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Abstract

The notion of Zero Knowledge has driven the field of cryptography since its concep-
tion over thirty years ago. It is well established that two-message zero-knowledge pro-
tocols for NP do not exist, and that four-message zero-knowledge arguments exist under
the minimal assumption of one-way functions. Resolving the precise round complexity of
zero-knowledge has been an outstanding open problem for far too long.

In this work, we present a three-message zero-knowledge argument system with sound-
ness against uniform polynomial-time cheating provers. The main component in our con-
struction is the recent delegation protocol for RAM computations (Kalai and Paneth, TCC
2016B and Brakerski, Holmgren and Kalai, ePrint 2016). Concretely, we rely on a three-
message variant of their protocol based on a key-less collision-resistant hash functions se-
cure against uniform adversaries as well as other standard primitives.

More generally, beyond uniform provers, our protocol provides a natural and meaning-
ful security guarantee against real-world adversaries, which we formalize following Rog-
away’s “human-ignorance” approach (VIETCRYPT 2006): in a nutshell, we give an explicit
uniform reduction from any adversary breaking the soundness of our protocol to finding
collisions in the underlying hash function.
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1 Introduction

The fascinating notion of zero knowledge, conceived over thirty years ago by Goldwasser,
Micali and Rackoff [GMR89], has been the source of a great many ideas that revolutionized
cryptography, including the simulation paradigm and passive-to-active security transforma-
tions [GMW91, FLS99, Bar01, IKOS09].

A central and persistent open question in the theory of zero knowledge is that of round
complexity (also called message complexity), which refers to the number of messages that the
prover and the verifier must exchange in a zero-knowledge protocol. The seminal work of
Goldreich, Micali and Wigderson [GMW91] showed the first computational zero-knowledge
proof system for all of NP. Their protocol required a polynomial (in the security parameter)
number of rounds (in order to achieve an exponentially small soundness error). Feige and
Shamir [FS89] show a four-round computational zero-knowledge argument system [BCC88] for
all of NP based on algebraic assumptions.1 The assumption was reduced to the minimal as-
sumption of one-way functions by Bellare, Jakobsson and Yung [BJY97].

In terms of lower bounds, Goldreich and Oren [GO94] showed that three rounds are nec-
essary for non-trivial zero knowledge (arguments as well as proofs) against non-uniform ad-
versarial verifiers. Zero knowledge in the presence of verifiers with non-uniform advice has by
now become the gold standard as it is often essential for secure composition (see, e.g., [GK96b]).

This state of affairs leaves behind a question that has been open for far too long:

What is the minimal round-complexity of zero knowledge?

By the works of [FS89, BJY97], the answer is at most 4 while Goldreich and Oren tell us that the
answer is at least 3. So far, all constructions of three-message computational zero-knowledge
argument systems for NP were based on strong “auxiliary-input knowledge assumptions”
[HT98, BP04b, CD09, BP12, BCC+14]. The plausibility of these assumptions was questioned
already around their introduction [HT98] and they were recently shown to be false assuming
the existence of indistinguishability obfuscation [BCPR14, BM14]. In summary, finding a three-
message zero-knowledge argument (under reasonable, falsifiable assumptions) matching the
Goldreich-Oren lower bound remains wide open.

Why is Three-Message Zero Knowledge So Interesting. Aside from its significance to the
theory of zero knowledge, the question of three-message zero knowledge is also motivated
by its connections to two fundamental notions in cryptography, namely non-black-box security
proofs and verifiable computation.

In order to make sense of this, let us tell you the one other piece of the zero knowledge story.
An important dimension of zero-knowledge proofs is whether the zero-knowledge simulator
treats the (adversarial) verifier as a black-box or not. In all the protocols referenced above (with
the exception of the ones based on “auxiliary-input knowledge assumptions”), the simulator
treats the verifier as a black box. Goldreich and Krawczyk [GK96b] show that in any three-
message zero-knowledge protocol for a language outside BPP, the simulator must make non-
black-box use of the verifier’s code. In other words, any future three-message zero-knowledge
protocol has to “look different” from the ones referenced above.

The pioneering work of Barak [Bar01] demonstrated that barriers of this kind can some-
times be circumvented via non-black-box simulation. However, Barak’s technique, and all
other non-black-box techniques developed thus far, have only led to protocols with at least
four messages [BP13, COP+14].

1While zero-knowledge proofs [GMW91] provide soundness against computationally unbounded cheating
provers, zero-knowledge arguments [BCC88] are weaker in that they provide soundness only against computa-
tionally bounded cheating provers.
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A bottleneck to reducing the round-complexity of Barak’s protocol is the reliance on four-
message universal arguments [BG08], a notion that enables fast verification of NP computations.
Accordingly, developments in round-efficient systems for verifiable computation may very
well lead to corresponding developments in three-message zero knowledge. In fact, strong
forms of verifiable computation have recently proven instrumental in producing novel non-
black-box simulation techniques, such as in the context of constant-round concurrent proto-
cols [CLP13b, CLP15]. It is natural, then, to wonder whether these and related developments
help us construct three-message zero-knowledge argument systems.

On Uniform (and Bounded Non-Uniform) Verifiers. Bitansky, Canetti, Paneth and Rosen [BCPR14]
study three-message protocols satisfying a relaxed notion of zero knowledge. Instead of re-
quiring the zero knowledge guarantee against all non-uniform verifiers, they only consider
verifiers that have an a-priori bounded amount of non-uniformity (but may still run for an arbi-
trary polynomial time). This includes, in particular, zero-knowledge against uniform verifiers.
They demonstrate a three-message zero-knowledge protocol against verifiers with bounded
non-uniformity based on the verifiable delegation protocol of Kalai, Raz, and Rothblum [KRR14].

Notably, restricting attention to verifiers with bounded uniformity comes with a great com-
promise. For once, the zero knowledge property is not preserved under sequential composi-
tion. More broadly, such protocols may not provide a meaningful security guarantee against
real-world adversaries. As a concrete example, the zero knowledge property of the protocol
in [BCPR13] crucially relies on the fact that messages sent by the verifier can be simulated by
a Turing machine with a short description, shorter than the protocol’s communication. How-
ever, this assumption may not hold for real-world adversaries, which can certainly have access
to arbitrarily long strings with no apparent short description.

1.1 Our Results

In this work, we construct a three-message argument for NP that is zero knowledge against
fully non-uniform verifiers and sound against provers with a-priori bounded (polynomial
amount of) non-uniformity. The main component in our construction is a verifiable delega-
tion protocol for RAM computations recently constructed by Kalai and Paneth [KP15] and
improved by Brakerski, Holmgren and Kalai [BHK16]. Concretely, we rely on a three-message
variant of the [BHK16] protocol based on keyless collision-resistant hash functions secure against
adversaries with bounded non-uniformity and slightly super-polynomial running time, and a
(polynomially-secure) computational private information retrieval (PIR) scheme, as well as
other more standard cryptographic assumptions.

In contrast to the setting of verifiers with bounded non-uniformity, our protocol remains
secure under sequential composition. Furthermore, our protocol provides a natural and mean-
ingful security guarantee against real-world adversaries, which we formalize following Rog-
away’s “human ignorance approach” [Rog06], described in greater detail below.

Rogaway’s “Human Ignorance” Approach and Real-World Security. A more informative
way of describing the soundness of our protocol is by the corresponding security reduction.
We construct a zero-knowledge argument system, meaning that the soundness of the protocol
is computational. That is, any prover that breaks the soundness of our protocol, regardless
of how non-uniform it is, can be uniformly turned into a collision finder for an underlying
hash function. In other words, there is a uniform algorithm called collision-finder who finds
collisions in the hash function given oracle access to the soundness-breaker.

In our protocol, the hash function must already be determined before the first message is
sent, thus requiring that we rely on a fixed (key-less) function as opposed to a function family
as is normally the case when dealing with collision-resistant hash functions. Clearly, a fixed
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hash function cannot be collision-resistant against non-uniform adversaries (as such an ad-
versary can have a collision for the function hard-wired as part of its non-uniform advice).
However, as argued by Rogaway, a uniform reduction from finding collisions in such a func-
tion to breaking the security of a protocol is sufficient to argue the real-world security of the
protocol. Briefly, the rationale is that an adversarial algorithm that breaks the security of the
protocol (with or without non-uniform advice) can be turned into an explicit algorithm that
finds collisions in the hash function (with the same non-uniform advice). Indeed, for common
constructions of hash functions, such as SHA-3, collisions (while they surely exist) are simply
not known.

Our main result can accordingly be stated as follows.

Informal Theorem 1.1. [See Theorem 3.1] Assuming the existence of a computational private in-
formation retrieval (PIR) scheme, a circuit-private 1-hop homomorphic encryption scheme, and a non-
interactive commitment scheme, there exists a three-message argument for NP with a uniform reduction
R (described in the proof of Theorem 3.1) running in quasi-polynomial time, such that, for every non-
uniform PPT adversary A, if A breaks the soundness of the protocol instantiated with a keyless hash
function H, then RA outputs a collision in H. The protocol is zero knowledge against non-uniform
probabilistic polynomial-time (PPT) verifiers.

All the cryptographic primitives (except the key-less hash function) can be instantiated
from the learning with errors (LWE) assumption [Reg09].

Asymptotic Interpretations. As discussed above, implementing our protocol with a key-less
hash function such as SHA-3 guarantees security against “ignorant” adversaries that are un-
able to find hash collisions. This class of adversaries may include all the adversaries we care
about in practice, however, since functions like SHA-3 do not provide any asymptotic security,
we cannot use standard asymptotic terminology to define the class of “SHA-ignorant adver-
saries”.

We formalize the security of our protocol and hash function in conventional asymptotic
terms. For any asymptotic hash family H = {Hn}n∈N, we can accordingly think of the class
of adversaries that are H-ignorant. Trying to capture more natural classes of adversaries, we
focus on the subclass of adversaries with bounded non-uniformity. It may be reasonable to as-
sume that an asymptotic keyless hash function is indeed collision-resistant against this class as
long as the corresponding non-uniform advice is shorter than the hash input length. Therefore,
the result for adversaries with bounded non-uniformity stated above follows as a corollary of
our explicit reduction.

The Global Common Random String Model and Resettable Security. Another direct corol-
lary of our result is that assuming (the standard notion of) keyed collision-resistant hash-
function families, there is a 3-message zero-knowledge protocol that is sound against fully non-
uniform provers in the global (or non-programable) common random string model [Pas03, CDPW07]
or in the global hash model [CLP13a]. As observed in [Pas03], both the Goldreich-Oren lower
bound and the Goldreich-Krawczyk black-box lower bound hold even in these models.

Another property of our protocol is that it can be made resettably sound [BGGL01] via the
(round-preserving) transformation of Barak, Goldreich, Goldwasser and Lindell [BGGL01].
This holds for the three-message version of the protocol (against provers with bounded uni-
formity, or alternatively, against non-uniform provers in the global random string model).

1.2 Our Techniques

We now give an overview of the main ideas behind the new protocol.
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Barak’s Protocol. As explained above, three-message zero-knowledge can only be achieved
via non-black-box simulation (and the Goldreich-Krawczyk lower bound, in fact, holds even
when considering uniform provers). Thus, a natural starting point is the non-black-box simu-
lation technique of Barak [Bar01], which we outline next. Following the Feige-Lapidot-Shamir
paradigm [FLS99], the prover and verifier in Barak’s protocol first execute a trapdoor generation
preamble: the verifier sends a key h for a collision-resistant hash function, the prover responds
with a commitment cmt, and then, the verifier sends a random challenge u. The preamble
defines a “trapdoor statement” asserting that there exists a program Π such that cmt is a com-
mitment to h(Π) and Π(cmt) outputs u. Intuitively, no cheating prover is able to commit to a
code that predicts the random u ahead of time, and thus cannot obtain a witness (a program
Π) for the trapdoor statement. In contrast, a simulator that is given the code of the (malicious)
verifier, can commit to it in the preamble and use it as the witness for the trapdoor statement.

In the second stage of the protocol, the prover and the verifier engage in a witness-indistinguishable
(WI) protocol intended to convince the verifier that either the real statement or the trapdoor
statement is true, without revealing to the verifier which is the case. Here, since the trapdoor
statement corresponds to a computation Π(cmt) that may be longer than the honest verifier’s
runtime, a standard WI system is insufficient. This difficulty is circumvented using the 4-
message universal arguments mentioned before, where verification time is independent of the
statement being proven.

Overall, Barak’s protocol is executed in six messages. In the first message, the verifier sends
a key for a collision-resistant hash function, which effectively serves both as the first message
(out of three) of the preamble and as the first message (out of four) of the universal argument to
come. Then, the two remaining messages of the preamble are sent, following by the remaining
three messages of a WI universal argument.2

Squashing Barak’s Protocol. To achieve a three-message protocol, we will squash Barak’s
protocol. Using a keyless hash function, we can eliminate the first verifier message (which,
in Barak’s protocol, consists of a key for a collision-resistant hash function). It is just this
step that restricts our soundness guarantee to only hold against provers that are unable to
find collisions in the key-less hash function (e.g., provers with bounded non-uniformity). This
leaves us with a five-message protocol, which is still worse than what is achievable using black-
box techniques. The bulk of the technical contribution of this work is devoted to the task of
squashing this protocol into only three messages.

Having eliminated the verifier’s first message, we are now left with a 2-message preamble
followed by a 3-message WI universal argument. A natural next step is to attempt executing
the preamble and the WI argument in parallel. The main problem with this idea is that in
Barak and Goldreich’s universal arguments, the statement must be fixed before the first prover
message is computed. However, in the protocol described, the trapdoor statement is only fixed
once the entire preamble has been executed.

We observe that, paradoxically, while the trapdoor statement is only fixed after the pream-
ble has been executed, the witness for this statement is fixed before the protocol even starts! Indeed,
the witness for the trapdoor statement is simply the verifier’s code. It is therefore sufficient to
replace Barak and Goldreich’s universal argument with a 3-message verifiable delegation pro-
tocol that has the following structure: the first prover message depends on the witness alone,
the verifier’s message fixes the statement, and the third and last prover response includes the
proof (which already depends on both the statement and witness).

Verifiable Memory Delegation. To obtain a verifiable delegation scheme with the desired

2Barak’s original construction, in fact, consists of seven messages, but can be squashed into six by using an
appropriate WI system (see, e.g., [OV12]).
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structure, we consider the notion of verifiable memory delegation [CKLR11]. In memory
delegation, the prover and verifier interact in two phases. In the offline phase, the verifier
sends a large memory string m to the prover, saving only a short digest of m. In the online
phase, the verifier sends a function f to the prover and the prover responds with the output
f(m) together with a proof of correctness. The time to verify the proof is independent of the
memory size and the function running time.

In our setting, we think of the memory as the witness and of the delegated function as ver-
ifying that its input is a valid witness for a specified statement (encoded in the function). One
important difference between the settings of verifiable memory delegation and ours is that in
the former, the offline phase is executed by the verifier, but in our setting, the prover may
adversarially choose any digest (which may not even correspond to any memory string). We
therefore rely on memory delegation schemes that remain secure for an adversarially cho-
sen digest. We observe that the verifiable delegation protocols for RAM computations of
[KP15, BHK16] yield exactly such a memory delegation scheme, and when implemented using
a keyless hash function this delegation scheme is secure against the class of adversaries that
cannot find collisions in the hash function (e.g. adversaries with bounded non-uniformity).

Fulfilling the above plan encounters additional hurdles. The main such hurdle is the fact
that the verifiable delegation schemes of [KP15, BHK16] are not witness-indistinguishable.
We ensure witness-indistinguishability by leveraging special properties of the Lapidot-Shamir
WI protocol [LS90a, OV12], and 1-hop homomorphic encryption [GHV10] (similar ideas were
used in [BCPR14]).

1.3 More Related Work

We mention other related works on round-efficient zero knowledge.

On Zero-Knowledge Proof Systems. In this work we show a 3-message argument system
for NP. If one requires a proof system instead, with soundness against unbounded provers,
Goldreich and Kahan [GK96a] showed a 5-round (black-box) zero-knowledge proof system for
NP. On the other hand, Katz [Kat12], extending the result of Goldreich and Krawczyk [GK96b],
shows that, assuming the polynomial hierarchy does not collapse, zero-knowledge protocols
for an NP-complete language require at least 5 rounds if the simulator only makes black-box
use of the verifier’s code. The question of 3-round and 4-round zero-knowledge proof systems
for NP (necessarily with non-black-box simulation) still remains wide open.

On Quasi-Polynomial Time Simulation. Barak and Pass [BP04a] show a 1-round weak zero-
knowledge argument for NP with soundness against uniform polynomial-time provers, based
on non-standard assumptions. (One of their assumptions is the existence of a key-less collision-
resistant hash function against uniform adversaries with sub-exponential running time.) Their
notion of weak zero knowledge allows for a quasi-polynomial-time simulator. The fact that
the simulator can run longer than (any possible) cheating prover means that the simulator can
(and does) break the soundness of the protocol. This has the effect that the round-complexity
lower bounds referenced above do not apply in this model. Furthermore, such a protocol may
leak information that cannot be simulated in polynomial time (but only in quasi-polynomial
time).

Organization. In Section 2, we give the basic definitions used throughout the paper, includ-
ing the modeling of adversaries and reductions, the definition of key-less hash functions, and
memory delegation. In Section 3, we describe and analyze the new protocol.
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2 Definitions and Tools

In this section, we define the adversarial model we work in, zero-knowledge protocols against
restricted classes of provers (e.g., ones with bounded non-uniformity), as well as the tools used
in our construction.

2.1 Modeling Adversaries, Reductions, and Non-Uniformity

In this section, we recall the notion of (black-box) reductions, and address two general classes
of adversaries touched in this paper. Commonly in crypto, we consider (uniform) polynomial
time reductions between different non-uniform polynomial-time adversaries. In this paper, we
will sometimes consider more general types of reductions, e.g. uniform reductions that run in
slightly super-polynomial time, as well as different classes of adversaries, e.g. uniform PPT
adversaries, or adversaries with bounded non-uniformity. In such cases, we will be explicit
about the concrete classes of reductions and adversaries involved.

Rogaway’s “Human Ignorance” Approach to Reductions. As discussed in the introduction,
the most informative way of describing the soundness of our protocol is by the correspond-
ing security reduction from collision-resistance to soundness. Rogaway [Rog06] suggests a
framework for formalizing such statements. In this work, however, for the sake of simpler
exposition, we do not fully follow Rogaway’s framework; we explain the differences next.

While Rogaway’s approach gives a meaningful result even for non-asymptotic hash func-
tions such as SHA-3 in terms of concrete security, our security definitions are still formalized
in asymptotic terms. We parameterize the security definitions by the class of adversaries. Our
main theorem states that for every class of adversaries A, the soundness of the protocol against
adversaries in A can be reduced to the security of the hash function against the same class of
adversaries.

We note that the security of our protocol is based on other primitives except keyless collision-
resistant hash. In our theorems, we do not emphasize the reduction to these primitives; rather,
we simply restrict our result only to classes of adversaries that are unable to break the security
of these primitives (most naturally non-uniform polynomial time adversaries).

Reductions. For two classes of adversaries R,A, we denote by RA the class of adversaries
RA =

{
RAn
n

}
n∈N whereRn makes calls to An.3

The class P of non-uniform PPT adversaries. A general class of adversaries considered in
this paper are non-uniform probabilistic polynomial-time Turing machines, or in short non-
uniform PPT, which we denote by P. Any such adversary A ∈ P is modeled as a sequence
{An}n∈N, where n is the security parameter, and where the description and running time of
An are polynomially bounded in n.

For a super-polynomial γ(n) = nω(1), we denote by Pγ the class of non-uniform probabilis-
tic adversaries whose description and running time are polynomial in γ(n).

The class B of PPT adversaries with bounded non-uniformity. We shall also consider the class
Bβ ⊂ P of adversaries with bounded non-uniformity O(β). Concretely, for a fixed function
β(n) ≤ nO(1), the class Bβ consists of all non-uniform adversaries A ∈ P whose description
|An| is bounded by O(β(n)), but their running time could be an arbitrary polynomial. Abusing
notation, we denote by B0 the class of uniform PPT adversaries.

For a super-polynomial function γ(n) = nω(1), we denote by Bβ,γ the class of non-uniform
probabilistic adversaries whose description is bounded by O(β(n)) (or the class of uniform

3In this paper, we shall explicitly address different classes of black-box reductions. One can analogously define
non-black-box reductions.
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probabilistic adversaries if β = 0) and running time is polynomial in γ(n).

2.2 Zero Knowledge Arguments of Knowledge against Provers with Bounded Non-
Uniformity

The standard definition of zero knowledge [GMR89, Gol04] considers general non-uniform
provers (and verifiers). We define soundness (or argument of knowledge) more generally
against provers from a given class A ⊂ P. In particular, we will be interested in strict sub-
classes of P, such as adversaries with bounded non-uniformity .

In what follows, we denote by 〈P � V 〉 a protocol between two parties P and V . For
input w for P , and common input x, we denote by 〈P (w) � V 〉(x) the output of V in the
protocol. For honest verifiers this output will be a single bit indicating acceptance (or rejection),
whereas we assume (without loss of generality) that malicious verifiers outputs their entire
view. Throughout, we assume that honest parties in all protocols are uniform PPT algorithms.

Definition 2.1. A protocol 〈P � V 〉 for an NP relation RL(x,w) is a zero knowledge argument of
knowledge against provers in class A ⊂ P if it satisfies:

1. Completeness: For any n ∈ N, x ∈ L ∩ {0, 1}n, w ∈ RL(x):

Pr [〈P (w) � V 〉(x) = 1] = 1 .

2. Computational zero knowledge: For every non-uniform PPT verifier V ∗ = {V ∗n }n∈N ∈ P,
there exists a (uniform) PPT simulator S such that:

{〈P (w) � V ∗n (x)〉}(x,w)∈RL
|x|=n

≈c {S(V ∗n , x)}(x,w)∈RL
|x|=n

.

3. Argument of knowledge: There is a uniform PPT extractor E , such that for any noticeable
function ε(n) = n−O(1), any prover P ∗ = {P ∗n}n∈N ∈ A, any security parameter n ∈ N, and
any x ∈ {0, 1}n generated by P ∗n prior to the interaction:

if Pr [〈P ∗n � V 〉(x) = 1] ≥ ε(n) ,

then Pr

[
w ← EP ∗n (11/ε(n), x)
w /∈ RL(x)

]
= negl(n) .

2.3 Collision-Resistant Hashing

We define the notion of a keyless hash function that is collision resistant against a class A ⊆ Pγ
of adversaries. In particular, the definition may be realizable only for strict subclasses of Pγ ,
such as the class Bβ,γ of adversaries with bounded non-uniformity and poly(γ(n)) running
time (where the description length of the adversary, namely β, will be shorter than the length
of the input to the hash).

Definition 2.2. Let n < `(n) ≤ nO(1). A polynomial-time computable function

H = {Hn}n∈N ,Hn : {0, 1}`(n) → {0, 1}n ,

is collision resistant against adversaries in A if for any A = {An}n∈N ∈ A, and every n ∈ N

Pr

[
x, y ← An;
Hn(x) = Hn(y)

]
= negl(n) .
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where the probability is over the coins of An.

Instantiation. Common constructions of keyless hash functions such as SHA-3 have a fixed
output length and therefore do not directly provide a candidate for an asymptotic hash func-
tion as in Definition 2.2. One way to obtain candidates for an asymptotic hash function is to
start with a familyH′ of (keyed) hash-functions

H′ =
{
H′n,k

}
n∈N,k∈{0,1}n ,H

′
n,k : {0, 1}`(n) → {0, 1}n ,

and fix a uniform polynomial time algorithm K that given a security parameter 1n outputs a
key k ∈ {0, 1}n. The keyless hashH is then given by

Hn = H′n,K(1n) .

ForHn to be a good candidate collision resistant hash against adversaries in Bβ , we should
make sure that β = o(`), the family H′ is collision resistant, and the algorithm K behaves
“sufficiently like a random oracle”. For example we can choose an algorithm K that uses
a hash function like SHA-3 (or a version of it that can hash strings of arbitrary length) as a
random oracle to output sufficiently many random bits.

2.4 Memory Delegation with Public Digest

A two-message memory delegation scheme [CKLR11] allows a client to delegate a large mem-
ory to an untrusted server, saving only a short digest of the memory. The client then selects
a deterministic computation to be executed over the memory and delegates the computation
to the server. The server responds with the computation’s output as well as a short proof of
correctness that can be verified by the client in time that is independent of that of the delegated
computation and the size of the memory.

The notion of memory delegation we consider differs from that of [CKLR11] in the follow-
ing ways.

• Read-only computation. We do not consider computations that update the memory. In
particular, the digest of the delegated memory is computed once and does not change as
a result of the computations.

• Soundness. We define soundness more generally for servers from a given class A ⊂ P.
Whereas soundness is usually required against the class of all non-uniform PPT adver-
saries P, we will also be interested in strict subclasses of P, such as adversaries with
bounded non-uniformity.

• Soundness for slightly super-polynomial computations. We require soundness to hold
even for delegated computations running in slightly super-polynomial time.

• Public digest. We require that the digest of the memory can be computed non-interactively,
and can be made public and used by any client to delegate computations over the same
memory without compromising soundness. In particular, the client is not required to
save any secret state when delegating the memory.

Importantly, we do not assume that the party computing the digest is honest. We require
that no efficient adversary can produce valid proofs for two different outputs for the
same computation with respect to the same digest, even if the digest and computation
are adversarially chosen.4

4Soundness with respect to an adversarial digest can be defined in a stronger way, for example, requiring knowl-
edge of the memory corresponding to the digest. However, this stronger requirement is not necessary for our
application.
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• First message independent of function being delegated. The first message of the delega-
tion scheme (denoted below by q) depends only on the security parameter, and does not
depend on the public digest or on the function being delegated.

Concretely, a two-message memory delegation scheme with public digest consists of four
polynomial-time algorithms:

• d ← Digest(1n, D) is a deterministic algorithm that takes a security parameter 1n and
memory D and outputs a digest d ∈ {0, 1}n.

• (q, τ)← Query(1n) is a probabilistic algorithm that outputs a query q and a secret state τ .
We assume w.l.o.g that the secret state τ is simply the random coins used by Query.

• π ← Prov(1t,M, D, q) is a deterministic algorithm that takes a description of a Turing
machineM and a bound t on the running time ofM(D) and outputs a proof π ∈ {0, 1}n.

• b ← Ver(d, τ,M, t, y, π) is a deterministic algorithm that takes a computation output y
and outputs an acceptance bit b.

Definition 2.3 (Memory Delegation with Public Digest). Let γ(n) be a super-polynomial function
such that nω(1) = γ(n) < 2n. A two-message memory delegation scheme (Digest,Query,Prov,Ver) for
γ-time computations with public digest against provers in a class A ⊂ P satisfies the following.

• Completeness. For every security parameter n ∈ N, every Turing machineM and every mem-
ory D ∈ {0, 1}∗ such thatM(D) outputs y within t ≤ 2n steps:

Pr

1 = Ver(d, τ,M, t, y, π)

∣∣∣∣∣∣
d← Digest(1n, D)

(q, τ)← Query(1n)
π ← Prov(1t,M, D, q)

 = 1 .

• Soundness. For every adversary A = {An}n∈N ∈ A, there exists a negligible function negl(·)
such that for every security parameter n ∈ N,

Pr


t ≤ γ(n)
y 6= y′

1 = Ver(d, τ,M, t, y, π)
1 = Ver(d, τ,M, t, y′, π′)

∣∣∣∣∣∣∣∣
(M, t, d, y, y′)← An
(q, τ)← Query(1n)
(π, π′)← An(q)

 = negl(n) .

Instantiation. A memory delegation scheme satisfying Definition 2.3 can be obtained based
on the delegation schemes for RAM computations of Kalai and Paneth [KP15] and that of
Brakerski, Holmgren and Kalai [BHK16] with slight adaptations.5 Below we describe the re-
quired adaptations. We focus on the scheme of [BHK16] that can be instantiated based on
polynomially-secure PIR.

• Remove public parameters. The scheme of [BHK16] has public parameters that are gen-
erated honestly before the memory is delegated. These parameters consist of the de-
scription of a hash function chosen randomly from a family of collision-resistant hash
functions. Here we remove the public parameters and instead use a keyless collision
resistant hash against adversaries from a restricted class A. (E.g., A can be the class of
adversaries with β-bounded non-uniformity Bβ .) The security of our modified scheme
against provers from A follows the same argument as in [BHK16], who show a uniform
black-box reduction from a cheating prover to an adversary that finds collisions.

5We note that we cannot use here the memory delegation scheme of [CKLR11, KRR14] since the soundness of
their scheme assumes that the digest is honestly generated.
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• Soundness for slightly super-polynomial computations. While the scheme of [BHK16]
has completeness even for exponentially long delegated computations, soundness is only
proved when the delegated computation is polynomial time. Here we require soundness
even against slightly super-polynomial time γ = nω(1). In the [BHK16] reduction the
running time of the adversary breaking the hash is proportional to the running time of
the delegated computation. Therefore, soundness for slightly super-polynomial compu-
tations follows by the same argument, assuming a slightly stronger collision-resistance
against adversaries from BA

0,γ who can run in time γ and use A as a black box.

Recall that BA
0,γ is the class of uniform probabilistic machines running in time γ(n)O(1) and

given oracle access to an adversary in A. Brakerski, Holmgren and Kalai prove that there is a
γ(n)O(1)-time uniform reduction from breaking the soundness of their scheme to breaking any
underlying hash function, assuming the existence of a (polynomially secure) computational
PIR scheme.

Theorem 2.1 ([BHK16]). For any A ⊂ P and (possibly super-polynomial) function γ(·), assuming
collision-resistant hash functions against adversaries in BA

0,γ and a computational PIR scheme, there
exists a two-message memory delegation scheme for γ-time computations with public digest against
provers in A.

2.5 Witness Indistinguishability with First-Message-Dependent Instances

We define 3-message WI proofs of knowledge where the choice of statement and witness may
depend on the first message in the protocol. In particular, the first message is generated inde-
pendently of the statement and witness. Also, while we do allow the content of the message
to depend on the length ` of the statement, the message length should be of fixed to n (this al-
lows to also deal with statements of length ` > n ). The former requirement was formulated in
several previous works (see, e.g., [HV16]) and the latter requirement was defined in [BCPR14].

Definition 2.4 (WIPOK with first-message-dependent instances). Let 〈P � V 〉 be a 3-message
argument for L with messages (wi1,wi2,wi3); we say that it is a WIPOK with first-message-dependent
instances if it satisfies:

1. Completeness with first-message-dependent instances: For any instance choosing func-
tion X , and `, n ∈ N,

Pr

V (x,wi1,wi2,wi3; r′) = 1

∣∣∣∣∣∣∣∣∣∣
wi1 ← P (1n, `; r)
(x,w)← X(wi1)
x ∈ L, w ∈ RL(x)
wi2 ← V (`,wi1; r′)

wi3 ← P (x,w,wi1,wi2; r)

 = 1 ,

where r, r′ ← {0, 1}poly(n) are the randomness used by P and V .

The honest prover’s first message wi1 is of length n, independent of the length ` of the statement
x.

2. Adaptive witness-indistinguishability: For any polynomial `(·), non-uniform PPT verifier
V ∗ = {V ∗n }n∈N ∈ P and all n ∈ N:

Pr

V ∗n (x,wi1,wi2,wi3) = b

∣∣∣∣∣∣
wi1 ← P (1n, `(n); r)

x,w0, w1,wi2 ← V ∗n (wi1)
wi3 ← P (x,wb,wi1,wi2; r)

 ≤ 1

2
+ negl(n) ,
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where b ← {0, 1}, r ← {0, 1}poly(n) is the randomness used by P , x ∈ L ∩ {0, 1}`(n) and
w0, w1 ∈ RL(x).

3. Adaptive proof of knowledge: there is a uniform PPT extractor E such that for any polyno-
mial `(·), all large enough n ∈ N, and any deterministic prover P ∗:

if Pr

 V (tr; r′) = 1

∣∣∣∣∣∣∣∣
wi1 ← P ∗

wi2 ← V (`(n),wi1; r′)
x,wi3 ← P ∗(wi1,wi2)
tr = (x,wi1,wi2,wi3)

 ≥ ε ,

then Pr

 V (tr; r′) = 1

w ← EP ∗(11/ε, tr)
w /∈ RL(x)

∣∣∣∣∣∣∣∣
wi1 ← P ∗

wi2 ← V (`(n),wi1; r′)
x,wi3 ← P ∗(wi1,wi2)
tr = (x,wi1,wi2,wi3)

 ≤ negl(n) ,

where x ∈ {0, 1}`(n), and r′ ← {0, 1}poly(n) is the randomness used by V .

Instantiation. Protocols with first-message-dependent instances follow directly from the WIPOK
protocol constructed in [BCPR14], assuming ZAPs and non-interactive commitments (there,
the first message is taken from a fixed distribution that is completely independent of the in-
stance).

Next, we sketch how such a protocol can be constructed without ZAPs, but assuming key-
less collision-resistant hash functions, thus collapsing to an argument of knowledge against
adversaries that cannot break the hash (which will anyhow be the class of interest in our zero-
knowledge protocol in Section 3).

The Lapidot-Shamir protocol. As observed in [OV12], the Lapidot-Shamir variant of the 3-
message (honest verifier) zero-knowledge protocol for Hamiltonicity [LS90b] is such that the
first and second messages only depend on the size of the instance |x| = `, but not on the
instance and witness themselves. The protocol, in particular, supports instances up to size `
that depend on the prover’s first message. However, the size of the first message wi1 in the
protocol is |wi1| > `. We, on the other hand, would like to allow the instance x to be of an
arbitrary polynomial size in |wi1|, and in particular such that |wi1| < `.

We now sketch a simple transformation from any such protocol where, in addition, the
verifier’s message is independent of the first prover message, into a protocol that satisfies the
required first-message dependence of instances. Indeed, the verifier message in the Lapidot-
Shamir protocol is simply a uniformly random string, and hence the transformation can be
applied here.

The Transformation. Let `(n) > n be any polynomial function and letH be a keyless collision-
resistant hash function from {0, 1}`(n) to {0, 1}n. In the new protocol (Pnew, Vnew), the prover
computes the first message mes1 for instances of length `(n). Then, rather than sending mes1
in the clear, the prover Pnew sends y = Hn(mes1) ∈ {0, 1}n. The verifier proceeds as in the
previous protocol (P, V ) (note that mes1 is not required for it to compute mes2). Finally the
prover Pnew answers as in the original protocol, and also sends mes1 in the clear. The verifier
Vnew accepts, if it would in the original protocol and mes1 is a preimage of y underHn.

We first note that now the size of the instance ` can be chosen to be an arbitrary polynomial
in the length n = |wi1| of the first WI message. In addition, we note that the protocol is still WI,
as the view of the verifier Vnew in the new protocol can be perfectly simulated from the view of
the verifier V in the old protocol, by hashing the first message on its own.

Finally, we observe that any prover P ∗new that convinces the verifier in the new protocol of
accepting with probability ε, can be transformed into a prover P ∗ that convinces the verifier
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of the original protocol, or to a collision-finder. Indeed, the prover P ∗ would first run P ∗new
until the last message, i.e., until it obtains a valid preimage mes1 of y. Then it would proceed
interacting with V using mes1 as its first message, and using P ∗new to emulate the third message.
By the collision resistance of H the prover P ∗new indeed cannot make the verifier Vnew accept
with respect to two different perimages mes1,mes′1, except with negligible probability. Thus
the prover P ∗ convinces V with probability ε− negl(n).

2.6 1-Hop Homomorphic Encryption

A 1-hop homomorphic encryption scheme [GHV10] allows a pair of parties to securely evaluate
a function as follows: the first party encrypts an input, the second party homomorphically
evaluates a function on the ciphertext, and the first party decrypts the evaluation result. (We
do not require any compactness of post-evaluation ciphertexts.)

Definition 2.5. A scheme (Enc,Eval,Dec), where Enc,Eval are probabilistic and Dec is determinis-
tic, is a semantically-secure, circuit-private, 1-hop homomorphic encryption scheme if it satisfies the
following properties:

• Perfect correctness: For any n ∈ N, x ∈ {0, 1}n and circuit C:

Pr

 (ct, sk)← Enc(x)
ĉt← Eval(ct, C)
Decsk(ĉt) = C(x)

 = 1 .

where the probability is over the coin tosses of Enc and Eval.

• Semantic security: For any non-uniform PPT A = {An}n∈N ∈ P, every n ∈ N, and any pair
of inputs x0, x1 ∈ {0, 1}poly(n) of equal length,

Pr
b←{0,1}

(ct,·)←Enc(xb)

[An(ct) = b] ≤ 1

2
+ negl(n) .

• Circuit privacy: The randomized evaluation procedure, Eval, should not leak information on
the input circuit C. This should hold even for malformed ciphertexts. Formally, let E(x) =
Supp(Enc(x)) be the set of all legal encryptions of x, let En = ∪x∈{0,1}nE(x) be the set legal
encryptions for strings of length n, and let Cn be the set of all circuits on n input bits. There exists
a (possibly unbounded) simulator S1hop such that:

{C,Eval(c, C)} n∈N,C∈Cn
x∈{0,1}n,c∈E(x)

≈c
{
C,S1hop(c, C(x), 1|C|)

}
n∈N,C∈Cn

x∈{0,1}n,c∈E(x)

{C,Eval(c, C)} n∈N
C∈Cn,c/∈En

≈c
{
C,S1hop(c,⊥, 1|C|)

}
n∈N

C∈Cn,c/∈En
.

Instantiation. 1-hop homomorphic encryption schemes can be instantiated based on any two-
message two-party computation protocol secure against semi-honest adversaries; in particular,
using Yao’s garbled circuits and an appropriate 2-message oblivious transfer protocol, which
can be based on the Decisional Diffie-Hellman assumption, the Quadratic Residuosity assump-
tion, or the learning with errors assumption [Yao86, GHV10, NP01, AIR01, PVW08, HK12].
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3 The Protocol

In this section, we construct a 3-message ZK argument of knowledge based on 2-message
memory delegation schemes. More precisely, we show that for any class of adversaries A ⊆ P,
given a delegation scheme that is sound against BA

1 , the protocol is an argument of knowledge
against A. For simplicity we focus on classes A that are closed under uniform reductions;
namely BA

1 ⊆ A. These will indeed capture the adversary classes of interest for this work. We
start by listing the ingredients used in the protocol, as well as introducing relevant notation.

Ingredients and notation:

• A two-message memory delegation scheme (Digest,Query,Prov,Ver) for γ-bounded com-
putations, sound against provers in A ⊆ P, for a class A closed under uniform reductions
as in Definition 2.3.

• A semantically secure and circuit-private, 1-hop homomorphic encryption scheme (Enc,Eval,Dec)
as in Definition 2.5.

• A 3-message WIPOK for NP with first-message-dependent instances as in Definition 2.4.
We denote its messages by (wi1,wi2,wi3).

• A non-interactive perfectly-binding commitment scheme Com.

• For some wi1, cmt, denote by Mwi1,cmt a Turing machine that given memory D = V ∗

parses V ∗ as a Turing machine, runs V ∗ on input (wi1, cmt), parses the result as (u,wi2, q, ĉtτ ),
and outputs u.

• Denote by Vparam a circuit that has the string param hard-coded and operates as follows.
Given as input a verification state τ for the delegation scheme:

– parse param = (wi1, cmt, q, u, d, t, π),

– return 1 (“accept”) if either of the following occurs:

∗ the delegation verifier accepts: Ver(d, τ,Mwi1,cmt, t, u, π) = 1,
∗ the query is inconsistent: q 6= Query(1n; τ).

In words, Vparam, given the verification state τ , first verifies the proof π that “Mwi1,cmt(D) =
(u, · · · )” where D is the database corresponding to the digest d. In addition, it verifies
that q is truly consistent with the coins τ . If the query is consistent, but the proof is
rejected Vparam also rejects.

• Denote by 1 a circuit of the same size as Vparam that always returns 1.

We now describe the protocol in Figure 1.

Theorem 3.1. Given a 2-message memory delegation scheme for γ-bounded computations sound against
provers in A, a semantically-secure, circuit-private, 1-hop homomorphic encryption scheme, a 3-message
WIPOK with first-message-dependent instances, and a non-interactive perfectly-binding commitment
scheme. The corresponding Protocol 1 is a zero-knowledge argument of knowledge against provers in A.

Overview of proof. For simplicity, let us focus on showing that the protocol is sound and
zero knowledge. (Showing it is an argument of knowledge follows a similar reasoning.) We
start with soundness. Assuming that x /∈ L, in order to pass the WIPOK with respect to an
evaluated cipher ĉt that decrypts to 1, the prover must know a digest d ∈ {0, 1}n, a time bound
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Protocol 1

Common Input: an instance x ∈ L ∩ {0, 1}n, for security parameter n.

P : a witness w ∈ RL(x).

1. P computes

• wi1, the first message of the WIPOK for statements of length `Ψ(n), where `Ψ is
the length of the statement Ψ defined in Step 3 below,

• cmt← Com(0n, 0log γ(n)), a commitment to the all zero string,

and sends (wi1, cmt).

2. V computes

• wi2, the second message of the WIPOK.

• (τ, q)← Query(1n), verification state (w.l.o.g the coins of Query) and query,

• (ctτ , sk)← Encsk(τ), an encryption of the verification state,

• u← {0, 1}n, a uniformly random string,

and sends (u,wi2, q, ctτ ).

3. P computes

• ĉt← Eval(1, ctτ ), an evaluation of the constant one function,

• wi3, the third WIPOK message for the statement
Ψ = Ψ1(x) ∨Ψ2(wi1, cmt, q, u, ctτ , ĉt) of length `Ψ(n) given by:{

∃w

∣∣∣∣∣ (x,w) ∈ RL

}∨
{
∃ d, π, rcmt ∈ {0, 1}n
t ≤ γ(n)

∣∣∣∣∣
cmt = Com(d, t; rcmt)
param = (wi1, cmt, q, u, d, t, π)
ĉt = Eval(Vparam, ctτ )

}
,

using the witness w ∈ RL(x) for Ψ1,

and sends (ĉt,wi3).

4. V verifies the WIPOK proof (wi1,wi2,wi3) for the statement Ψ and that Decsk(ĉt) = 1.

Figure 1: A 3-message ZK argument of knowledge against prover in A.

t ≤ γ(n), and proof π ∈ {0, 1}n, such that Vparam(τ) = 1. This, by definition, means that (d, t, π)
are such that the delegation verifier Ver is convinced that the digest d corresponds to a machine
V ∗ such that V ∗(wi1, cmt) = u. Intuitively, this implies that the prover managed to commit to a
program that predicts the random string u before it was ever sent, which is unlikely. Formally,
we show that such a prover can be used to break the underlying delegation scheme. Here we
will also rely on the semantic security of the encryption scheme to claim that the encrypted
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verification state τ is hiding. Since the delegation scheme is sound against provers in A, we
shall only get soundness against such provers.

To show ZK, we construct a non-black-box simulator following the simulator of Barak
[Bar01]. At high-level, the simulator uses the code of the (malicious) verifier V ∗ as the memory
for the delegation scheme, and completes the WIPOK using the trapdoor branch Ψ2 of the state-
ment Ψ = Ψ1∨Ψ2. The trapdoor witness is basically (d, t, π), where d is the digest corresponding
to V ∗, t ≈ |V ∗| and π is the corresponding delegation proof that V ∗(wi1, cmt) = u, which is now
true by definition. By the perfect completeness of the delegation scheme, we know that as long
as the verifier honestly encrypts some randomness τ as the private state, and gives a query q
that is consistent with τ , the delegation verifier Ver will accept the corresponding proof. Thus,
the circuit privacy of homomorphic evaluation (which holds also if the verifier produces a mal-
formed ciphertext) would guarantee indistinguishability from a real proof, where the prover
actually evaluates the constant 1 circuit.

A detailed proof follows. We first prove in Section 3.1 that the protocol is an argument of
knowledge. Then we prove in Section 3.2 that the protocol is zero knowledge.

3.1 Proving that the Protocol is an Argument of Knowledge

In this section, we show that the protocol is an argument of knowledge against provers in A.

Proposition 3.1. Protocol 1 is an argument of knowledge against provers in A.

Proof. We show that there exists a uniform PPT extractor E ∈ B1 and a uniform PPT reduction
R ∈ B1, such that for any prover P ∗ = {P ∗n}n∈N ∈ A that generates xn ∈ {0, 1}n and convinces
V of accepting xn with non-negligible probability ε(n), one of the following holds:

• EP ∗n (11/ε(n), xn) outputs w ∈ RL(xn) with probability ε(n)2/4− negl(n),6 or

• RP ∗n breaks the soundness of the delegation scheme with probability n−O(1).

We start by describing the extractor. Throughout the description (and following proof), we
will often omit n, when it is clear from the context.

The witness extractor EP ∗n (11/ε(n), xn) operates as follows:

1. Derives from P ∗ a new prover P ∗wi for the WIPOK as follows. P ∗wi emulates the role of
P ∗ in the WIPOK; in particular, it would (honestly) sample (τ, (sk, ctτ ), u) on its own to
compute the second verifier message (wi2, q, ctτ , u) that P ∗ receives.

2. Chooses the random coins r for the new prover P ∗wi, and samples a transcript tr =
(Ψ,wi1,wi2,wi3) of an execution with the honest WIPOK verifier Vwi.

3. Applies the WIPOK extractor Ewi on the transcript tr, with oracle access to P ∗wi, and ex-
traction parameter 2/ε. That is, computes w ← EP

∗
wi(r)

wi (12/ε, tr).

4. Outputs w.

Our strategy will be to show the required reductionR, such that if the extractor fails to extract
with the required probability, then the reduction breaks the underlying delegation scheme.
Thus from hereon, we assume that for some noticeable function η(n) = n−O(1), with proba-
bility at most ε2/4 − η the extracted witness w is in RL(x). Rather than already describing

6We note that the extraction probability can then be amplified to 1− negl(n) by standard repetition.
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the reduction R, we shall first establish several claims regarding the extraction procedure and
the consequences of extraction failure. These will motivate our concrete construction of the
reductionR.

We start by noting that an execution of P ∗wi(r) with the honest WIPOK verifier Vwi induces a
perfectly emulated execution of P ∗ with the honest verifier V . Thus, we know that V , and in
particular Vwi, accepts in such an execution with probability ε(n) ≥ n−O(1).

Good coins r. We say that random coins r for P ∗wi are good if with probability at least ε/2 over
the coins of the WIPOK verifier Vwi, the induced execution of P ∗ with V is such that the zero-
knowledge verifier V accepts. By a standard averaging argument, at least an (ε/2)-fraction of
the coins r for P ∗wi are good.

Recall that every execution of Ewi induces a choice r for P ∗wi, a WIPOK transcript tr =
(Ψ,wi1,wi2,wi3), and values (cmt, q, u, ctτ , ĉt) exchanged in the induced interaction between
the zero-knowledge prover P ∗ and the zero-knowledge verifier V . These values, in turn, de-
termine the formula

Ψ = Ψ1(x) ∨Ψ2(wi1, cmt, q, u, ctτ , ĉt).

We next claim that for any good r, such an extraction procedure outputs a witness for Ψ and
simultaneously the homomorphic evaluation result ĉt decrypts to one (under the secret key sk
sampled together with ctτ ), with non-negligible probability.

Claim 3.1 (Extraction for good r). For any good r for P ∗wi, it holds that w satisfies the induced
statement Ψ and Decsk(ĉt) = 1 with probability ε(n)/2 − negl(n) over a transcript tr, and coins for
Ewi.

Proof of Claim 3.1. Fix some good coins r. Since the coins r are good, the WIPOK verifier
Vwi is convinced by P ∗wi with probability at least ε/2, meaning that Vwi accepts and in addi-
tion Decsk(ĉt) = 1. We claim that when this occurs then, except with probability negl(n), the
extractor Ewi, also outputs a valid witness w for Ψ. This follows directly from the extraction
guarantee of the WIPOK.

Now, relying on the fact that overall the extractor fails to output a witness for x, we deduce
that with non-negligible probability, the extracted witness satisfies the trapdoor statement Ψ2.

Claim 3.2 (Extracting a trapdoor witness). In a random execution of the extractor, the extracted wit-
ness w satisfies the trapdoor statement, namely Ψ2(wi1, cmt, q, u, ctτ , ĉt), and in addition Decsk(ĉt) =
1, with probability at least η(n)− negl(n) over the choice of r for P ∗wi, a transcript tr, and coins for Ewi.

Proof of Claim 3.2. First, by the (ε/2)-density of good r’s and Claim 3.1, we deduce that in
a random execution the extracted w satisfies the statement Ψ = Ψ1 ∨ Ψ2, and in addition
Decsk(ĉt) = 1, with probability at least ε2/4 − negl(n). Combining this with the fact that w ∈
RL(x) with probability at most ε2/4− η, the claim follows.

Next, recall that by the definition of Ψ2, whenever w is a witness for Ψ2, it holds that

w = (d, π, t, rcmt) :

d, π ∈ {0, 1}n, t ≤ γ(n)
ĉt = Eval(Vparam, ctτ )
param = (wi1, cmt, q, u, d, t, π)
cmt = Com(d, t; rcmt)

.
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Furthermore, by the definition of Vparam and the perfect completeness of the 1-hop homomor-
phic encryption,

Decsk(ĉt) = Vparam(τ) = Ver(d, τ,Mwi1,cmt, t, u, π) .

We can thus deduce that, with probability η, the witness w = (d, π, t, rcmt) extracted by E is
such that: (a) Ver(d, τ,Mwi1,cmt, t, u, π) = 1, and (b) cmt = Com(d, t; rcmt).

An equivalent experiment that hides the secret verification state τ . We now consider an aug-
mented extraction procedure Eaug ∈ B1 that behaves exactly as the original extractor E , except
that, when P ∗wi emulates P ∗, it does not sample an encryption ctτ of the secret verification state
τ , but rather it samples an encryption ct0 of 0|τ |. We claim that in this alternative experiment,
the above two conditions (a) and (b) still hold with the same probability up to a negligible
difference.

Claim 3.3 (Convincing probability in alternative experiment.). With probability η − negl(n), the
witness w = (d, π, t, rcmt) extracted by Eaug is such that: (a) Ver(d, τ,Mwi1,cmt, t, u, π) = 1, and (b)
cmt = Com(d, t; rcmt).

Proof sketch of Claim 3.3. This claim follows from the semantic security of the 1-hop homo-
morphic encryption scheme. Indeed, if the above was not the case, we can distinguish between
an encryption of τ and one of 0|τ |. For this, note that the first experiment with ctτ (respectively,
the second with ct0) can be perfectly emulated given τ and the ciphertext ctτ (respectively, ct0),
and in addition the above two conditions (a) and (b) can be tested efficiently.

The reductionR to the soundness of delegation. We are now ready to describe the reduction
R that breaks the soundness of the delegation scheme. In what follows, we view the random-
ness r for P ∗wi as split into r = (r1, τ, u, r2), where r1 is any randomness used to generate the
first prover message (wi1, cmt), τ is the randomness for Query and u is the random string both
used to emulate the second verifier message, and r2 are any additional random coins used by
P ∗wi.
The reductionRP ∗n (11/ε(n), xn) breaks the delegation scheme as follows:7

1. Samples r∗ = (r∗1, τ
∗, u∗, r∗2) uniformly at random.

2. Runs EP ∗aug(11/ε, x) using r∗ as the randomness for Pwi. Let (cmt∗,wi∗1) be the correspond-
ing first prover message (which is completely determined by the choice of r∗1), and let
w∗ = (d∗, π∗, t∗, r∗cmt) be the witness output by the extractor.

3. Samples u, u′ ← {0, 1}n uniformly at random.

4. Declares d∗ as the digest,Mwi∗1,cmt∗ as the machine to be evaluated over the memory, t∗

the bound on its running time, and (u, u′) as the two outputs for the attack.

5. Given a delegation query q, R generates two proofs π and π′ for u and u′ respectively as
follows:

(a) Samples r = (r∗1,⊥, u, r2) and r′ = (r∗1,⊥, u′, r′2), where in both r∗1 is the same ran-
domness sampled before, (u, u′) are the random strings sampled before, and (r2, r

′
2)

are uniformly random strings.

7Here we give the reduction (11/ε(n), xn) for the sake of simplicity and clarity of exposition. Recall that xn is
generated by P ∗n . Also, ε can be approximated by sampling. Thus the reduction can (uniformly) obtain these two
inputs from P ∗.
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(b) Runs EP ∗aug(11/ε, x) once with respect to r and another time with respect to r′, with
one exception — the prover P ∗wi constructed by EP ∗aug does not emulate on its own the
delegation query in the verifier’s message, but rather it uses the external query q that
R is given. The two executions of EP ∗aug then produce witnesses w = (d, π, t, rcmt) and
w′ = (d′, π′, t′, r′cmt).

(c) Output (π, π′).

We first note that the running time of R is polynomial in n and in the running of Eaug, which
is in turn polynomial in the running time of P ∗ and in 1/ε(n) = nO(1). Thus it is overall
polynomial in n.

To complete the proof, we show thatR breaks the scheme with noticeable probability.

Claim 3.4. u 6= u′ and π and π′ both convince the delegation verifier with probability Ω(η(n)5).

Proof of Claim 3.4. Throughout, let us denote byG the event that the witness w = (d, π, t, rcmt)
extracted by Eaug is such that: (a) Ver(d, τ,Mwi1,cmt, t, u, π) = 1, and (b) cmt = Com(d, t; rcmt).
We will call r∗1 good1, if with probability η/2 (over all other randomness), G occurs. Then by
Claim 3.3 and averaging, with probability η/2 − negl(n) over a choice of a random r∗1, it is
good1. Next, for a fixed r∗1 and τ , we will say that τ is r∗1-good, if with probability η/4 over
a choice of random (u, r∗2), G occurs. Then, by averaging, for any good1 r

∗
1, with probability

η/4− negl(n) over a choice of a random τ , it is r∗1-good.
We are now ready to lower bound the probability that R breaks the delegation scheme.

This is based on the following assertions:

1. In Step 1, with probability η/2− negl(n),R samples a good1 r
∗
1.

2. Conditioned on r∗1 being good1:

(a) In Step 2, with probability η/2, G occurs. In particular, the extracted (d∗, t∗, r∗cmt) are
valid in the sense that cmt∗ = Com(d∗, t∗; r∗cmt), cmt∗ is the commitment generated
in the first prover message (determined by the choice of r∗1).

(b) In Step 5, with probability η/4− negl(n), the coins τ chosen by the delegation Query
algorithm (inducing the query q) are r∗1-good.

(c) Conditioned on the coins τ of Query being r∗1-good:

i. In Step 5, with probability η/4, the eventG occurs. Thus the extracted (d, t, rcmt, π)
are valid in the sense that cmt∗ = Com(d, t; rcmt), as well as Ver(d, τ,Mwi∗1,cmt∗ , t, u, π) =
1. Recall that (wi∗1, cmt∗) are generated in the first prover message (and are de-
termined by the choice of r∗1).

ii. The same holds independently for the second random output u′.

3. In Step 3, with probability 1− 2−n, the outputs u, u′ sampled byR are distinct.

4. If cmt∗ = Com(d∗, t∗; r∗cmt) = Com(d, t; rcmt) = Com(d′, t′; r′cmt), then (d, t) = (d′, t′) =
(d∗, t∗).

The first two assertions follow directly from the definitions and averaging arguments made
above. The third assertion follows from the collision probability of two random strings of
length n. The last assertion follows from the fact that the commitment Com is perfectly binding.
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It is left to note that if all of the above occur, then R manages to produce accepting proofs
(π, π′) for two different outcomes (u, u′) with respect to the same digest d∗ and machineMwi∗1,cmt∗ ;
thus, it breaks soundness. This happens with probability(η

2
− negl(n)

)
· η

2
·
(η

4
− negl(n)

)
·
(η

4

)2
− 2−n = Ω(η5) .

This completes the proof of Claim 3.4.
This completes the proof of Proposition 3.1.

3.2 Proving that the Protocol is Zero Knowledge

In this section, we prove

Proposition 3.2. Protocol 1 is ZK against non-uniform PPT verifiers.

Proof. We describe a universal ZK simulator S that given the code of any non-uniform PPT
V ∗ = {V ∗n }n∈N, a polynomial bound t(n) = nO(1) on its running time (or more precisely the
time required for a universal machine to run it), and x ∈ L, simulates the view of V . We
shall assume V ∗ is deterministic; this is w.l.o.g as we can always sample random coins for V ∗

and hardwire them into its non-uniform description. Throughout, we often omit the security
parameter n when clear from the context.

The simulator S(V ∗n , t(n), x), where |x| = n, operates as follows:

1. Generates the first message (wi1, cmt) as follows:

(a) Samples a first message wi1 ∈ {0, 1}n of the WIPOK.

(b) Computes a digest d = Digest(1n, V ∗) of the verifier’s code.

(c) Computes a commitment cmt = Com(d, t; rcmt) to the digest d and V ∗’s running time
t, using random coins rcmt ← {0, 1}n. Here t is interpreted as string in {0, 1}log γ(n).
This is possible, for all large enough n, as t(n) = nO(1) � nω(1) = γ(n).

2. Runs the verifier to obtain (wi2, q, u, ctτ )← V ∗(wi1, cmt).

3. Computes the third message (ĉt,wi3) as follows:

(a) Computes a proof π = Prov(1t,Mwi1,cmt, V
∗, q) that the digested code of V ∗ outputs

u.

(b) Samples ĉt← Eval(Vparam, ctτ ), for param = (wi1, cmt, q, u, d, t, π).

(c) Computes the third WIPOK message wi3 for the statement Ψ = Ψ1(x)∨Ψ2(wi1, cmt, q, u, ctτ , ĉt)
given by:{
∃w

∣∣∣∣∣ (x,w)
∈ RL

}∨{
∃ d, π, rcmt ∈ {0, 1}n
t ≤ γ(n)

∣∣∣∣∣
ĉt = Eval(Vparam, ctτ )
param = (wi1, cmt, q, u, d, t, π)
cmt = Com(d, t; rcmt)

}
,

using the witness (d, π, rcmt, t) for the trapdoor statement Ψ2.

(d) Outputs the view (wi1, cmt, ĉt,wi3) of V ∗.
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We now show that the view generated by S is computationally indistinguishable from the
view of V ∗ in an execution with the honest prover P . We do this by exhibiting a sequence of
hybrids.

Hybrid 1: The view (wi1, cmt, ĉt,wi3) is generated by S.

Hybrid 2: Instead of generating wi3 using the witness (d, π, rcmt, t) for Ψ2, it is generated using
a witness w for Ψ1 = {x ∈ L}. By the adaptive witness-indistinguishability of the WIPOK
system, this hybrid is computationally indistinguishable from Hybrid 1.

Hybrid 3: Instead of generating cmt as a commitment cmt = Com(d, t; rcmt) to (d, t), it is gen-
erated as a commitment to 0n+log γ(n). Note that in this hybrid the commitment’s randomness
rcmt is not used anywhere, but in the generation of cmt. Thus, by the computational hiding of
the commitment, this hybrid is computationally indistinguishable from Hybrid 2.

Hybrid 4: The view (wi1, cmt, ĉt,wi3) is generated in an interaction of V ∗ with the honest
prover P . The difference from Hybrid 3 is in that ĉt is sampled from Eval(1, ctτ ) instead of
Eval(Vparam, ctτ ). First, note that by the perfect completeness of the delegation scheme, for any
τ ∈ {0, 1}n, Vparam(τ) = 1(τ) = 1. Indeed, by definition we know that

Mwi1,cmt(V
∗) = V ∗(wi1, cmt)[1] = u ,

and this output is produced after at most t steps. Thus, assuming that q = Query(1n; τ), the
delegation verifier accepts; namely, Ver(d, τ,Mwi1,cmt, t, u, π) = 1, and by definition Vparam(τ) =
1. Also, if q 6= Query(1n; τ), then Vparam(τ) = 1 by definition.

By the circuit privacy of the 1-hop homomorphic encryption, the above guarantees indis-
tinguishability whenever ctτ is a well-formed ciphertext since

Eval(Vparam, ctτ ) ≈c S1hop(ctτ ,Vparam(τ), |Vparam|) ≡
S1hop(ctτ ,1(τ), |1|) ≈c Eval(1, ctτ ) .

Also, for any malformed ciphertext ct∗ it holds that

Eval(Vparam, ct∗) ≈c S1hop(ct∗,⊥, |Vparam|) ≡ S1hop(ct∗,⊥, |1|) ≈c Eval(1, ct∗) .

It follows that Hybrid 4 is computationally indistinguishable from Hybrid 3.

This completes the proof of Proposition 3.2.

Acknowledgments. We thank Ran Canetti, Shai Halevi and Hugo Krawczyk for helpful com-
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