118 research outputs found
An evaluation of the relative efficacy of an open airway, an oxygen reservoir and continuous positive airway pressure 5 cmH2O on the non-ventilated lung
Publisher's copy made available with the permission of the publisher © Australian Society of AnaesthetistsThe aim of this study, during one-lung ventilation, was to evaluate if oxygenation could be improved by use of a simple oxygen reservoir or application of 5 cmH2O continuous positive airway pressure (CPAP) to the non-ventilated lung compared with an open airway. Twenty-three patients with lung malignancy, undergoing thoracotomy requiring at least 60 minutes of one-lung ventilation before lung lobe excision, were studied. After routine induction and establishment of one-lung ventilation, the three treatments were applied in turn to the same patient in a sequence selected randomly. The first treatment was repeated as a fourth treatment and these results of the repeated treatment averaged to minimize the effect of slow changes. Arterial oxygenation was measured by an arterial blood gas 15 minutes after the application of each treatment. Twenty patients completed the study. Mean PaO2 (in mmHg) was 210.3 (SD 105.5) in the 'OPEN' treatment, 186.0 (SD 109.2) in the 'RESERVOIR' treatment, and 240.5 (SD 116.0) in the 'CPAP' treatment. This overall difference was not quite significant (P=0.058, paired ANOVA), but comparison of the pairs showed that there was a significant better oxygenation only with the CPAP compared to the reservoir treatments (t=2.52, P=0.021). While the effect on the surgical field was not apparent in most patients, in one patient surgery was impeded during CPAP. Our results show that the use of a reservoir does not give oxygenation better than an open tube, and is less effective than the use of CPAP 5 cmH2O on the non-ventilated lung during one-lung ventilation.J. Slimani, W. J. Russell, C. Jurisevichttp://www.aaic.net.au/Article.asp?D=200404
Spin alignment of leading mesons in hadronic decays
Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K ∗ (892) 0 mesons from hadronic Z 0 decays have been measured over the full range of K ∗ 0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x p values above 0.3, with the matrix element ϱ 00 rising to 0.66 ± 0.11 for x p > 0.7. The values of the real part of the off-diagonal element ϱ 1 - 1 are negative at large x p , with a weighted average value of −0.09 ± 0.03 for x p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the q q system from the Z 0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x p range. The K ∗ 0 fragmentation function has also been measured and the total rate determined to be 0.74 ± 0.02 ± 0.02 K ∗ (892) 0 mesons per hadronic Z 0 decay
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Constraints on the Cosmic Expansion History from GWTC-3
This material is based upon work supported by NSFʼs LIGO
Laboratory, which is a major facility fully funded by the National
Science Foundation. The authors also gratefully acknowledge the
support of the Science and Technology Facilities Council (STFC)
of the United Kingdom, the Max-Planck-Society (MPS), and the
State of Niedersachsen/Germany for support of the construction
of Advanced LIGO and construction and operation of the
GEO600 detector. Additional support for Advanced LIGO was
provided by the Australian Research Council. The authors
gratefully acknowledge the Italian Istituto Nazionale di Fisica
Nucleare (INFN), the French Centre National de la Recherche
Scientifique (CNRS), and the Netherlands Organization for
Scientific Research (NWO), for the construction and operation
of the Virgo detector and the creation and support of the EGO
consortium. The authors also gratefully acknowledge research
support from these agencies as well as by the Council of Scientific
and Industrial Research of India, the Department of Science and
Technology, India, the Science & Engineering Research Board
(SERB), India, the Ministry of Human Resource Development,
India, the Spanish Agencia Estatal de Investigación (AEI), the
Spanish Ministerio de Ciencia e Innovación and Ministerio de
Universidades, the Conselleria de Fons Europeus, Universitat i
Cultura and the Direcció General de Política Universitaria i
Recerca del Govern de les Illes Balears, the Conselleria
d’Innovació Universitats, Ciència i Societat Digital de la
Generalitat Valenciana and the CERCA Programme Generalitat
de Catalunya, Spain, the National Science Centre of Poland and
the European Union–European Regional Development Fund,
Foundation for Polish Science (FNP), the Swiss National Science
Foundation (SNSF), the Russian Foundation for Basic Research,
the Russian Science Foundation, the European Commission, the
European Social Funds (ESF), the European Regional Develop-
ment Funds (ERDF), the Royal Society, the Scottish Funding
Council, the Scottish Universities Physics Alliance, the Hungarian
Scientific Research Fund (OTKA), the French Lyon Institute of
Origins (LIO), the Belgian Fonds de la Recherche Scientifique
(FRS-FNRS), Actions de Recherche Concertées (ARC) and
Fonds Wetenschappelijk Onderzoek–Vlaanderen (FWO), Bel-
gium, the Paris Île-de-France Region, the National Research,
Development and Innovation Office Hungary (NKFIH), the
National Research Foundation of Korea, the Natural Science and
Engineering Research Council Canada, Canadian Foundation for
Innovation (CFI), the Brazilian Ministry of Science, Technology,
and Innovations, the International Center for Theoretical Physics
South American Institute for Fundamental Research (ICTP-
SAIFR), the Research Grants Council of Hong Kong, the National
Natural Science Foundation of China (NSFC), the Leverhulme
Trust, the Research Corporation, the Ministry of Science and
Technology (MOST), Taiwan, the United States Department of
Energy, and the Kavli Foundation. The authors gratefully
acknowledge the support of the NSF, STFC, INFN, and CNRS
for provision of computational resources.
This work was supported by MEXT, JSPS Leading-edge
Research Infrastructure Program, JSPS Grant-in-Aid for
Specially Promoted Research 26000005, JSPS Grant-in-Aid
for Scientific Research on Innovative Areas 2905:
JP17H06358, JP17H06361, and JP17H06364, JSPS Core-to-
Core Program A. Advanced Research Networks, JSPS Grant-
in-Aid for Scientific Research (S) 17H06133 and 20H05639,
JSPS Grant-in-Aid for Transformative Research Areas (A)
20A203: JP20H05854, the joint research program of the
Institute for Cosmic Ray Research, University of Tokyo,
National Research Foundation (NRF) and Computing Infra-
structure Project of KISTI-GSDC in Korea, Academia Sinica
(AS), AS Grid Center (ASGC), and the Ministry of Science and
Technology (MoST) in Taiwan under grants including AS-
CDA-105-M06, Advanced Technology Center (ATC) of
NAOJ, Mechanical Engineering Center of KEK.
We would like to thank all of the essential workers who put
their health at risk during the COVID-19 pandemic, without
whom we would not have been able to complete this work.Peer reviewe
Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103
A joint Fermi-GBM and Swift-BAT analysis of gravitational-wave candidates from the third gravitational-wave observing run
We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers
Constraints on the cosmic expansion history from GWTC–3
We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814
- …
