359 research outputs found

    Oxygen ion dynamics in the Earth's ring current: Van Allen probes observations

    Full text link
    Oxygen (O+) enhancements in the inner magnetosphere are often observed during geomagnetically active times, such as geomagnetic storms. In this study, we quantitatively examine the difference in ring current dynamics with and without a substantial O+ ion population based on almost 6 years of Van Allen Probes observations. Our results have not only confirmed previous finding of the role of O+ ions to the ring current but also found that abundant O+ ions are always present during large storms when sym-H < -60 nT without exception, whilst having the pressure ratio () between O+ and proton (H+) larger than 0.8 and occasionally even larger than 1 when L < 3. Simultaneously, the pressure anisotropy decreases with decreasing sym-H and increasing L shell. The pressure anisotropy decrease during the storm main phase is likely related to the pitch angle isotropization processes. In addition, we find that increases during the storm main phase and then decreases during the storm recovery phase, suggesting faster buildup and decay of O+ pressure compared to H+ ions, which are probably associated with some species dependent source and/or energization as well as loss processes in the inner magnetosphere.Accepted manuscrip

    Precision Fe Kalpha and Fe Kbeta Line Spectroscopy of the Seyfert 1.9 Galaxy NGC 2992 with Suzaku

    Get PDF
    We present detailed time-averaged X-ray spectroscopy in the 0.5--10 keV band of the Seyfert~1.9 galaxy NGC 2992 with the Suzaku X-ray Imaging Spectrometers (XIS). We model the complex continuum in detail. There is an Fe K line emission complex that we model with broad and narrow lines and we show that the intensities of the two components are decoupled at a confidence level >3sigma. The broad Fe K line has an EW of 118 (+32,-61) eV and could originate in an accretion disk (with inclination angle greater than ~30 degrees). The narrow Fe Kalpha line has an EW of 163 (+47,-26) eV and is unresolved FWHM <4090 km/s) and likely originates in distant matter. The absolute flux in the narrow line implies that the column density out of the line-of-sight could be much higher than measured in the line-of-sight, and that the mean (historically-averaged) continuum luminosity responsible for forming the line could be a factor of several higher than that measured from the data. We also detect the narrow Fe Kbeta line with a high signal-to-noise ratio and describe a new robust method to constrain the ionization state of Fe responsible for the Fe Kalpha and Fe Kbeta lines that does not require any knowledge of possible gravitational and Doppler energy shifts affecting the line energies. For the distant line-emitting matter (e.g. the putative obscuring torus) we deduce that the predominant ionization state is lower than Fe VIII (at 99% confidence), conservatively taking into account residual calibration uncertainties in the XIS energy scale and theoretical and experimental uncertainties in the Fe K fluorescent line energies. From the limits on a possible Compton-reflection continuum it is likely that the narrow Fe Kalpha and Fe Kbeta lines originate in a Compton-thin structure.Comment: Abstract is abridged. Accepted for publication in the Suzaku special issue of PASJ (November 2006). 18 pages, 6 figure

    Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere

    Get PDF
    Perfluorocarbons (PFCs) are potent greenhouse gases with global warming potentials up to several thousand times greater than CO2 on a 100-year time horizon. The lack of any significant sinks for PFCs means that they have long atmospheric lifetimes of the order of thousands of years. Anthropogenic production is thought to be the only source for most PFCs. Here we report an update on the global atmospheric abundances of the following PFCs, most of which have for the first time been analytically separated according to their isomers: c-octafluorobutane (c-C4F8), n-decafluorobutane (n-C4F10), n-dodecafluoropentane (n-C5F12), n-tetradecafluorohexane (n-C6F14), and n-hexadecafluoroheptane (n-C7F16). Additionally, we report the first data set on the atmospheric mixing ratios of perfluoro-2-methylpentane (i-C6F14). The existence and significance of PFC isomers have not been reported before, due to the analytical challenges of separating them. The time series spans a period from 1978 to the present. Several data sets are used to investigate temporal and spatial trends of these PFCs: time series of air samples collected at Cape Grim, Australia, from 1978 to the start of 2018; a time series of air samples collected between July 2015 and April 2017 at Tacolneston, UK; and intensive campaign-based sampling collections from Taiwan. Although the remote “background” Southern Hemispheric Cape Grim time series indicates that recent growth rates of most of these PFCs are lower than in the 1990s, we continue to see significantly increasing mixing ratios that are between 6 % and 27 % higher by the end of 2017 compared to abundances measured in 2010. Air samples from Tacolneston show a positive offset in PFC mixing ratios compared to the Southern Hemisphere baseline. The highest mixing ratios and variability are seen in air samples from Taiwan, which is therefore likely situated much closer to PFC sources, confirming predominantly Northern Hemispheric emissions for most PFCs. Even though these PFCs occur in the atmosphere at levels of parts per trillion molar or less, their total cumulative global emissions translate into 833 million metric tonnes of CO2 equivalent by the end of 2017, 23 % of which has been emitted since 2010. Almost two-thirds of the CO2 equivalent emissions within the last decade are attributable to c-C4F8, which currently also has the highest emission rates that continue to grow. Sources of all PFCs covered in this work remain poorly constrained and reported emissions in global databases do not account for the abundances found in the atmosphere

    Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus

    Get PDF
    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses’ origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus’s origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing \u3e99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; \u3e98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir

    Genetic evidence supports sporadic and independent introductions of subtype H5 low pathogenic avian influenza A viruses from wild birds to domestic poultry in North America

    Get PDF
    Wild-bird origin influenza A viruses (IAVs or avian influenza) have led to sporadic outbreaks among domestic poultry in the United States and Canada, resulting in economic losses through the implementation of costly containment practices and destruction of birds. We used evolutionary analyses of virus sequence data to determine that 78 H5 low-pathogenic avian influenza viruses (LPAIVs) isolated from domestic poultry in the United States and Canada during 2001 to 2017 resulted from 18 independent virus introductions from wild birds. Within the wild-bird reservoir, the hemagglutinin gene segments of H5 LPAIVs exist primarily as two cocirculating genetic sublineages, and our findings suggest that the H5 gene segments flow within each migratory bird flyway and among adjacent flyways, with limited exchange between the nonadjacent Atlantic and Pacific Flyways. Phylogeographic analyses provided evidence that IAVs from dabbling ducks and swans/geese contributed to the emergence of viruses among domestic poultry. H5 LPAIVs isolated from commercial farm poultry (i.e., turkey) that were descended from a single introduction typically remained a single genotype, whereas those from live-bird markets sometimes led to multiple genotypes, reflecting the potential for reassortment with other IAVs circulating within live-bird markets. H5 LPAIVs introduced from wild birds to domestic poultry represent economic threats to the U.S. poultry industry, and our data suggest that such introductions have been sporadic, controlled effectively through production monitoring and a stamping-out policy, and are, therefore, unlikely to result in sustained detections in commercial poultry operations. IMPORTANCE Integration of viral genome sequencing into influenza surveillance for wild birds and domestic poultry can elucidate evolutionary pathways of economically costly poultry pathogens. Evolutionary analyses of H5 LPAIVs detected in domestic poultry in the United States and Canada during 2001 to 2017 suggest that these viruses originated from repeated introductions of IAVs from wild birds, followed by various degrees of reassortment. Reassortment was observed where biosecurity was low and where opportunities for more than one virus to circulate existed (e.g., congregations of birds from different premises, such as live-bird markets). None of the H5 lineages identified were maintained for the long term in domestic poultry, suggesting that management strategies have been effective in minimizing the impacts of virus introductions on U.S. poultry production

    Similarities in the immunoglobulin response and V(H )gene usage in rhesus monkeys and humans exposed to porcine hepatocytes

    Get PDF
    BACKGROUND: The use of porcine cells and organs as a source of xenografts for human patients would vastly increase the donor pool; however, both humans and Old World primates vigorously reject pig tissues due to xenoantibodies that react with the polysaccharide galactose α (1,3) galactose (αGal) present on the surface of many porcine cells. We previously examined the xenoantibody response in patients exposed to porcine hepatocytes via treatment(s) with bioartficial liver devices (BALs), composed of porcine cells in a support matrix. We determined that xenoantibodies in BAL-treated patients are predominantly directed at porcine αGal carbohydrate epitopes, and are encoded by a small number of germline heavy chain variable region (V(H)) immunoglobulin genes. The studies described in this manuscript were designed to identify whether the xenoantibody responses and the IgV(H )genes encoding antibodies to porcine hepatocytes in non-human primates used as preclinical models are similar to those in humans. Adult non-immunosuppressed rhesus monkeys (Macaca mulatta) were injected intra-portally with porcine hepatocytes or heterotopically transplanted with a porcine liver lobe. Peripheral blood leukocytes and serum were obtained prior to and at multiple time points after exposure, and the immune response was characterized, using ELISA to evaluate the levels and specificities of circulating xenoantibodies, and the production of cDNA libraries to determine the genes used by B cells to encode those antibodies. RESULTS: Xenoantibodies produced following exposure to isolated hepatocytes and solid organ liver grafts were predominantly encoded by genes in the V(H)3 family, with a minor contribution from the V(H)4 family. Immunoglobulin heavy-chain gene (V(H)) cDNA library screening and gene sequencing of IgM libraries identified the genes as most closely-related to the IGHV3-11 and IGHV4-59 germline progenitors. One of the genes most similar to IGHV3-11, V(H)3-11(cyno), has not been previously identified, and encodes xenoantibodies at later time points post-transplant. Sequencing of IgG clones revealed increased usage of the monkey germline progenitor most similar to human IGHV3-11 and the onset of mutations. CONCLUSION: The small number of IGV(H )genes encoding xenoantibodies to porcine hepatocytes in non-human primates and humans is highly conserved. Rhesus monkeys are an appropriate preclinical model for testing novel reagents such as those developed using structure-based drug design to target and deplete antibodies to porcine xenografts

    Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations

    Get PDF
    Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3−) and nitryl chloride (ClNO2). We report the first‐ever derivations of γ(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual γ(N2O5) values with a median value of 0.0143 and range of 2 × 10−5 to 0.1751. WINTER γ(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict γ(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of γ(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first field‐based, empirical parameterization of γ(N2O5), fit to WINTER data, based on the functional form of previous parameterizations

    Use of High-Resolution Ultrasound to Guide Alcohol Neurolysis for Chronic Pain

    Get PDF
    BACKGROUND: The diagnosis and treatment of neuropathic pain is often clinically challenging, with many patients requiring treatments beyond oral medications. To improve our percutaneous treatments, we established a clinical pathway that utilized ultrasound (US) guidance for steroid injection and alcohol ablation for patients with painful neuropathy. OBJECTIVES: To describe a collaborative neuropathy treatment pathway developed by a neurosurgeon, pain physicians, and a sonologist, describing early clinical experiences and patient-reported outcomes. STUDY DESIGN: A retrospective case series was performed. METHODS: Patients that received percutaneous alcohol ablation with US guidance for neuropathy were identified through a retrospective review of a single provider\u27s case log. Demographics and treatment information were collected from the electronic medical record. Patients were surveyed about their symptoms and treatment efficacy. Descriptive statistics were expressed as medians and the interquartile range ([IQR]; 25th and 75th data percentiles). Differences in the median follow-up pain scores were assessed using a Wilcoxon signed-rank test. RESULTS: Thirty-five patients underwent US-guided alcohol ablation, with the average patient receiving one treatment (range: 1 to 2), having a median duration of 4.8 months until reinjection (IQR: 2.9 to 13.1). The median number of steroid injections that individuals received before US-guided alcohol ablation was 2 (IQR: 1 to 3), and the median interval between steroid injections was 3.7 months (IQR: 2.0 to 9.6). Most (20/35 [57%]) patients responded to the survey, and the median pain scores decreased by 3 units (median: -3, IQR: -6 to 0; P \u3c 0.001) one week following the alcohol ablation. This pain reduction remained significant at one month (P \u3c 0.001) and one year (P = 0.002) following ablation. Most (12/20 [60%]) patients reported that alcohol ablation was more effective in improving their pain than oral pain medications. LIMITATIONS: Given the small sample size, treatment efficacy for alcohol neurolysis cannot be generalized to the broader population. CONCLUSIONS: US-guided percutaneous treatments for neuropathic pain present a growing opportunity for interprofessional collaboration between neurosurgery, clinicians who treat chronic pain, and sonologists. US can provide valuable diagnostic information and guide accurate percutaneous treatments in skilled hands. Further studies are warranted to determine whether a US-guided treatment pathway can prevent unnecessary open surgical management

    An approach to measuring and encouraging research translation and research impact

    Get PDF
    Background: Research translation, particularly in the biomedical area, is often discussed but there are few methods that are routinely used to measure it or its impact. Of the impact measurement methods that are used, most aim to provide accountability - to measure and explain what was generated as a consequence of funding research. This case study reports on the development of a novel, conceptual framework that goes beyond measurement. The Framework To Assess the Impact from Translational health research, or FAIT, is a platform designed to prospectively measure and encourage research translation and research impact. A key assumption underpinning FAIT is that research translation is a prerequisite for research impact. Methods: The research impact literature was mined to understand the range of existing frameworks and techniques employed to measure and encourage research translation and research impact. This review provided insights for the development of a FAIT prototype. A Steering Committee oversaw the project and provided the feedback that was used to refine FAIT. Results: The outcome of the case study was the conceptual framework, FAIT, which is based on a modified program logic model and a hybrid of three proven methodologies for measuring research impact, namely a modified Payback method, social return on investment, and case studies or narratives of the process by which research translates and generates impact. Conclusion: As funders increasingly seek to understand the return on their research investments, the routine measurement of research translation and research impact is likely to become mandatory rather than optional. Measurement of research impact on its own is insufficient. There should also be a mechanism attached to measurement that encourages research translation and impact - FAIT was designed for this tas
    corecore