76 research outputs found

    Global land use implications of biofuels: State of the art conference and workshop on modelling global land use implications in the environmental assessment of biofuels

    Get PDF
    Background, Aims and Scope On 4Âż5 June 2007, an international conference was held in Copenhagen. It provided an interdisciplinary forum where economists and geographers met with LCA experts to discuss the challenges of modelling the ultimate land use changes caused by an increased demand for biofuels. Main Features The main feature of the conference was the cross-breeding of experience from the different approaches to land use modelling: The field of LCA could especially benefit from economic modelling in the identification of marginal crop production and the resulting expansion of the global agricultural area. Furthermore, the field of geography offers insights in the complexity behind new land cultivation and practical examples of where this is seen to occur on a regional scale. Results Results presented at the conference showed that the magnitude and location of land use changes caused by biofuels demand depend on where the demand arises. For instance, mandatory blending in the EU will increase land use both within and outside of Europe, especially in South America. A key learning for the LCA society was that the response to a change in demand for a given crop is not presented by a single crop supplier or a single country, but rather by responses from a variety of suppliers of several different crops in several countries. Discussion The intensification potential of current and future crop and biomass production was widely discussed. It was generally agreed that some parts of the third world hold large potentials for intensification, which are not realised due to a number of barriers resulting in so-called yield gaps. Conclusions Modelling the global land use implications of biofuels requires an interdisciplinary approach optimally integrating economic, geographical, biophysical, social and possibly other aspects in the modelling. This interdisciplinary approach is necessary but also difficult due to different perspectives and mindsets in the different disciplines. Recommendations and Perspectives The concept of a location dependent marginal land use composite should be introduced in LCA of biofuels and it should be acknowledged that the typical LCA assumption of linear substitution is not necessarily valid. Moreover, fertiliser restrictions/accessibility should be included in land use modelling and the relation between crop demand and intensification should be further explored. In addition, environmental impacts of land use intensification should be included in LCA, the powerful concept of land use curves should be further improved, and so should the modelling of diminishing returns in crop production

    Challenges and opportunities in mapping land use intensity globally

    Get PDF
    Future increases in land-based production will need to focus more on sustainably intensifying existing production systems. Unfortunately, our understanding of the global patterns of land use intensity is weak, partly because land use intensity is a complex, multidimensional term, and partly because we lack appropriate datasets to assess land use intensity across broad geographic extents. Here, we review the state of the art regarding approaches for mapping land use intensity and provide a comprehensive overview of available global-scale datasets on land use intensity. We also outline major challenges and opportunities for mappinglanduseintensityfor cropland, grazing, and forestry systems, and identify key issues for future research.Peer Reviewe

    Framing sustainability in a telecoupled world.

    Get PDF
    Interactions between distant places are increasingly widespread and influential, often leading to unexpected outcomes with profound implications for sustainability. Numerous sustainability studies have been conducted within a particular place with little attention to the impacts of distant interactions on sustainability in multiple places. although distant forces have been studied, they are usually treated as exogenous variables and feedbacks have rarely been considered. To understand and integrate various distant interactions better, we propose an integrated framework based on telecoupling, an umbrella concept that refers to socioeconomic and environmental interactions over distances. The concept of telecoupling is a logical extension of research on coupled human and natural systems, in which interactions occur within particular geographic locations. The telecoupling framework contains five major interrelated components, i.e., coupled human and natural systems, flows, agents, causes, and effects. We illustrate the framework using two examples of distant interactions associated with trade of agricultural commodities and invasive species, highlight the implications of the framework, and discuss research needs and approaches to move research on telecouplings forward. The framework can help to analyze system components and their interrelationships, identify research gaps, detect hidden costs and untapped benefits, provide a useful means to incorporate feedbacks as well as trade-offs and synergies across multiple systems (sending, receiving, and spillover systems), and improve the understanding of distant interactions and the effectiveness of policies for socioeconomic and environmental sustainability from local to global levels

    Ten facts about land systems for sustainability

    Get PDF
    Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits—"win–wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use

    Ten facts about land systems for sustainability

    Get PDF
    Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits—"win–wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.The European Research Council under the European Union’s Horizon 2020 research and innovation program; the Marie SkƂodowska-Curie (MSCA) Innovative Training Network actions under the European Union’s Horizon 2020 research and innovation programme; the “María de Maeztu” Programme for Units of Excellence of the Spanish Ministry of Science and Innovation; the NASA Land-Cover Land-Use Change Program; the Swiss Academy of Sciences; the National Research Foundation’s Rated Researcher’s Award; the UK Natural Environment Research Council Landscape Decisions Fellowship; and the “Nature4SDGs” project funded by NERC-Formas-DBT [UK Natural Environment Research Council-Swedish Research Council for Sustainable Development-Indian Department of Biotechnology (from the Ministry of Science & Technology, Government of India)].https://www.pnas.orghj2022BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog
    • 

    corecore