282 research outputs found
The Determination of induction and differentiation in grape vines
The induction and differentiation of 8-year-old Alphonse Lavallee and Sultana grape vines were studied.Defoliation methods enabled us to determine the induction time in grape vines as in other fruit species.Induction and differentiation in the tested varieties were not connected with temporary growth cessation; on the contrary, process took place during the most intensive growth.A correlation was found between the number of leaves and induction period. 18-21 leaves above the examined buds were needed in bot-h varieties to complete the induction.The leaf area needed for induction in a bud of Sultana was lYe times larger than that needed for Alphonse. The efficiency of the leaves of Alphonse to induce differentiation was thus greater.The primordia ,development from induction to detection under the microscope (differentiation) was connected with a constant vegetative development. The time needed for this development was determined by the growth rate of the variety (18 days in Sultana, 14 days in Alphonse).The translocation of materials inducing differentiation from the base of the shoot upwar,ds has not been proved in our work.In Alphonse a lag period of two days was found for the differentiation of each bud along the cane
Impact assessment of the biological control of the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), by the introduced parasitoid Epidinocarsis lopezi (De Santis) (Hymenoptera: Encyrtidae)
The impact of Phenacoccus manihoti Matile-Ferrero on growth and tuber yield of cassava, and the results of its biological control by the exotic parasitoid Epidinocarsis lopezi (De Santis) were investigated in a survey of 60 farmers' fields in Ghana and Ivory Coast over an area of 180 000 km2 of the savana and forest ecosystems. Twenty-nine variables associated with plant growth, agronomic and environmental factors, and insect populations were recorded. Densities of P. manihoti were closely correlated with stunting of the cassava shoot tips and, less so, with the rate of stunting early in the growing season. With increasing mealybug infestations, average harvest indices declined and populations of E. lopezi and of indigenous coccinellids increased, but parasitoids were found at lower host levels than were predators. The length of time E. lopezi had been present in an area was the most important factor influencing mealybug densities. Thus, P. manihoti populations were significantly lower where E. lopezi had been present for more than half the planting season than in areas where E. lopezi was lacking or had been only recently introduced. A significant proportion of the farmers in the savanna zone, where P. manihoti populations were much higher than in the forest zone, had observed this decline due to E. lopezi. Tuber yield losses due to P. manihoti in the absence of E. lopezi were tentatively estimated at 463 g/plant in the savanna zone. No significant effect was found in the forest region. When E. lopezi was present, average P. manihoti damage scores were reduced significantly, both in the savanna and forest regions. The increase in yields was 228g/plant or about 2.48 t/ha in the savanna regio
Improved Error-Scaling for Adiabatic Quantum State Transfer
We present a technique that dramatically improves the accuracy of adiabatic
state transfer for a broad class of realistic Hamiltonians. For some systems,
the total error scaling can be quadratically reduced at a fixed maximum
transfer rate. These improvements rely only on the judicious choice of the
total evolution time. Our technique is error-robust, and hence applicable to
existing experiments utilizing adiabatic passage. We give two examples as
proofs-of-principle, showing quadratic error reductions for an adiabatic search
algorithm and a tunable two-qubit quantum logic gate.Comment: 10 Pages, 4 figures. Comments are welcome. Version substantially
revised to generalize results to cases where several derivatives of the
Hamiltonian are zero on the boundar
Computational Indistinguishability between Quantum States and Its Cryptographic Application
We introduce a computational problem of distinguishing between two specific
quantum states as a new cryptographic problem to design a quantum cryptographic
scheme that is "secure" against any polynomial-time quantum adversary. Our
problem, QSCDff, is to distinguish between two types of random coset states
with a hidden permutation over the symmetric group of finite degree. This
naturally generalizes the commonly-used distinction problem between two
probability distributions in computational cryptography. As our major
contribution, we show that QSCDff has three properties of cryptographic
interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff
coincides with its worst-case hardness; and (iii) QSCDff is computationally at
least as hard as the graph automorphism problem in the worst case. These
cryptographic properties enable us to construct a quantum public-key
cryptosystem, which is likely to withstand any chosen plaintext attack of a
polynomial-time quantum adversary. We further discuss a generalization of
QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies
on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail
proofs and follow-up of recent wor
A Taxonomy of Causality-Based Biological Properties
We formally characterize a set of causality-based properties of metabolic
networks. This set of properties aims at making precise several notions on the
production of metabolites, which are familiar in the biologists' terminology.
From a theoretical point of view, biochemical reactions are abstractly
represented as causal implications and the produced metabolites as causal
consequences of the implication representing the corresponding reaction. The
fact that a reactant is produced is represented by means of the chain of
reactions that have made it exist. Such representation abstracts away from
quantities, stoichiometric and thermodynamic parameters and constitutes the
basis for the characterization of our properties. Moreover, we propose an
effective method for verifying our properties based on an abstract model of
system dynamics. This consists of a new abstract semantics for the system seen
as a concurrent network and expressed using the Chemical Ground Form calculus.
We illustrate an application of this framework to a portion of a real
metabolic pathway
Deep generative modeling for single-cell transcriptomics.
Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task
Solving the Shortest Vector Problem in Lattices Faster Using Quantum Search
By applying Grover's quantum search algorithm to the lattice algorithms of
Micciancio and Voulgaris, Nguyen and Vidick, Wang et al., and Pujol and
Stehl\'{e}, we obtain improved asymptotic quantum results for solving the
shortest vector problem. With quantum computers we can provably find a shortest
vector in time , improving upon the classical time
complexity of of Pujol and Stehl\'{e} and the of Micciancio and Voulgaris, while heuristically we expect to find a
shortest vector in time , improving upon the classical time
complexity of of Wang et al. These quantum complexities
will be an important guide for the selection of parameters for post-quantum
cryptosystems based on the hardness of the shortest vector problem.Comment: 19 page
3-Message Zero Knowledge Against Human Ignorance
The notion of Zero Knowledge has driven the field of cryptography since its conception over thirty years ago. It is well established that two-message zero-knowledge protocols for NP do not exist, and that four-message zero-knowledge arguments exist under the minimal assumption of one-way functions. Resolving the precise round complexity of zero-knowledge has been an outstanding open problem for far too long.
In this work, we present a three-message zero-knowledge argument system with soundness against uniform polynomial-time cheating provers. The main component in our construction is the recent delegation protocol for RAM computations (Kalai and Paneth, TCC 2016B and Brakerski, Holmgren and Kalai, ePrint 2016). Concretely, we rely on a three-message variant of their protocol based on a key-less collision-resistant hash functions secure against uniform adversaries as well as other standard primitives.
More generally, beyond uniform provers, our protocol provides a natural and meaningful security guarantee against real-world adversaries, which we formalize following Rogawayâs âhuman-ignoranceâ approach (VIETCRYPT 2006): in a nutshell, we give an explicit uniform reduction from any adversary breaking the soundness of our protocol to finding collisions in the underlying hash function.National Science Foundation (U.S.) (Award CNS-1350619)National Science Foundation (U.S.) (Award CNS-1413964
Security Limitations of Classical-Client Delegated Quantum Computing
Secure delegated quantum computing allows a computationally weak client to
outsource an arbitrary quantum computation to an untrusted quantum server in a
privacy-preserving manner. One of the promising candidates to achieve classical
delegation of quantum computation is classical-client remote state preparation
(), where a client remotely prepares a quantum state using a
classical channel. However, the privacy loss incurred by employing
as a sub-module is unclear.
In this work, we investigate this question using the Constructive
Cryptography framework by Maurer and Renner (ICS'11). We first identify the
goal of as the construction of ideal RSP resources from classical
channels and then reveal the security limitations of using . First,
we uncover a fundamental relationship between constructing ideal RSP resources
(from classical channels) and the task of cloning quantum states. Any
classically constructed ideal RSP resource must leak to the server the full
classical description (possibly in an encoded form) of the generated quantum
state, even if we target computational security only. As a consequence, we find
that the realization of common RSP resources, without weakening their
guarantees drastically, is impossible due to the no-cloning theorem. Second,
the above result does not rule out that a specific protocol can
replace the quantum channel at least in some contexts, such as the Universal
Blind Quantum Computing (UBQC) protocol of Broadbent et al. (FOCS '09).
However, we show that the resulting UBQC protocol cannot maintain its proven
composable security as soon as is used as a subroutine. Third, we
show that replacing the quantum channel of the above UBQC protocol by the
protocol QFactory of Cojocaru et al. (Asiacrypt '19), preserves the
weaker, game-based, security of UBQC.Comment: 40 pages, 12 figure
- âŠ