively, are synthesized. Depending on polymer composition and preparation procedure, particles with diameters ranging from micro- to nanoscale can be prepared successfully, which might be used as a visible tracer, both in 14vitro or in 14vivo, in drug- or gene-delivery systems, as well as in other biomedical studies such as diagnostic medicine and brain research. Most importantly, in combination with the flexible synthesis and versatile modification of polyphosphazene, this method provides a general protocol to engineer a broad range of fluorescent particles with different properties based on diverse polymers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57545/1/2081_ftp.pd

    MCMC samples

    No full text
    Results from MCMC chains generated with scripts from this repo.Please note that this a zip-compressed files.Disk usage for the different files after unpacking:- main_results: 2.9GB- sensitivity_analysis: 23GB- simulation_study: 68GB- simulation_diffusion: 69GB________________Therefore, ~165GB disk space will be allocated</p

    Using a Bayesian hierarchical approach to study the association between non-pharmaceutical interventions and the spread of Covid-19 in Germany

    Get PDF
    Abstract Non-Pharmaceutical Interventions (NPIs) are community mitigation strategies, aimed at reducing the spread of illnesses like the coronavirus pandemic, without relying on pharmaceutical drug treatments. This study aims to evaluate the effectiveness of different NPIs across sixteen states of Germany, for a time period of 21 months of the pandemic. We used a Bayesian hierarchical approach that combines different sub-models and merges information from complementary sources, to estimate the true and unknown number of infections. In this framework, we used data on reported cases, hospitalizations, intensive care unit occupancy, and deaths to estimate the effect of NPIs. The list of NPIs includes: “contact restriction (up to 5 people)”, “strict contact restriction”, “curfew”, “events permitted up to 100 people”, “mask requirement in shopping malls”, “restaurant closure”, “restaurants permitted only with test”, “school closure” and “general behavioral changes”. We found a considerable reduction in the instantaneous reproduction number by “general behavioral changes”, “strict contact restriction”, “restaurants permitted only with test”, “contact restriction (up to 5 people)”, “restaurant closure” and “curfew”. No association with school closures could be found. This study suggests that some public health measures, including general behavioral changes, strict contact restrictions, and restaurants permitted only with tests are associated with containing the Covid-19 pandemic. Future research is needed to better understand the effectiveness of NPIs in the context of Covid-19 vaccination

    Secure and Efficient Tunneling of MACsec for Modern Industrial Use Cases

    Full text link
    Trends like Industry 4.0 will pose new challenges for future industrial networks. Greater interconnectedness, higher data volumes as well as new requirements for speeds as well as security will make new approaches necessary. Performanceoptimized networking techniques will be demanded to implement new use cases, like network separation and isolation, in a secure fashion. A new and highly efficient protocol, that will be vital for that purpose, is MACsec. It is a Layer 2 encryption protocol that was previously extended specifically for industrial environments. Yet, it lacks the ability to bridge local networks. Therefore, in this work, we propose a secure and efficient Layer 3 tunneling scheme for MACsec. We design and implement two approaches, that are equally secure and considerably outperform comparable state-of-the-art techniques.Comment: 10 pages, 8 figure

    A Bayesian hierarchical approach to account for evidence and uncertainty in the modeling of infectious diseases: An application to COVID‐19

    Get PDF
    Infectious disease models can serve as critical tools to predict the development of cases and associated healthcare demand and to determine the set of nonpharmaceutical interventions (NPIs) that is most effective in slowing the spread of an infectious agent. Current approaches to estimate NPI effects typically focus on relatively short time periods and either on the number of reported cases, deaths, intensive care occupancy, or hospital occupancy as a single indicator of disease transmission. In this work, we propose a Bayesian hierarchical model that integrates multiple outcomes and complementary sources of information in the estimation of the true and unknown number of infections while accounting for time-varying underreporting and weekday-specific delays in reported cases and deaths, allowing us to estimate the number of infections on a daily basis rather than having to smooth the data. To address dynamic changes occurring over long periods of time, we account for the spread of new variants, seasonality, and time-varying differences in host susceptibility. We implement a Markov chain Monte Carlo algorithm to conduct Bayesian inference and illustrate the proposed approach with data on COVID-19 from 20 European countries. The approach shows good performance on simulated data and produces posterior predictions that show a good fit to reported cases, deaths, hospital, and intensive care occupancy
    corecore