88 research outputs found

    Direct Imaging of Plant Metabolites in the Rhizosphere Using Laser Desorption Ionization Ultra-High Resolution Mass Spectrometry

    Get PDF
    The interplay of rhizosphere components such as root exudates, microbes, and minerals results in small-scale gradients of organic molecules in the soil around roots. The current methods for the direct chemical imaging of plant metabolites in the rhizosphere often lack molecular information or require labeling with fluorescent tags or isotopes. Here, we present a novel workflow using laser desorption ionization (LDI) combined with mass spectrometric imaging (MSI) to directly analyze plant metabolites in a complex soil matrix. Undisturbed samples of the roots and the surrounding soil of Zea mays L. plants from either field- or laboratory-scale experiments were embedded and cryosectioned to 100 mm thin sections. The target metabolites were detected with a spatial resolution of 25 mm in the root and the surrounding soil based on accurate masses using ultra-high mass resolution laser desorption ionization Fourier-transform ion cyclotron resonance mass spectrometry (LDI-FT-ICR-MS). Using this workflow, we could determine the rhizosphere gradients of a dihexose (e.g., sucrose) and other plant metabolites (e.g., coumaric acid, vanillic acid). The molecular gradients for the dihexose showed a high abundance of this metabolite in the root and a strong depletion of the signal intensity within 150 mm from the root surface. Analyzing several sections from the same undisturbed soil sample allowed us to follow molecular gradients along the root axis. Benefiting from the ultra-high mass resolution, isotopologues of the dihexose could be readily resolved to enable the detection of stable isotope labels on the compound level. Overall, the direct molecular imaging via LDI-FT-ICR-MS allows for the first time a nontargeted or targeted analysis of plant metabolites in undisturbed soil samples, paving the way to study the turnover of root-derived organic carbon in the rhizosphere with high chemical and spatial resolution

    Metal uptake and distribution in the zebrafish (Danio rerio) embryo: differences between nanoparticles and metal ions

    Get PDF
    Quantitative data on nanoparticle and cation uptake are compared in a compartment-specific way and distinct differences between metals were identified

    Resilience of Micropollutant and Biological Effect Removal in an Aerated Horizontal Flow Treatment Wetland

    Get PDF
    The performance of an aerated horizontal subsurface flow treatment wetland was investigated before, during and after a simulated aeration failure. Conventional wastewater parameters (e.g., carbonaceous biological oxygen demand, total nitrogen, and Escherichia coli) as well as selected micropollutants (caffeine, ibuprofen, naproxen, benzotriazole, diclofenac, acesulfame, and carbamazepine) were investigated. Furthermore, the removal of biological effects was investigated using in vitro bioassays. The six bioassays selected covered environmentally relevant endpoints (indicative of activation of aryl hydrocarbon receptor, AhR; binding to the peroxisome proliferator-activated receptor gamma, PPARγ; activation of estrogen receptor alpha, ERα; activation of glucocorticoid receptor, GR; oxidative stress response, AREc32; combined algae test, CAT). During the aeration interruption phase, the water quality deteriorated to a degree comparable to that of a conventional (non-aerated) horizontal subsurface flow wetland. After the end of the aeration interruption, the analytical and biological parameters investigated recovered at different time periods until their initial treatment performance. Treatment efficacy for conventional parameters was recovered within a few days, but no complete recovery of treatment efficacy could be observed for bioassays AhR, AREc32 and CAT in the 21 days following re-start of the aeration system. Furthermore, the removal efficacy along the flow path for most of the chemicals and bioassays recovered as it was observed in the baseline phase. Only for the activation of AhR and AREc32 there was a shift of the internal treatment profile from 12.5% to 25% (AhR) and 50% (AREc32) of the fractional length

    Recently evolved combination of unique sulfatase and amidase genes enables bacterial degradation of the wastewater micropollutant acesulfame worldwide

    Get PDF
    Xenobiotics often challenge the principle of microbial infallibility. One example is acesulfame introduced in the 1980s as zero-calorie sweetener, which was recalcitrant in wastewater treatment plants until the early 2010s. Then, efficient removal has been reported with increasing frequency. By studying acesulfame metabolism in alphaproteobacterial degraders of the genera Bosea and Chelatococcus, we experimentally confirmed the previously postulated route of two subsequent hydrolysis steps via acetoacetamide-N-sulfonate (ANSA) to acetoacetate and sulfamate. Genome comparison of wildtype Bosea sp. 100-5 and an acesulfame degradation-defective mutant revealed the involvement of two plasmid-borne gene clusters. The acesulfame-hydrolyzing sulfatase is strictly manganese-dependent and belongs to the metallo beta-lactamase family. In all degraders analyzed, it is encoded on a highly conserved gene cluster embedded in a composite transposon. The ANSA amidase, on the other hand, is an amidase signature domain enzyme encoded in another gene cluster showing variable length among degrading strains. Transposition of the sulfatase gene cluster between chromosome and plasmid explains how the two catabolic gene clusters recently combined for the degradation of acesulfame. Searching available genomes and metagenomes for the two hydrolases and associated genes indicates that the acesulfame plasmid evolved and spread worldwide in short time. While the sulfatase is unprecedented and unique for acesulfame degraders, the amidase occurs in different genetic environments and likely evolved for the degradation of other substrates. Evolution of the acesulfame degradation pathway might have been supported by the presence of structurally related natural and anthropogenic compounds, such as aminoacyl sulfamate ribonucleotide or sulfonamide antibiotics

    Occurrence of emerging persistent and mobile organic contaminants in European water samples

    Get PDF
    This is the Author’s Accepted Manuscript of the following article: Schulze, S., Zahn, D., Montes, R., Rodil, R., Quintana, J., & Knepper, T. et al. (2019). Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Research, 153, 80-90. doi: 10.1016/j.watres.2019.01.008The release of persistent and mobile organic chemicals (PMOCs) into the aquatic environment puts the quality of water resources at risk. PMOCs are challenging to analyze in water samples, due to their high polarity. The aim of this study was to develop novel analytical methods for PMOCs and to investigate their occurrence in surface and groundwater samples. The target compounds were culled from a prioritized list of industrial chemicals that were modeled to be persistent, mobile, and emitted into the environment. Analytical screening methods based on mixed-mode liquid chromatography (LC), hydrophilic interaction LC, reversed phase LC, or supercritical fluid chromatography in combination with mass spectrometric detection were successfully developed for 57 target PMOCs and applied to 14 water samples from three European countries. A total of 43 PMOCs were detected in at least one sample, among them 23 PMOCs that have not been reported before to occur in environmental waters. The most prevalent of these novel PMOCs were methyl sulfate, 2-acrylamino-2-methylpropane sulfonate, benzyltrimethylammonium, benzyldimethylamine, trifluoromethanesulfonic acid, 6-methyl-1,3,5-triazine-diamine, and 1,3-di-o-tolylguanidine occurring in ≥50% of the samples at estimated concentrations in the low ng L−1 up to μg L−1 range. The approach of focused prioritization combined with sensitive target chemical analysis proved to be highly efficient in revealing a large suite of novel as well as scarcely investigated PMOCs in surface and groundwaterThis work has been funded by the German BMBF (02WU1347A/B) and the Spanish MINECO/AEI (JPIW2013-117) in the frame of the collaborative international consortium (WATERJPI2013 – PROMOTE) of the Water Challenges for a Changing World Joint Programming Initiative (Water JPI) Pilot Call. RM, RR and JBQ also acknowledge Galician Council of Culture, Education and Universities and FEDER/EDRF funding (ED431C2017/36)S

    Prenatal paraben exposure and atopic dermatitis‐related outcomes among children

    Get PDF
    Background: Parabens, widely used as preservatives in cosmetics, foods, and other consumer products, are suspected of contributing to allergy susceptibility. The detection of parabens in the placenta or amniotic fluid raised concerns about potential health consequences for the child. Recently, an increased asthma risk following prenatal exposure has been reported. Here, we investigated whether prenatal paraben exposure can influence the risk for atopic dermatitis (AD). Methods: 261 mother-child pairs of the German mother-child study LINA were included in this analysis. Eight paraben species were quantified in maternal urine obtained at gestational week 34. According to the parental report of physician-diagnosed AD from age 1 to 8 years, disease onset, and persistence, childhood AD was classified into four different phenotypes. Results: 4.6% (n = 12) and 12.3% (n = 32) of the children were classified as having very early-onset AD (until age two) either with or without remission, 11.9% (n = 31) as early-onset (after age two), and 3.1% (n = 8) as childhood-onset AD (after age six). Exposure to ethylparaben and n-butylparaben was associated with an increased risk to develop very early-onset AD without remission (EtP: adj.OR/95% CI:1.44/1.04-2.00,nBuP:adj.OR/95% CI:1.95/1.22-3.12). The effects of both parabens were predominant in children without a history of maternal AD and independent of children's sex. Conclusion: Prenatal EtP or nBuP exposure may increase children's susceptibility for persistent AD with disease onset at very early age. This association was particularly pronounced in children without a history of maternal AD, indicating that children without a genetic predisposition are more susceptible to paraben exposure

    Mercury in deep ice-rich permafrost deposits of Siberia. Russian Conference

    Get PDF
    The late Pleistocene ice-rich Yedoma permafrost is extremely sensitive to Arctic warming. Warming air temperatures, decreasing sea ice extent lead to an increasing degradation of the Yedoma permafrost and thus to a greater sediment input from coastal shorelines and river floodplains to the Laptev Sea. Thus, so far freeze-locked sediments and any potentially hazardous contaminants contained in them are entering Arctic waters and the biological food chain. Shallow (down to <2m) Arctic permafrost soil layers were found to include high levels of mercury (Hg) due to natural enrichment processes of environmentally available Hg (Schuster et al. 2018). However, opposed to seasonal thaw processes of the active layer and long-term gradual thaw through active layer deepening, abrupt thaw processes such as thermokarst, thermo-erosion, and coastal erosion are capable of mobilising permafrost-soils and stored contaminants from tens of meters depth within years to decades. In this study, we determined Hg concentrations from various deposits in Siberia’s deep permafrost sediments. We studied links between sediment properties and Hg enrichment in order to assess a first deep Hg inventory in late Pleistocene permafrost down to 36 m below surface. To do this, we used sediment profiles from seven sites representing different permafrost degradation states on Bykovsky Peninsula (northern Yakutian coast) and in the Yukechi Alas region (Central Yakutia). We analysed 41 samples for Hg content, total carbon, total nitrogen and organic carbon as well as grain size distribution, bulk density and mass specific magnetic susceptibility. Figure 1: (a) geographical overview and detailed location of the study site at Bykovsky Peninsula (b) and Yukechi Alas in Yakutia (c); (d) stratigraphical transect of the study sites and different states of degrading permafrost in Siberia. The numbers indicate the areas of interest in this study. 1) Talik in Yedoma (unfrozen), 2) late Pleistocene Yedoma (frozen), 3) talik in thermokarst (unfrozen), 4) refrozen drained lake basin = Alas (frozen), 5) talik in thermokarst close to sea (unfrozen), 6) talik below seawater flooded thermokarst basins (= lagoons) (unfrozen). We show that the deep sediments (to 30 meter below surface) are characterized by an Hg concentration of 9.72 ± 9.28 μg kg-1 and an correlation of Hg to organic carbon, total nitrogen, grain-size distribution and mass specific magnetic susceptibility. Hg concentrations are higher in the generally sandier sediment of the Bykovsky Peninsula than in the siltier sediment of the Yukechi Alas. In conclusion, we found that the deep permafrost sediments, frozen since tens of millennia, contain sizeable amounts of Hg. Even though the average amount of Hg is with 9.72 μg/kg below levels immediately critical for life and our median is 85 % less (Schuster et al. 2018) than found in Arctic topsoil outside Siberia. Even if the Hg concentrations are not particularly high compared to other sites, the permafrost’s huge spatial coverage results in a significant amount of Hg that can be introduce into nearby aquatic environments and food webs. As the next step, the consequences of old Hg re-entering the active biogeochemical cycles and food webs with ongoing Arctic warming remain unclear and need to be studied in more detail. References 1. Schuster, P. et al. Geophysical Research Letters, 2018, 45, 1463– 1471, https://doi.org/10.1002/2017GL07557

    Anthropogenic organic micro-pollutants and pathogens in the urban water cycle: assessment, barriers and risk communication (ASKURIS)

    Get PDF
    In urban areas, water often flows along a partially closed water cycle in which treated municipal wastewater is discharged into surface waters which are one source of raw waters used for drinking water supply. A number of organic micro-pollutants (OMP) can be found in different water compartments. In the near future, climatic and demographic changes will probably contribute to an increase of OMP and antibiotic-resistant pathogens in aquatic ecosystems. The occurrence of OMP, possible adverse effects on aquatic organisms and human health and the public perception must be carefully assessed to properly manage and communicate potentially associated risks and to implement appropriate advanced treatment options at the optimum location within the water cycle. Therefore, the interdisciplinary research project ASKURIS focuses on identification and quantification, toxicological assessment and removal of organic micro-pollutants and antibiotic-resistant pathogens in the Berlin water cycle, life cycle-based economic and environmental assessment, public perception and management of potential risks

    The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry

    Get PDF
    Background: The NORMAN Association (https://www.norman-.network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-.network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https:// zenodo.org/communities/norman-.sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox. epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-.network.com/nds/SLE/)
    corecore