18 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Electrically fueled active supramolecular materials

    No full text
    Fuel-driven dissipative supramolecular assemblies in biology, such as actin filaments and microtubules contribute to the formation of complex, dynamic structures in living organisms and give rise to emergent functions such as motility, homeostasis, self-healing, and camouflage. Several synthetic dissipative supramolecular materials have been created using chemicals or light as fuel, with the goal of furthering our understanding of biological systems and creating synthetic materials that have life-like dynamic properties. However, electrical energy, one of the most common energy sources, has remained mostly unexplored for such purposes. Here we demonstrate the use of electrically fueled dissipative assembly as a new platform for creating active supramolecular materials. Through an electrochemical redox reaction network operating in mild aqueous buffers, a transient and highly active supramolecular assembly based on a redox-sensitive cysteine derivative is achieved by applying an electric potential. The dissipative self-assembly as well as its emergent properties can be spatiotemporally controlled by modulation of electrical signals on patterned microelectrodes. Using electrical energy as a readily available and clean fuel, we are able to create dissipative supramolecular materials rapidly (in seconds to minutes) and repetitively under mild conditions with directional and spatiotemporal control. As electronic signals are the default information carriers in modern technology, the described approach offers a promising opportunity to integrate active materials into electronic devices for bioelectronics applications
    corecore