22 research outputs found

    Galaxy evolution: black hole feedback in the luminous quasar PDS 456

    Get PDF
    The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10(46) ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution

    Etiology of hospital mortality in children living in low- and middle-income countries:a systematic review and meta-analysis

    Get PDF
    In 2019, 80% of the 7.4 million global child deaths occurred in low- and middle-income countries (LMICs). Global and regional estimates of cause of hospital death and admission in LMIC children are needed to guide global and local priority setting and resource allocation but are currently lacking. The study objective was to estimate global and regional prevalence for common causes of pediatric hospital mortality and admission in LMICs. We performed a systematic review and meta-analysis to identify LMIC observational studies published January 1, 2005-February 26, 2021. Eligible studies included: a general pediatric admission population, a cause of admission or death, and total admissions. We excluded studies with data before 2,000 or without a full text. Two authors independently screened and extracted data. We performed methodological assessment using domains adapted from the Quality in Prognosis Studies tool. Data were pooled using random-effects models where possible. We reported prevalence as a proportion of cause of death or admission per 1,000 admissions with 95% confidence intervals (95% CI). Our search identified 29,637 texts. After duplicate removal and screening, we analyzed 253 studies representing 21.8 million pediatric hospitalizations in 59 LMICs. All-cause pediatric hospital mortality was 4.1% [95% CI 3.4%–4.7%]. The most common causes of mortality (deaths/1,000 admissions) were infectious [12 (95% CI 9–14)]; respiratory [9 (95% CI 5–13)]; and gastrointestinal [9 (95% CI 6–11)]. Common causes of admission (cases/1,000 admissions) were respiratory [255 (95% CI 231–280)]; infectious [214 (95% CI 193–234)]; and gastrointestinal [166 (95% CI 143–190)]. We observed regional variation in estimates. Pediatric hospital mortality remains high in LMICs. Global child health efforts must include measures to reduce hospital mortality including basic emergency and critical care services tailored to the local disease burden. Resources are urgently needed to promote equity in child health research, support researchers, and collect high-quality data in LMICs to further guide priority setting and resource allocation

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Zika Virus and Congenital Birth Defects: An Investigation into the Role of the Placenta and the Time of Infection

    No full text
    After many years of intermittent individual infections, in the past four years the Zikavirus (ZIKV) has spread rapidly. An increase in the frequency of cases of congenital neurologicalabnormalities, such as microcephaly, has been observed in conjunction with the rise of ZIKV. Asof April 21st, 2016, the World Health Organization (WHO) determined congenital infection withthe Zika virus can cause microcephaly.^4 This investigation will look to amalgamate the clinical, laboratory, and morphological information of 33 mothers who were infected with the Zika virus during pregnancy in Rio de Janeiro, Brazil in 2015-2016. First, we explore the influence of time of infection on the presence and severity of malformations in newborns. Second, we evaluate morphological features of the placentas in order to determine if Zika causes structural damage to the placenta, and if so, if these features can be used as a diagnostic tool in the future. To our knowledge, this is the first investigation of its kind which analyzes more than a few placentas. Finally, we compare the morphological features of ZIKV infected placentas to the placental abnormalities produced by TORCH pathogens. We found the time of infection played a significant role in the incidence of microcephalyand other CNS alterations in fetuses. The majority of children who presented with adverseclinical outcomes were noted during the first trimester (60%), with 6 of 7 (86%) cases in thistrimester presenting with microcephaly and/or other CNS alterations. Two cases of secondtrimester infection resulting in malformations were noted, while no cases of third trimesterinfection resulted in CNS alterations. While evaluating the placentas, the most commonmorphological changes were fibrosis of the stroma (97%) and villitis scarring (94%). Several ofthe placental alterations observed were consistent with structural changes seen in placentasinfected with TORCH pathogens. These results provide new cases and information toresearchers who are currently working on a vaccine for the Zika virus. In light of ourobservations, it is likely the placenta could be used as a diagnostic tool in the future, howevermore research is needed to confirm this. As the placental alterations due to congenital ZIKV infection continue to be investigated, our study will serve as preliminary evidence to suggestthat congenital Zika infection can cause morphological abnormalities in the placenta

    The yield of tuberculosis contact investigation in low- and middle-income settings: a systematic review and meta-analysis.

    No full text
    BackgroundContact investigation, the systematic evaluation of individuals in close contact with an infectious tuberculosis (TB) patient, is a key active case-finding strategy for global TB control. Better estimates of the yield of contact investigation can guide strategies to reduce the number of underreported and underdiagnosed TB cases, approximately three million cases per year globally. A systematic review (Prospero ID # CRD42019133380) and meta-analysis was conducted to update and enhance the estimates of the yield of TB contact investigation in low- and middle-income countries (LMIC). Pubmed, Web of Science, Embase and the WHO Global Index Medicus were searched for peer-reviewed studies (published between January 2006-April 2019); studies reporting the number of active TB or latent tuberculosis infection (LTBI) found through contact investigation were included. Pooled data were meta-analyzed using a random effects model and risk of bias was assessed.ResultsOf 1,644 unique citations obtained from database searches, 110 studies met eligibility criteria for descriptive data synthesis and 95 for meta-analysis. The pooled yields of contact investigation activities for different outcomes were: secondary cases of all active TB (defined as those bacteriologically confirmed or clinically diagnosed) 2.87% (2.61-3.14, I2 97.79%), bacteriologically confirmed active TB 2.04% (1.77-2.31, I2 98.06%), and LTBI 43.83% (38.11-49.55, I2 99.36%). Yields are interpreted as the percent of contacts screened who are diagnosed with active TB as a result of TB contact investigation activities. Pooled estimates were substantially heterogenous (I2 ≥ 75%).ConclusionsThis study provides methodologically rigorous and up-to-date estimates for the yield of TB contact investigation activities in low- and middle-income countries (LMIC). While the data are heterogenous, these findings can inform strategic and programmatic planning for scale up of TB contact investigation activities

    Vulnerability of grazing and confined livestock in the Northern Great Plains to projected mid and late-twenty-first century climate

    Get PDF
    The Northern Great Plains (NGP) region of the USA—which comprises Montana, Wyoming, Colorado, North Dakota, South Dakota, and Nebraska—is a largely rural area that provides numerous ecosystem services, including livestock products, cultural services, and conservation of biological diversity. The region contains 25% of the Nation’s beef cattle and approximately one-third of the confined beef cattle, as well as the largest remaining native prairie in the US—the Northern Mixed grass Prairie. With rising atmospheric CO2, the NGP is projected to experience warmer and longer growing seasons, greater climatic variability, and more extreme events (e.g., increased occurrence of large precipitation events). These climatic changes may affect livestock production both directly via physiological impacts on animals and indirectly via modifications to forage, invasion of undesirable plants, and increased exposure to parasites. This raises concerns about the vulnerability of grazing livestock operations and confined livestock operations to projected changes in mid- (2050) and late- (2085) twenty-first century climate. Our objectives are to (1) describe the NGP’s exposure to temperature and precipitation trends, inter-annual variability, and extreme events; (2) evaluate the sensitivity of beef cattle production to direct and indirect effects imposed by these projected climatic changes; and (3) provide a typology of adaptation strategies to minimize adverse consequences of projected changes and maximize beneficial consequences. Agricultural managers have developed considerable adaptive capacity to contend with environmental and economic variability. However, projected climatic changes, especially the increased frequency and magnitude of weather extremes, will require even greater adaptive capacity to maintain viable production systems. Consequently, regional vulnerability to projected climatic changes will be determined not only by ecological responses but also by the adaptive capacity of individual managers. Adaptive capacity in the NGP will differ from other regions, in part because projections suggest some opportunities for increased livestock production. Adaptations in both grazing and confined beef cattle systems will require enhanced decision-making skills capable of integrating biophysical, social, and economic considerations. Social learning networks that support integration of experimental and experiential knowledge—such as lessons learned from early adopters and involvement with science-based organizations—can help enhance decision-making and climate adaptation planning. Many adaptations have already been implemented by a subset of producers in this region, providing opportunities for assessment, further development, and greater adoption. Context-specific decision-making can also be enhanced through science-management partnerships, which aim to build adaptive capacity that recognizes multiple production and conservation/environmental goals

    Etiology of hospital mortality in children living in low- and middle-income countries: A systematic review and meta-analysis

    No full text
    In 2019, 80% of the 7.4 million global child deaths occurred in low- and middle-income countries (LMICs). Global and regional estimates of cause of hospital death and admission in LMIC children are needed to guide global and local priority setting and resource allocation but are currently lacking. The study objective was to estimate global and regional prevalence for common causes of pediatric hospital mortality and admission in LMICs. We performed a systematic review and meta-analysis to identify LMIC observational studies published January 1, 2005-February 26, 2021. Eligible studies included: a general pediatric admission population, a cause of admission or death, and total admissions. We excluded studies with data before 2,000 or without a full text. Two authors independently screened and extracted data. We performed methodological assessment using domains adapted from the Quality in Prognosis Studies tool. Data were pooled using random-effects models where possible. We reported prevalence as a proportion of cause of death or admission per 1,000 admissions with 95% confidence intervals (95% CI). Our search identified 29,637 texts. After duplicate removal and screening, we analyzed 253 studies representing 21.8 million pediatric hospitalizations in 59 LMICs. All-cause pediatric hospital mortality was 4.1% [95% CI 3.4%-4.7%]. The most common causes of mortality (deaths/1,000 admissions) were infectious [12 (95% CI 9-14)]; respiratory [9 (95% CI 5-13)]; and gastrointestinal [9 (95% CI 6-11)]. Common causes of admission (cases/1,000 admissions) were respiratory [255 (95% CI 231-280)]; infectious [214 (95% CI 193-234)]; and gastrointestinal [166 (95% CI 143-190)]. We observed regional variation in estimates. Pediatric hospital mortality remains high in LMICs. Global child health efforts must include measures to reduce hospital mortality including basic emergency and critical care services tailored to the local disease burden. Resources are urgently needed to promote equity in child health research, support researchers, and collect high-quality data in LMICs to further guide priority setting and resource allocation

    Vulnerability of grazing and confined livestock in the Northern Great Plains to projected mid and late-twenty-first century climate

    No full text
    The Northern Great Plains (NGP) region of the USA—which comprises Montana, Wyoming, Colorado, North Dakota, South Dakota, and Nebraska—is a largely rural area that provides numerous ecosystem services, including livestock products, cultural services, and conservation of biological diversity. The region contains 25% of the Nation’s beef cattle and approximately one-third of the confined beef cattle, as well as the largest remaining native prairie in the US—the Northern Mixed grass Prairie. With rising atmospheric CO2, the NGP is projected to experience warmer and longer growing seasons, greater climatic variability, and more extreme events (e.g., increased occurrence of large precipitation events). These climatic changes may affect livestock production both directly via physiological impacts on animals and indirectly via modifications to forage, invasion of undesirable plants, and increased exposure to parasites. This raises concerns about the vulnerability of grazing livestock operations and confined livestock operations to projected changes in mid- (2050) and late- (2085) twenty-first century climate. Our objectives are to (1) describe the NGP’s exposure to temperature and precipitation trends, inter-annual variability, and extreme events; (2) evaluate the sensitivity of beef cattle production to direct and indirect effects imposed by these projected climatic changes; and (3) provide a typology of adaptation strategies to minimize adverse consequences of projected changes and maximize beneficial consequences. Agricultural managers have developed considerable adaptive capacity to contend with environmental and economic variability. However, projected climatic changes, especially the increased frequency and magnitude of weather extremes, will require even greater adaptive capacity to maintain viable production systems. Consequently, regional vulnerability to projected climatic changes will be determined not only by ecological responses but also by the adaptive capacity of individual managers. Adaptive capacity in the NGP will differ from other regions, in part because projections suggest some opportunities for increased livestock production. Adaptations in both grazing and confined beef cattle systems will require enhanced decision-making skills capable of integrating biophysical, social, and economic considerations. Social learning networks that support integration of experimental and experiential knowledge—such as lessons learned from early adopters and involvement with science-based organizations—can help enhance decision-making and climate adaptation planning. Many adaptations have already been implemented by a subset of producers in this region, providing opportunities for assessment, further development, and greater adoption. Context-specific decision-making can also be enhanced through science-management partnerships, which aim to build adaptive capacity that recognizes multiple production and conservation/environmental goals

    B-17 Turret Automation - 2

    No full text
    The purpose of this project is to develop a full scale prototype for the automation of the upper and ball turrets of the B-17G at the Mighty Eighth Air Force Museum. This will be accomplished by removing the original double power unit, which consists of two hydraulic variable speed transmissions and a motor. For the longevity of this project a comprehensive report of recommended parts to be fitted in the housings will be provided. The provided list will consist of and outline the specs of better quality motors, microcontrollers, and potential options for powering the mechanism

    A deep X-ray view of the bare AGN Ark 120 - IV. XMM-Newton and NuSTAR spectra dominated by two temperature (warm, hot) Comptonization processes

    Get PDF
    International audienceContext. The physical characteristics of the material closest to supermassive black holes (SMBHs) are primarily studied through X-ray observations. However, the origins of the main X-ray components such as the soft X-ray excess, the Fe Kα line complex, and the hard X-ray excess are still hotly debated. This is particularly problematic for active galactic nuclei (AGN) showing a significant intrinsic absorption, either warm or neutral, which can severely distort the observed continuum. Therefore, AGN with no (or very weak) intrinsic absorption along the line of sight, so-called “bare AGN”, are the best targets to directly probe matter very close to the SMBH.Aims. We perform an X-ray spectral analysis of the brightest and cleanest bare AGN known so far, Ark 120, in order to determine the process(es) at work in the vicinity of the SMBH.Methods. We present spectral analyses of data from an extensive campaign observing Ark 120 in X-rays with XMM-Newton (4 × 120 ks, 2014 March 18–24), and NuSTAR (65.5 ks, 2014 March 22).Results. During this very deep X-ray campaign, the source was caught in a high-flux state similar to the earlier 2003 XMM-Newton observation, and about twice as bright as the lower-flux observation in 2013. The spectral analysis confirms the “softer when brighter” behavior of Ark 120. The four XMM-Newton/pn spectra are characterized by the presence of a prominent soft X-ray excess and a significant Fe Kα complex. The continuum is very similar above about 3 keV, while significant variability is present for the soft X-ray excess. We find that relativistic reflection from a constant-density, flat accretion disk cannot simultaneously produce the soft excess, broad Fe Kα complex, and hard X-ray excess. Instead, Comptonization reproduces the broadband (0.3–79 keV) continuum well, together with a contribution from a mildly relativistic disk reflection spectrum.Conclusions. During this 2014 observational campaign, the soft X-ray spectrum of Ark 120 below ~0.5 keV was found to be dominated by Comptonization of seed photons from the disk by a warm (kTe ~ 0.5 keV), optically-thick corona (τ ~ 9). Above this energy, the X-ray spectrum becomes dominated by Comptonization from electrons in a hot optically thin corona, while the broad Fe Kα line and the mild Compton hump result from reflection off the disk at several tens of gravitational radii.Key words: X-rays: individuals: Ark 120 / galaxies: active / radiation mechanisms: general / accretion, accretion disks / quasars: genera
    corecore