This is the postprint (accepted manuscript) version of the article published in Water Research. https://doi.org/10.1016/j.watres.2019.01.008

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Accepted Manuscript

Occurrence of emerging persistent and mobile organic contaminants in European water samples

Stefanie Schulze, Daniel Zahn, Rosa Montes, Rosario Rodil, José Benito Quintana, Thomas P. Knepper, Thorsten Reemtsma, Urs Berger

PII: S0043-1354(19)30036-3

DOI: https://doi.org/10.1016/j.watres.2019.01.008

Reference: WR 14374

To appear in: Water Research

Received Date: 31 August 2018

Revised Date: 19 December 2018

Accepted Date: 12 January 2019

Please cite this article as: Schulze, S., Zahn, D., Montes, R., Rodil, R., Quintana, J.B., Knepper, T.P., Reemtsma, T., Berger, U., Occurrence of emerging persistent and mobile organic contaminants in European water samples, *Water Research*, https://doi.org/10.1016/j.watres.2019.01.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

1	Occurrence of emerging persistent and mobile organic contaminants in
2	European water samples
3	
4	Stefanie Schulze ¹ , Daniel Zahn ² , Rosa Montes ³ , Rosario Rodil ³ , José Benito Quintana ³ ,
5	Thomas P. Knepper ² , Thorsten Reemtsma ¹ , Urs Berger ^{1,*}
6	
7	¹ Helmholtz Centre for Environmental Research – UFZ, Department of Analytical Chemistry,
8	Permoserstrasse 15, 04318 Leipzig, Germany
9	² Hochschule Fresenius University of Applied Sciences, Institute for Analytical Research,
10	Limburger Strasse 2, 65510 Idstein, Germany
11	³ Universidade de Santiago de Compostela, Department of Analytical Chemistry, Nutrition
12	and Food Sciences, IIAA - Institute for Food Analysis and Research, Constantino Candeira
13	S/N, 15782 Santiago de Compostela, Spain
14	

- * Corresponding author e-mail, urs.berger@ufz.de; phone, +49 341 235 4654; fax, +49 341
- 16 235 450822

17 Abstract

The release of persistent and mobile organic chemicals (PMOCs) into the aquatic 18 environment puts the quality of water resources at risk. PMOCs are challenging to analyze in 19 water samples, due to their high mobility. The aim of this study was to develop novel 20 analytical methods for PMOCs and to investigate their occurrence in surface and groundwater 21 samples. The target compounds were culled from a prioritized list of industrial chemicals that 22 were modeled to be persistent, mobile, and emitted into the environment. Analytical screening 23 methods based on mixed-mode liquid chromatography (LC), hydrophilic interaction LC, 24 reversed phase LC, or supercritical fluid chromatography in combination with mass 25 spectrometric detection were successfully developed for 57 target PMOCs and applied to 14 26 water samples from three European countries. A total of 43 PMOCs were detected in at least 27 one sample, among them 23 PMOCs that have not been reported before to occur in 28 29 environmental waters. The most prevalent of these novel PMOCs were methyl sulfate, 2acrylamino-2-methylpropane sulfonate, benzyltrimethylammonium, benzyldimethylamine, 30 trifluoromethanesulfonic acid, 6-methyl-1,3,5-triazine-diamine, and 1,3-di-o-tolylguanidine 31 occurring in \geq 50 % of the samples at estimated concentrations in the low ng L⁻¹ up to μ g L⁻¹ 32 range. The approach of focused prioritization combined with sensitive target chemical 33 analysis proved to be highly efficient in revealing a large suite of novel as well as scarcely 34 investigated PMOCs in surface and groundwater. 35

36

37 Keywords: Persistent and mobile organic chemicals, PMOC, water, occurrence,

38 chromatography

39

40 1. Introduction

41 Persistent and mobile organic compounds (PMOCs, also referred to as PM substances) are man-made, highly polar organic chemicals that only degrade very slowly (if at all) in the 42 environment and that show a low tendency to sorb to surfaces or to organic matter in soil and 43 sediments (Reemtsma et al. 2016). PMOCs can enrich in (semi-)closed water cycles, as the 44 only relevant process leading to decreasing concentrations in the aquatic environment is 45 dilution. Consequently, if PMOCs are emitted in significant quantities, they may threaten the 46 quality of surface water bodies, groundwater aquifers, and ultimately also our drinking water 47 resources (Reemtsma et al. 2016). Known examples of such PMOCs are melamine (Beltrán-48 Martinavarro et al. 2013), saccharine, acesulfame (Buerge et al. 2009), and sulfanilic acid 49 (Holm et al. 1995). PMOCs are particularly critical if they also exhibit toxicological effects. 50 Such compounds are then denoted as PMT (persistent, mobile, and toxic) substances 51 52 (Neumann 2017). In Europe there is a currently ongoing discussion whether or not PMT substances should be regulated under the European Union chemical regulation REACH 53 54 (European Parliament 2006) in a similar way as is the case for PBT (persistent, bioaccumulative, and toxic) substances (Neumann and Schliebner 2017). 55 Whereas chemical analytical methods to detect and quantify PBT substances are well 56 established, PMOCs are much more challenging to analyze in environmental water samples. 57 This is due to their intrinsic property of high mobility, which makes PMOCs extremely 58 difficult to extract and enrich from water samples or to separate (retain) using routine liquid 59 chromatography techniques (Reemtsma et al. 2016). The most commonly applied separation 60 method for polar environmental contaminants is undoubtedly reversed phase liquid 61 chromatography (RPLC). However, in RPLC, PMOCs tend to elute with or close to the void 62 volume, together with most of the waterborne matrix constituents. Furthermore, they often 63 exhibit poor peak shape. This severely hampers unambiguous identification, sensitive 64 detection, and reliable quantification of PMOCs. Recently, alternative liquid chromatographic 65

3

methods for separation of highly polar compounds such as PMOCs have been developed,
based on either hydrophilic interaction liquid chromatography (HILIC) (Mazzarino et al.
2011; Christophoridis et al. 2016; Zahn et al. 2016) or tri-functional mixed-mode liquid
chromatography (MMLC) separation columns (Montes et al. 2017). Furthermore, also
supercritical fluid chromatography (SFC) with hybrid or normal phase columns and a polar
modifier/co-solvent can be used as an orthogonal technique to RPLC (Parr et al. 2016; Bieber
et al. 2017).

A recent modeling study identified potential PMOCs as well as precursors to PMOCs among 73 the high production volume substances registered under REACH (Arp et al. 2017). Arp and 74 co-workers came up with a list of 2167 unique substance identities, whereof 1811 have been 75 modeled to be persistent and mobile in the aquatic environment (PMOC score of 4 to 5 in Arp 76 et al. 2017) and 356 have been modeled to be PMOC precursors (i.e. to have the potential to 77 78 be hydrolyzed to PMOCs with a PMOC score of 4 to 5). Building on this work, we estimated the environmental emission potential of the 2167 substances (Schulze et al. 2018). This study 79 80 resulted in two consolidated lists, one for PMOCs that are expected to be emitted into the environment (936 substances) and a corresponding list for PMOC precursors (174 substances) 81 (supplementary data in Schulze et al. 2018). Both lists are ranked according to the 82 environmental emission potential, i.e. the magnitude of expected emissions. However, the 83 ultimate proof that a substance is released into the environment in significant quantities and 84 possesses PMOC properties is its presence in environmental water samples far from potential 85 points of emissions. 86

The aim of the present study was thus to screen for PMOCs of concern in selected water
samples from three European countries. The target analytes were primarily chosen from the
list of 936 PMOCs prioritized with regard to expected emissions (Schulze et al. 2018).
Enrichment methods based on solid phase extraction or evaporation as well as instrumental
methods based on MMLC (Montes et al. 2017), HILIC (Zahn et al. submitted), or SFC were

employed, as well as two RPLC-based separation methods. Target chemical analytical 92 methods were used (rather than HRMS-based suspect screening) for two reasons. 1) PMOCs 93 are not expected to be sufficiently retained on a generic RPLC-based separation column 94 (Reemtsma et al. 2016). 2) We intended to screen for the PMOCs in surface and groundwater, 95 rather than in WWTP effluent, to verify their persistence and mobility (i.e. their occurrence 96 far from primary environmental emission points), and thus we needed methods of utmost 97 sensitivity. The results of the present study should be used to validate the PMOC and 98 emission modeling (Arp et al. 2017; Schulze et al. 2018) and to obtain a first picture of the 99 potential magnitude of the problem of PMOCs in European water cycles. 100

101

102 2. Materials and methods

103 2.1 Target analytes

104 A total of 64 target analytes were selected for the present study. Table S1 in the supplementary data shows the structures and CAS registry numbers of all analytes and lists 105 106 the suppliers and purities of the commercial standards. The majority of these analytes (54 107 substances) originated from the top 300 substances on the list of modeled PMOCs ranked according to their expected emission potential (Table S1 in the supplementary data in Schulze 108 et al. 2018). The selection of the 54 target analytes was based on the prerequisites of 109 availability of chemical standards and amenability to at least one of the employed 110 instrumental methods (see section 2.4). Additionally, substances were excluded if they were 111 assessed to be non-persistent or volatile by expert judgement. The remaining ten target 112 analytes were ID-2, -22, -32, -37, -38, -41, -43, -49, -52, and -59 (Table S1). They were 113 chosen based on knowledge or suspicion of their occurrence in environmental water samples 114 (e.g. Stüber and Reemtsma 2004; Landesamt für Natur, Umwelt und Verbraucherschutz NRW 115 2015; Scheurer et al. 2016; Montes et al. 2017). 116

ChemAxon (JChem for Office, JChem for Excel) was used to estimate substance properties, 117 as the studied chemicals are within its application domain (personal communication with D. 118 Szisz, ChemAxon). The majority of the selected analytes (44) are highly hydrophilic 119 compounds with a negative logD value at pH 7 (Table S1). Among the analytes there were 26 120 compounds possessing acidic properties, with either a carboxylic, sulfonic, sulfuric or 121 phosphonic acid moiety (strongest acidic pK_a between -4.6 and 5.5) and 35 compounds 122 possessing basic properties (strongest basic pK_a between 2.4 and 10.7) (ChemAxon). Stock 123 standard solutions of analytes were prepared in acetonitrile, acetonitrile:water (50:50) or 124 water (depending on solubility) at 1 mg mL⁻¹ and stored at -20 °C. Aliquots of the stock 125 standard solutions were combined to obtain standard mixture solutions, which were 126 subsequently diluted with acetonitrile or water depending on the chromatographic system to 127 be used (see section 2.4). 128

129 **2.2** Samples

The 14 water samples analyzed in the present study were grab samples obtained from
different locations in Germany (DE, country code used in sample names), Spain (ES), and
The Netherlands (NL). They consisted of surface water (SW, 7 samples), groundwater (GW,
4), bank filtrate (BF, 1), as well as reverse osmosis concentrate (ROC, 1) and permeate (ROP,
1) from a full-scale pilot plant for drinking water production. The samples were taken in 2016
and stored for up to six weeks at +4 °C in the dark until analysis. Details on all samples are
given in Table S2 and Figure S1 in the supplementary data.

137 2.3 Sample preparation

138 Chemical analysis of all samples was performed in parallel in three different labs with 139 complementary instrumental techniques. A number of sample preparation methods were used 140 in each lab, which are briefly described individually hereafter. In total 8 different sample 141 preparation techniques (denoted as *Enrichment I-VIII*) were developed, using spike and 142 recovery experiments at PMOC concentrations in the ng L^{-1} to μ g L^{-1} range in surface and

143 drinking water. Materials, chemicals, and instrumentation used in the different enrichments

are listed in Table S3 in the supplementary data.

145 *Enrichment I.* The water sample was filtered through a 0.45 µm cellulose filter and an aliquot

146 of 100 mL was submitted to a mixed-mode weak anion exchange (WAX) solid phase

147 extraction (SPE) cartridge. The cartridge was previously conditioned with 5 mL of 2 % formic

acid in methanol and 5 mL of Milli-Q water. After sample loading the cartridge was dried and

analytes were eluted with 10 mL of 5 % ammonia in methanol. The extract was evaporated to

dryness and the residues were reconstituted in 200 μ L of Milli-Q water:acetonitrile (90:10).

151 Finally, the extract was filtered through a 0.22 µm PP filter. For more details see Montes et al.152 (manuscript).

153 Enrichment II. Identical to Enrichment I but employing a mixed-mode weak cation exchange

154 (WCX) SPE cartridge previously conditioned with 5 mL of 5 % ammonia in methanol and 5

mL of Milli-Q water. Elution of the analytes was performed with 10 mL of 2 % formic acid in

156 methanol (Montes et al., manuscript).

157 Enrichment III. A multi-layer SPE cartridge (3 mL) was prepared by filling in (from bottom to top) 60 mg (\pm 5 mg) of graphitized carbon black (GCB), 60 mg (\pm 5 mg) of WCX bulk 158 material, and 60 mg (\pm 5 mg) of WAX bulk material, separated by polyethylene frits. The 159 cartridge was conditioned with 1 mL 5 % ammonia in methanol, 1 mL 2 % formic acid in 160 methanol, 1 mL methanol, and 3 mL deionized water. The water sample was filtered through a 161 glass fiber filter and the pH was adjusted to 5.5 ± 0.1 with formic acid or ammonium 162 hydroxide. An aliquot of 100 mL was passed through the cartridge. The cartridge was dried 163 and elution was performed with 3 mL 5 % ammonia in methanol, 3 mL 2 % formic acid in 164 methanol, and 1.5 mL methanol:dichloromethane (80:20). The combined extracts were 165 evaporated to dryness and the residues were reconstituted in 500 μ L of acetonitrile:water 166 (95:5). Finally, the extract was filtered through a 0.2 µm cellulose syringe filter. For more 167 details see Köke et al. (2018). 168

169	<i>Enrichment IV.</i> An aliquot of 10 mL of the unfiltered sample was evaporated to dryness at
170	45°C and 9 mbar. The residues were reconstituted in 500 μL of acetonitrile:water (95:5) and
171	the extract was filtered through a 0.2 μ m cellulose syringe filter (Köke et al. 2018).
172	Enrichment V. The water sample was filtered through a glass fiber filter. An aliquot of 50 mL
173	was adjusted to pH 2 (with 0.02 M Glycin/HCl buffer) and submitted automatically to a WAX
174	SPE cartridge. The cartridge was previously conditioned with 3 mL methanol and 3 mL
175	ultrapure water. After sample loading the cartridge was washed with 4 mL 2 % formic acid in
176	ultrapure water (discarded) and the analytes were eluted with 4 mL methanol and 4 mL 5 $\%$
177	ammonia in methanol. The combined extracts were evaporated to dryness and the residues
178	were reconstituted in 1 mL ultrapure water for <i>Chromatography</i> C_1/C_2 or in 1 mL
179	acetonitrile:ultrapure water (90:10) for <i>Chromatography</i> D_1/D_2 (see section 2.4). Finally, the
180	extract was filtered through glass wool in the tip of a Pasteur pipette.
181	Enrichment VI. Identical to Enrichment V but employing a strong mixed-mode cation
182	exchange (MCX) SPE cartridge.
183	Enrichment VII. Identical to Enrichment V with the following modifications. An aliquot of 50
184	mL was adjusted to pH 7 (with 0.02 M phosphate buffer) and submitted automatically to a
185	highly retentive non-polar SPE phase (ENV+) previously conditioned with 3 mL methanol
186	and 3 mL ultrapure water. After sample loading the cartridge was washed with 2 mL
187	methanol:ultrapure water (5:95, discarded) and the analytes were eluted with 4 mL methanol.
188	Enrichment VIII. Identical to Enrichment V with the following modifications. An aliquot of 50
189	mL was adjusted to pH 12 (with 0.02 M Glycin/NaOH buffer) and submitted automatically to
190	a graphitized non-porous carbon SPE phase (ENVI-Carb) previously conditioned with 5 mL
191	methanol:dichloromethane (20:80), 2 mL methanol, and 5 mL ultrapure water. After sample
192	loading the cartridge was washed with 5 mL ultrapure water (discarded) and the analytes were
193	eluted with 4 mL methanol, 2 mL methanol:dichloromethane (20:80), and 4 mL 2 % formic

acid in methanol:dichloromethane (20:80).

195 2.4 Instrumental analyses

- 196 In total 4 different, complementary instrumental analytical techniques (denoted as
- 197 *Chromatography A-D*) were used. *Chromatography C* and *D* were performed with two
- 198 different separation columns each (*Chromatography* C_1/C_2 and *Chromatography* D_1/D_2 ,
- 199 respectively). Chemicals and instrumentation used in the different instrumental analytical
- 200 techniques are listed in Table S4, the gradient profiles for all separation methods are shown in
- Figure S2, and mass spectrometric parameters are listed in Tables S5A-D (for
- 202 *Chromatography A-D*, respectively) in the supplementary data.
- 203 Chromatography A was used with extracts from Enrichments I and II. Chromatography A
- 204 consisted of mixed-mode liquid chromatography (MMLC, Thermo Acclaim Trinity P1
- column) coupled to triple quadrupole tandem mass spectrometry (MS/MS) (Table S4).
- 206 Aliquots of 10 µL of the sample extracts were injected. MMLC separation was performed at a
- flow rate of 200 μ L min⁻¹ using a water-acetonitrile gradient buffered with ammonium acetate
- at pH 5.5 (Figure S2). The mass spectrometer was operated in positive and negative
- 209 electrospray ionization (ESI) and in the multiple reaction monitoring (MRM) mode, acquiring
- two transitions for each analyte (Table S5A).
- 211 Chromatography B was used with extracts from Enrichments III and IV. Chromatography B
- 212 consisted of hydrophilic interaction liquid chromatography (HILIC, Waters Acquity BEH
- Amide column) coupled to MS/MS (Table S4). Aliquots of 5 μ L of the sample extracts were
- injected. HILIC separation was performed at a flow rate of 500 μ L min⁻¹ using an acetonitrile-
- 215 water gradient buffered with ammonium formate (Figure S2). The mass spectrometer was
- operated in positive and negative ESI and in the scheduled MRM mode, acquiring two to
- three transitions for each analyte (Table S5B).
- 218 Chromatography C_1/C_2 was used with extracts from Enrichments V-VIII. Chromatography C_1
- 219 consisted of C₁₈-based liquid chromatography (Waters Acquity UPLC HSS T3 column) and
- 220 Chromatography C_2 consisted of porous graphitic carbon-based liquid chromatography

221	(Thermo Hypercarb column). Both these RPLC-techniques were coupled to MS/MS (Table
222	S4). Aliquots of 10 μ L of the sample extracts were injected. Separation for <i>Chromatography</i>
223	C_1 was performed at 60 °C at a flow rate of 500 µL min ⁻¹ using a water-methanol gradient
224	containing 5 mM ammonium formate (Figure S2). Separation for <i>Chromatography</i> C_2 was
225	performed at 50 °C at a flow rate of 250 μ L min ⁻¹ using a water-acetonitrile gradient
226	containing 0.1 % diethylamine (Figure S2). The mass spectrometer was operated in
227	positive/negative ESI switching and in the scheduled MRM mode, typically acquiring two
228	transitions for each analyte (Table S5C).
229	Chromatography D_1/D_2 was used with extracts from Enrichments V-VIII. Chromatography
230	D_1/D_2 consisted of supercritical fluid chromatography (SFC, Waters Acquity UPC ² BEH (D_1)
231	or Waters Torus Diol (D_2) column) coupled to high resolution quadrupole time-of-flight MS
232	(HRMS) (Table S4). Aliquots of 5 μ L of the sample extracts were injected. Separation was
233	performed at 55 °C at a flow rate of 1500 μ L min ⁻¹ using a carbon dioxide-methanol/water
234	gradient containing 0.2 % ammonium hydroxide in the methanol/water co-solvent (Figure
235	S2). A methanol/water make-up flow at 300 μ L min ⁻¹ containing 0.1 % formic acid was used
236	for transferring the column effluent into the mass spectrometer. The HRMS instrument was
237	operated in positive and negative ESI and full scan mode (m/z 50 to 600). A mass tolerance of
238	5 ppm was used when extracting high resolution mass chromatograms of the analytes (Table
239	S5D).

240 2.5 Method performance evaluation and concentration estimations

Method performance evaluation had the main purpose to prevent false positive results and to allow for semi-quantitative concentration estimations. It consisted of the determination of instrumental blanks, instrumental detection limits (IDLs), retention time repeatability, procedural blanks, and estimation of method detection limits (MDLs). A full method validation was not envisaged, as highly variable compound-specific and sample-specific apparent recoveries (i.e. combination of extraction recovery and matrix effect) hampered

247	proper quantification in this multi-chemical screening approach. It is thus important to keep in
248	mind that all concentrations given in the present study are semi-quantitative estimates. Details
249	on how method evaluation (including procedural blank experiments and determination of
250	MDLs) and semi-quantitative concentration estimation were performed are given in the
251	supplementary data (page S24).
252	
253	3. Results and discussion
254	3.1 Performance of the different enrichment and instrumental methods
255	The method development targeted at analytical methods encompassing a maximum number of
256	PMOCs, rather than optimization of parameters for certain analytes. Since the 64 targeted
257	PMOCs widely varied in their properties (functional groups, molecular weight, $\log D$, pK_a), a
258	number of complementary analytical methods were required to cover the large range of
259	analytes.
260	3.1.1 Separation methods, instrumental blanks, and instrumental detection limits
261	Four principally different instrumental separation methods (section 2.4) were developed and
262	compared for the analysis of the 64 selected PMOCs. The separation methods comprised
263	MMLC, HILIC, RPLC, and SFC. In contrast to MMLC and HILIC, which were used with
264	one separation column each, two different column types were tested for both RPLC and SFC
265	(see 2.4). A total of 57 compounds were amenable to at least two separation methods, i.e.
266	leading to a distinct chromatographic signal in two MRM transitions (Tables S5A-C) or, in
267	case of HRMS data, in two extracted high resolution mass chromatograms (usually the quasi-
268	molecular ion and a fragment at higher collision energy, Table S5D). The remaining 7
269	compounds could only be analyzed by one separation method each, i.e. 3 by HILIC (bis(2-

dimethylminoethyl)ether (ID-7), pyrazole (ID-49), 5-chloro-2-methylaniline (ID-59)), 3 by

271 RPLC (gluconate (ID-1), 1,5-naphthalenedisulfonic acid (ID-8), phenylphosphonic acid (ID-

272 27)), and 1 by SFC (1,3,5-triallyl-1,3,5-triazinane-2,4,6-trione (ID-55)). Retention time

273 repeatability was excellent (max. +/- 0.1 min) for all PMOCs in all separation methods (Table
274 S6).

275	The instrumental detection limits (IDLs) for all PMOCs with the different instrumental
276	methods are listed in Table S7. Almost all PMOCs (60 out of 64) could be sensitively
277	detected (single digit pg to sub pg injected) with at least one of the tested instrumental
278	methods. The good sensitivity is facilitated by the high polarity of PMOCs, which
279	consequently tend to readily ionize in the ESI-source. Exceptions were bis(2-
280	dimethylaminoethyl)ether (ID-7, with an IDL of 0.13 ng injected), pyrazole (ID-49, IDL 0.5
281	ng), 1,3,5-triallyl-1,3,5-triazinane-2,4,6-trione (ID-55, IDL 0.013 ng), and 2,6-dimethylaniline
282	(ID-56, IDL 0.012 ng), for which higher IDLs were found. These four PMOCs were all
283	substances that were detected in positive ESI mode based on amine groups. Reasons for their
284	relatively high IDLs were poor ionization efficiency and/or poor fragmentation (in MRM).
285	Furthermore, the following analytes suffered from elevated IDLs due to instrumental blank
286	contamination: Methyl sulfate (ID-14), 4-hydroxy-1-(2-hydroxyehtyl)-2,2,6,6,-
287	tetramethylpiperidine (ID-17), N-(3-(dimethylamino)-propyl)methacrylamide (ID-29),
288	dicyclohexyl sulfosuccinate (ID-47), 1,3-diphenylguanidine (ID-52), 3,5-di-tert-butylsalicylic
289	acid (ID-54), 1,3-di-o-tolylguanidine (ID-58), and tri-(2-chloroisopropyl)phosphate (ID-63).
290	

3.1.2 Retention of PMOCs in the different separation systems

One challenge with highly mobile substances is to retain (and separate) them in a chromatographic system (Reemtsma et al. 2016). Certain retention is, however, mandatory in order to minimize matrix effects in ionization and to facilitate quantification. Table S8 and Figure S3 show the retention factors k' of the PMOCs (i.e. their retention relative to the dead time of the system) for the different methods. HILIC and RPLC show a clear trend of low retention, i.e. early elution for many PMOCs. However, while RPLC shows early elution especially for PMOCs with a very low log*D* value, HILIC shows an opposite trend (Figure

S4). In MMLC the retention factors of the PMOCs cover a wide range including very late 299 elution (k'>30, predominantly for sulfonic acids), despite a steep gradient profile (though 300 ending at 80 % organic mobile phase, Figure S2). The SFC methods (*Chromatography* D_1 301 and D_2) show moderate retention for most PMOCs, which is a favorable compromise in terms 302 of separation from matrix components and time efficient chromatography. A strong positive 303 relationship of k' values and calculated logD values of the substances was observed in RPLC-304 HSST3 (*Chromatography* C_1), whereas this relationship was weaker (and partly negative) for 305 the other separation techniques (Figure S4). In conclusion, RPLC is generally only applicable 306 to PMOCs with moderate polarity (logD>0, Reemtsma et al. 2016). PMOCs with logD<0 307 should be analyzed with alternative methods such as HILIC, MMLC, or SFC (Figure S4), 308 whereby the MMLC method used in the present study was inefficient for many sulfonic acids 309 (long retention times). SFC showed moderate retention and very narrow signals for most of 310 311 the investigated PMOCs but has the drawback that it cannot be performed on a conventional LC system. 312

313 **3.1.3** Evaluation of the analytical methods

314 Enrichment of mobile substances from water samples is another challenge in PMOC analysis (Reemtsma et al. 2016). A total of 8 different enrichment methods (section 2.3) were tested in 315 specific combinations with the instrumental methods (section 2.4). Table S9 lists the method 316 combinations that were successfully applied for analysis of the different target PMOCs. For 317 seven of the 64 PMOCs (gluconate (ID-1), 1,1,4,7,7-pentamethyl-diethylenetriamine (ID-11), 318 3-mercapto-1-propanesulfonic acid (ID-19), phenylphosphonic acid (ID-27), pyrazole (ID-319 49), 5-chloro-2-methylaniline (ID-59), and N1-isopropyl-N4-phenylbenzene-1,4-diamine (ID-320 64)) none of the tested method combinations worked. These seven PMOCs could thus not be 321 analyzed in the present study and are not discussed further. All in all 20 different 322 combinations of enrichment and instrumental methods were tested and used for environmental 323 water analysis (Table S9 and Figure S5). None of the method combinations was applicable to 324

13

more than 24 of the investigated PMOCs (Figure S5), which demonstrates the 325 complementarity of the methods. Nevertheless, there were distinct differences in the 326 broadness of applicability. Enrichments III and IV (multi-layer SPE and evaporation, both in 327 combination with HILIC) and Enrichment VII (ENV+ SPE, in combination with RPLC or 328 SFC) were the enrichment methods capturing most PMOCs. Multi-layer SPE methods have 329 also earlier been used successfully in environmental water analysis for a variety of polar 330 micropollutants (Huntscha et al. 2012). On the other hand, Enrichment VI (MCX) was only 331 successful for few PMOCs in the present study. MCX is a strong reversed-phase mixed-mode 332 cation-exchange polymer. Some cationic analytes may have sorbed too strongly on this 333 polymer to be eluted with the chosen elution method. In terms of separation methods, 334 Chromatography C_2 (RPLC with Hypercarb column) showed a comparatively poor 335 performance. It worked well for standard chemicals, but many signals broadened significantly 336 337 in the presence of sample matrix, preventing this method from a broad applicability range among the selected target PMOCs (Figure S5). 338 3.1.4 Procedural blanks and method detection limits 339 340 The estimated method detection limits (MDLs) for all PMOCs applying the developed methods (i.e. combinations of enrichment and instrumental methods) are listed in Table S9. 341 They were generally in the low to sub ng L^{-1} range, but covered overall five orders of 342 magnitude (0.02 to 2000 ng L^{-1}) for the different PMOCs and methods. Also for some 343 individual PMOCs the MDLs of different methods varied considerably. It is important to note 344 that the MDLs were not only dependent on the enrichment and separation methods, but also 345 on the employed MS instrument and on the presence (or absence) of procedural blank 346 contamination. A total of 29 investigated PMOCs seem to be widely dispersed water 347 pollutants or contaminants in lab consumables and equipment, as they were detected 348

- pondumes of containments in the consumations and equipment, as they were detected
- 349 repeatedly in procedural blank experiments, leading to correspondingly elevated MDLs.
- 350 These compounds were ID-2, -10, -14, -16, -17, -20, -21, -22, -23, -24, -25, -26, -32, -33, -34,

-36, -37, -39, -40, -43, -44, -46, -47, -51, -52, -54, -58, -61, and -63. No effort was made in the
present study to elucidate or eliminate the source(s) of the procedural blank contaminations.

353 3.2 Detection frequencies in target screening of environmental water samples

All developed method combinations were applied to 14 water samples (section 2.2 and Table 354 S2) to screen for the 57 PMOCs amenable to at least one of the methods (see 3.1.3). The 355 samples comprised surface water, groundwater, and bank filtrate as well as reverse osmosis 356 concentrate and permeate. In total 43 PMOCs (75 % of the investigated substances) were 357 detected above their MDL in at least one sample with at least one of the applied methods 358 (Figure 1). Figure 1 shows the detection frequency for the individual PMOCs in the 14 359 samples including information on the number of underlying principally different separation 360 methods (Chromatography A-D). Of the 43 detected PMOCs, 21 were found in at least 50 % 361 of the samples and often at relatively high concentrations (Figure S6 and section 3.3 below). 362 363 Chromatography method-specific detection frequencies are listed in Table S10, underpinning the complementarity of the employed separation methods in analysis of the target PMOCs. 364 The most important detected PMOCs are discussed in section 3.4 below. 365

366 **3.3** Concentration estimates

Concentrations of the detected PMOCs in the water samples were estimated according to 367 section 2.5. They need to be considered as semi-quantitative estimates. Since extraction 368 recoveries and matrix effects (suppression more common than enhancement) were not taken 369 into account, it can be assumed that the estimated concentrations are mostly underestimations. 370 Figure 2 shows boxplots of estimated concentrations of selected PMOCs in the water samples. 371 The selection of PMOCs for Figure 2 was based on the quality criteria that the substance was 372 detected by more than one method and that the estimated concentrations by the different 373 methods for a given sample were consistent (i.e. typically within one order of magnitude, then 374 averaged over all methods in Figure 2). Furthermore, Figure S6 depicts the maximum 375

376 estimated concentration (gray shade) for all detected PMOCs together with the frequency of detection. 377

Some PMOCs were detected in the high ng L^{-1} up to μ g L^{-1} range (Figure 2 and Figure S6). 378 Of the PMOCs shown in Figure 2, these were notably ID-13 (acesulfame), ID-25 (sulfanilic 379 acid), ID-26 (melamine), ID-33 (trifluoromethanesulfonic acid), ID-37 (cyanoguanidine), ID-380 39 (p-toluenesulfonic acid), ID-40 (saccharine), ID-44 (dimethylbenzenesulfonic acid), and 381 ID-45(benzyldimethylamine). It is noteworthy that a high frequency of detection did not 382 necessarily go along with high concentrations. An example is ametryn (ID-61), which was 383 detected in 11 samples, but at a low maximum concentration (Figure 2). 384

385 3.4

Discussion of detected PMOCs

All of the 43 detected PMOCs were industrial chemicals registered under REACH with 386 calculated logD values at pH 7 ranging between -5.6 and 3.4 (average -1.9, ChemAxon). 387 388 Their uses cover many different fields of application, including coating products, inks and paints, adhesives and sealants, water treatment products, leather and textile treatment 389 390 products, cosmetics and personal care products, vulcanization or polymerization processes, and processing aids in other applications (Table 1). Also the tonnages manufactured in and/or 391 imported into the European Union vary widely. They range from single digit up to hundred 392 thousands of tons (Table 1, ECHA 2018). 393

The detected PMOCs were categorized according to two criteria: Frequency of detection and 394 level of awareness as environmental water pollutants (Figure 3 and Table 1). PMOCs that 395 were detected in at least half of the samples (\geq 7 samples) were placed in the category "high 396 frequency of detection", other detected PMOCs were placed in the category "low frequency 397 of detection". For the awareness criterion, three categories were made based on a literature 398 search using Google Scholar including the substance name (IUPAC or trivial name) and the 399 search terms 'environment', 'surface water', 'groundwater', or 'drinking water'. The three 400 categories were "novel" PMOCs, i.e. substances that have not been reported as environmental 401

water pollutants so far, "scarcely investigated" PMOCs, i.e. substances for which very few 402 reports on environmental occurrence exist (often only from industrial sites or waste water 403 treatment effluents), and "well-known" PMOCs, for which ample literature data exist. This 404 categorization allows a prioritization of the detected PMOCs for future investigations as 405 indicated in Figure 3, with PMOCs in the top left corner having the highest priority (priority 406 1), followed by PMOCs in the top middle (priority 2), PMOCs in the bottom left corner 407 (priority 3), and so forth. The PMOCs in the two top priority categories are shown with their 408 structures in Figure 3 and shortly discussed individually in the following sub-sections, while 409 all detected PMOCs are presented in Table 1. 410

411 3.4.1 Priority 1 PMOCs

412 Methyl sulfate (ID-14) as a relatively small surfactant was detected in surface and

413 groundwater samples primarily from The Netherlands at levels up to the high ng L^{-1} range.

414 The present study is the first report on the occurrence of methyl sulfate in the environment.

415 **2-Acrylamino-2-methylpropane sulfonate** (ID-16) was one of several sulfonic

416 acids/sulfonates frequently detected in the present study. This compound was typically found 417 in the range of 1-10 ng L^{-1} , but occasionally also exceeding 100 ng L^{-1} . ID-16 was detected in 418 every analyzed sample type. The occurrence of ID-16 in environmental waters is reported 419 here for the first time.

420 Benzyltrimethylammonium (ID-23), a permanently charged quaternary ammonium cation,

421 and **benzyldimethylamine** (ID-45) are two PMOCs with similar basic structures that were

422 frequently detected here for the first time. They were both primarily found in surface water,

423 but in single cases also in groundwater samples. ID-23 was detected in single digit ng L^{-1}

424 concentrations while ID-45 occurred in up to several hundreds of ng L^{-1} .

425 **Trifluoromethanesulfonic acid** (TFMSA, ID-33) was found in all analyzed samples with the

426 exception of the reverse osmosis permeate and at levels up to the μ g L⁻¹ range (Figure 2).

427 TFMSA could be analyzed by all of the separation methods (Table S9), even though the

retention in HILIC and RPLC was poor (Table S8). We have chosen to categorize TFMSA as
"novel" since we are the only ones so far who have reported on the occurrence of TFMSA in
environmental water samples (Zahn et al. 2016; Montes et al. 2017, in another context and in
other samples from the same larger collaborative study). TFMSA belongs to the group of
short-chain perfluoroalkane sulfonic acids. Other short-chain perfluoroalkyl acids, such as
trifluoroacetic acid, have already been found in drinking water (Mak et al. 2009; Janda et al.
2018).

6-Methyl-1,3,5-triazine-diamine (acetoguanamine, ID-42) was detected in all of the 7
surface water samples at concentrations typically around or below 10 ng L⁻¹ (Figure 2). To the
best of our knowledge the presence of acetoguanamine in environmental water samples is
reported here for the first time.

1,3-Di-*o*-tolylguanidine (DTG, ID-58) was detected in all 14 analyzed samples (in 11
samples with at least two methods, Figure 1) at estimated concentrations typically around 10
ng L⁻¹ (Figure 2). Likewise TFMSA (ID-33), so far only our reports exist on the presence of
DTG in surface water, groundwater, and drinking water (present study and Montes et al. 2017
with a different sample set).

444 3.4.2 Priority 2 PMOCs

Adamantan-1-amine (amantadine, ID-32) is a pharmaceutical used as antiviral (against
influenza A virus) and antiparkinsonian medication. Moreover, amantadine is also a chemical
registered under REACH because of its use as an intermediate in industrial processes (ECHA
2018). Also this PMOC was identified in every sample with the exception of the reverse
osmosis permeate. It has earlier been identified in German municipal effluent water (Möhle
and Metzger 2001).

451 All of the three guanidine derivatives that were analyzed (including DTG discussed above and

452 DPG discussed below) were detected in the majority of samples. Cyanoguanidine (CG, ID-

453 37) was detected in 8 of the analyzed water samples, i.e. in all 7 surface water samples and in

454	one German groundwater sample (Figure 1) at concentrations exceeding 3000 ng L^{-1} (Figure
455	2). Few studies have previously reported the environmental occurrence of CG. Scheurer and
456	co-workers detected CG in German surface water in the mg L^{-1} range, with an industrial site
457	as a point source (Scheurer et al. 2016). In surface water samples in a coastal agricultural
458	catchment from New Zealand CG was quantified with a maximum concentration close to 1
459	mg L ⁻¹ (Smith and Schallenberg 2013).
460	<i>p</i> -Toluenesulfonic acid (ID-39) was detected in all 14 samples and at concentrations
461	exceeding 1000 ng L ⁻¹ . It has earlier been detected in drinking water in the United Kingdom
462	(Crathorne et al. 1984).
463	The two isomers of dimethylbenzenesulfonic acid (ID-44), i.e. xylenesulfonic acid and 2,3-
464	dimethylbenenzenesulfonic acid, were both detected in 13 samples (Figure 1). Only the
465	reverse osmosis permeate from the Netherlands showed levels <mdl. and="" betowski="" co-<="" td=""></mdl.>
466	workers have earlier reported on the presence of xylenesulfonic acid in groundwater
467	(Betowski et al. 1996).
468	Two isomers of the compound toluenesulfonamide (ID-51) were detected in 12 out of 14
469	samples, with the exception of one groundwater sample and the reverse osmosis permeate. In
470	a study by Richter et al. (2017) with different types of water from Berlin ID-51 was found at
471	concentrations up to 50 μ g L ⁻¹ in wastewater and 0.27 μ g L ⁻¹ in drinking water.
472	Likewise DTG, 1,3-diphenylguanidine (DPG, ID-52) was detected in all 14 analyzed
473	samples, but at higher estimated concentrations up to 100 ng L ⁻¹ (Figure 2). In an earlier study
474	on drinking water in China DPG was found at levels up to 0.74 mg L^{-1} due to migration from
475	high density polyethylene pipes (Tang et al. 2015).
476	3.5 Evaluation of the prioritization and analytical strategy
477	While a number of prioritization approaches for chemicals (based on regulatory databases or

478 other available datasets) with respect to environmental and/or human exposure and risk have

been published (as reviewed in e.g. Muir and Howard 2006; Bu et al. 2013; Mitchell et al.

2013), relatively few chemical analytical studies have been conducted taking direct advantage 480 of such prioritization exercises (McLachlan et al. 2014; Singer et al. 2016; Sjerps et al. 2016; 481 Montes et al. 2017; Gago-Ferrero et al. 2018). Nevertheless, monitoring is necessary to 482 validate the prioritization approaches. 483 The present chemical analytical study builds on a prioritized list of industrial chemicals that 484 have been modeled to be persistent, mobile, and to possess a high environmental emission 485 potential (Schulze et al. 2018). Additionally, we used targeted analytical methods with 486 generally very high sensitivity. Still, several target analytes were not detected in the analyzed 487 samples. This could be due to one or several of the following uncertainties of our overall 488 prioritization and analytical strategy. I) The modeling of especially persistence, but also 489 mobility and emission potential, is tainted with considerable uncertainties, as discussed in 490 detail in Arp et al. 2017 and in Schulze et al. 2018. II) For some of the target analytes 491 492 enrichment from water, chromatographic retention and/or peak shape, or ionization in ESI was poor, hampering sensitive detection. III) The analyzed water samples were not 493 494 representative for all European countries or regions. Some PMOCs may have well defined points of emission that were not covered by the sampling design. 495 Despite these uncertainties, our overall strategy was highly successful. Among the 54 target 496 PMOCs selected from the prioritized list in the supplementary data in Schulze et al. 2018 497 (section 2.1), 49 were amenable to at least one of the developed methods. Out of these 49 498 substances 35 PMOCs were found in surface and/or groundwater, among them 23 PMOCs 499 that have not been reported before to occur in environmental waters. The high detection rate 500 of 71 % (35/49) validates the good accuracy of the modeling and corroborates the strength of 501 the chosen approach, i.e. a focused prioritization combined with sensitive target analysis. 502 503

504 **4** Conclusions

The present study has validated and proven the strength of the chosen modeling and analytical 505 approach consisting of a focused prioritization combined with sensitive target chemical 506 analysis. The developed enrichment and chromatographic methods proved to be useful and 507 complementary for analysis of PMOCs in water samples. They can be used individually or in 508 combination with each other to further investigate the occurrence and fate of PMOCs in water 509 cycles. In the present study 75 % of the analyzed PMOCs were detected in selected water 510 samples from Germany, Spain and The Netherlands. This high rate of detection together with 511 the fact that more than 1000 PMOC candidates with an environmental emission potential were 512 identified only among the substances registered under REACH (Schulze et al. 2018) leads to 513 the conclusion that there are likely hundreds of so far undiscovered PMOCs present in 514 environmental waters, threatening the quality of drinking water resources. An important 515 follow-up study would thus be to use the list published by Schulze et al. (2018) in order to 516 517 better characterize the number and identity of PMOCs occurring in environmental waters. Furthermore, the development of quantitative analytical methods for PMOCs would enable 518 519 more detailed fate studies of PMOCs, e.g. investigating the removal in different steps of drinking water production. Finally, the toxicity of the most abundant of the identified PMOCs 520 (e.g. TFMSA, CG, and p-toluenesulfonic acid occurring in high ng L^{-1} up to μ g L^{-1} 521 concentrations) needs to be investigated as another important step in PMOC risk assessment. 522 In this respect, activities are ongoing by national and European authorities to classify 523 substances according to their persistence, mobility, and toxicity (PMT) properties (Neumann 524 and Schliebner 2017). The results of the present study inform such activities. 525 526

527 Acknowledgments

528 This work has been funded by the German BMBF (02WU1347A/B) and the Spanish

529 MINECO/AEI (JPIW2013-117) in the frame of the collaborative international consortium

530 (WATERJPI2013 – PROMOTE) of the Water Challenges for a Changing World Joint

- 531 Programming Initiative (Water JPI) Pilot Call. RM, RR and JBQ also acknowledge Galician
- 532 Council of Culture, Education and Universities and FEDER/EDRF funding
- 533 (ED431C2017/36). The authors are thankful for the support in sample acquisition by
- 534 Hessenwasser GmbH & Co. KG (Darmstadt, Germany), Peter Seel (Hessian Agency for
- 535 Nature Conservation, Environment and Geology, Wiesbaden, Germany), Mónica Velo and
- 536 Raquel Piñeiro (Augas de Galicia, Santiago de Compostela, Spain), Oasen drinking water
- 537 (Gouda, the Netherlands), and Vittorio Albergamo (Institute for Biodiversity and Ecosystem
- 538 Dynamics, University of Amsterdam, The Netherlands). Finally, we would like to thank
- 539 Heidrun Paschke and Till Meier for technical help in the lab.
- 540

541 Appendix A. Supplementary data

- 542 Supplementary data related to this article can be found at ...
- 543

544 **References**

- Alonso, M. C.; Barcelo, D. (1999) Tracing polar benzene- and naphthalenesulfonates in untreated industrial
 effluents and water treatment works by ion-pair chromatography-fluorescence and electrospray-mass
 spectromatry Anal Chim. Acta 400, 211, 231
- 547 spectrometry, Anal. Chim. Acta, 400, 211–231.
- Arp, H. P. H.; Brown, T. N.; Berger, U.; Hale, S. E. (2017) Ranking REACH registered neutral, ionizable and
 ionic organic chemicals based on their aquatic persistency and mobility, Environ. Sci.: Processes Impacts, 19,
 939–955.
- 551 Beltrán-Martinavarro, B.; Peris-Vicente, J.; Rambla-Alegre, M.; Marco-Peiró, S.; Esteve-Romero, J.; Carda-
- 552 Broch, S. (2013) Quantification of Melamine in Drinking Water and Wastewater by Micellar Liquid 553 Chromotography L AOAC Int. 06 (4) 870 874
- 553 Chromatography, J. AOAC Int., 96 (4), 870–874.
- Betowski, L.; Kendall, D.; Pace, C.; Donnelly, J. (1996) Characterization of Groundwater Samples from
- Superfund Sites by Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry,
 Environ. Sci. Technol., 30, 3558–3564.
- Bieber, S.; Greco, G.; Grosse, S.; Letzel, T. (2017) RPLC-HILIC and SFC with Mass Spectrometry: Polarity Extended Organic Molecule Screening in Environmental (Water) Samples, Anal. Chem., 89 (15), 7907–7914.
- Bu, Q.; Wang, D.; Wang, Z. (2013) Review of screening systems for prioritizing chemical substances. Crit. Rev.
 Environ. Sci. Technol., 43, 1011–1041.
- Buerge, I. J.; Buser, H.-R.; Kahle, M.; Müller, M. D.; Poiger, T. (2009) Ubiquitous Occurrence of the Artificial
 Sweetener Acesulfame in the Aquatic Environment, Environ. Sci. Technol., 43 (12), 4381–4385.
- 563 Christophoridis, C.; Nika, M.-C.; Aalizadeh, R.; Thomaidis, N. S. (2016) Ozonation of ranitidine: Effect of
 564 experimental parameters and identification of transformation products, Sci. Total Environ., 557-558, 170–182.
- 565 Crathorne, B.; Fielding, M.; Steel, C. P.; Watts, C. D. (1984) Organic Compounds in Water: Analysis Using
- Coupled-Column High-Performance Liquid Chromatography and Soft- Ionization Mass Spectrometry, Environ.
 Sci. Technol., 18, 797–802.

- ECHA (2018) https://www.echa.europa.eu/information-on-chemicals/registered-substances. Last accessed
 31.07.2018.
- 570 European Parliament (2006) Regulation (ec) 1907/2006 of the European parliament and of the council of 18
- 571 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH),
- 572 establishing a European chemicals agency, amending directive 1999/45/ec and repealing council regulation (eec)
- 573 793/93 and commission regulation (ec) 1488/94 as well as council directive 76/769/eec and commission
- directives 91/155/eec, 93/67/eec, 93/105/ec and 2000/21/ec, Official Journal of the European Union, 30.12.2006,
 L 396/1–849.
- 576 Gago-Ferrero, P.; Krettek, A.; Fischer, S.; Wiberg, K.; Ahrens, L. (2018) Suspect Screening and Regulatory
- 577 Databases: A Powerful Combination To Identify Emerging Micropollutants, Environ. Sci. Technol., 52, 6881–
 578 6894.
- 579 Holm, V. J.; Rügge, K.; Bjerg, L. P.; Christensen, H. T. (1995) Occurrence and Distribution of Pharmaceutical
- 580 Organic Compounds in the Groundwater Downgradient of a Landfill (Grindsted, Denmark), Environ. Sci.
- **581** Technol., 29 (5), 1415–1420.
- 582 Huntscha, S; Singer, H.P.; McArdell, C.S.; Frank, C.E.; Hollender, J. (2012) Multiresidue analysis of 88 polar
- 583 organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase
- extraction coupled to high performance liquid chromatography-tandem mass spectrometry, J. Chromatogr. A,
- 585 1268, 74–83. Janda, J.; Nödler, K.; Brauch, H.J.; Zwiener, C.; Lange, F. T. (2018) Robust trace analysis of polar
- (C2-C8) perfluorinated carboxylic acids by liquid chromatography-tandem mass spectrometry: method
 development and application to surface water, groundwater and drinking water, Environ. Sci. Pollut. Res. Int.,
- 588 doi: 10.1007/s11356-018-1731-x.
- Jiang, J.-Q.; Durai, H. B. P.; Winzenbacher R.; Petri, M.; Seitz, W. (2015) Drinking water treatment by in situ
 generated ferrate(VI), Desalin. Water Treat., 55 (3), 731–739.
- Knepper, T.P.; Sacher, F.; Lange, F.T.; Brauch, H.J.; Karrenbrock, F.; Roerden, O.; Lindner, K. (1999)
 Detection of polar organic substances relevant for drinking water, Waste Manag., 19 (2), 77–99.
- 593 Köke, N.; Zahn, D.; Knepper, T. P.; Frömel, T. (2018) Multi-layer solid-phase extraction and evaporation-
- enrichment methods for polar organic chemicals from aqueous matrices, Anal. Bioanal. Chem., 410 (9), 2403–
 2411.
- Lanchote, V. L.; Bonato, P. S.; Cerdeira, A., L.; Santos, N. A. G.; de Carvalho, D.; Gomes, M. A. (2000) HPLC
- 597 Screening and GC-MS Confirmation of Triazine Herbicides Residues in Drinking Water from Sugar Cane Area
- 598 in Brazil, Water Air Soil. Pollut., 118 (3), 329–338.
- Landesamt f
 ür Natur, Umwelt und Verbraucherschutz NRW (2015) Warn- und Alarmdienst Rhein Pyrazol im
 Rhein, 26 August 2015, available at
- 601 https://www.lanuv.nrw.de/fileadmin/lanuv/umwelt/schadensfaelle/rhein/2015/2015_08_26_Pyrazol.pdf
- Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland-Pfalz (2011) Tätigkeitsbericht 2011,
 Teil 1 Arbeitsbericht, available at
- http://www.rheinguetestation.de/dokumente/Taetigkeitsbericht_2011_der_Rheinguetestation_Worms_Teil_1_Ar
 beitsbericht.pdf
- Li, J.; Yu, N.; Zhang, B.; Jin, L.; Li, M.; Hu, M.; Zhang, X.; Wei, S.; Yu, H. (2014) Occurrence of
 organophosphate flame retardants in drinking water in China, Water Res., 54, 53–61.
- Mak, Y. L.; Taniyasu, S.; Yeung, L. W. Y.; Lu, G.; Jin, L.; Yang, Y.; Lam, P. K. S.; Kannan, K.; Yamashita, N.
- (2009) Perfluorinated Compounds in Tap Water from China and Several Other Countries, Environ. Sci.
 Technol., 43 (13), 4824–4829.
- 611 Mastroianni, N.; Lopez de Alda, M.; Barcelo, D. (2014) Analysis of ethyl sulfate in raw wastewater for
- estimation of alcohol consumption and its correlation with drugs of abuse in the city of Barcelona, J.Chromatogr. A, 1360, 93–99.
- - Mazzarino, M.; Fiacco, I.; de la Torre, X.; Botrè, F. (2011) Screening and confirmation analysis of stimulants,
 - narcotics and beta-adrenergic agents in human urine by hydrophilic interaction liquid chromatography coupled to
 mass spectrometry, J. Chromatogr. A, 1218 (45), 8156–8167.
 - 617 McLachlan, M. S.; Kierkegaard, A.; Radke, M.; Sobek, A.; Malmvärn, A.; Alsberg, T.; Arnot, J. A.; Brown, T.
 - N.; Wania, F.; Breivik, K.; Xu, S. (2014) Using model-based screening to help discover unknown environmental
 contaminants. Environ. Sci. Technol., 48, 7264–7271.

- 620 Mitchell, J.; Arnot, J. A.; Jolliet, O.; Georgopoulos, P. G.; Isukapalli, S.; Dasgupta, S.; Pandian, M.; Wambaugh,
- J.; Egeghy, P.; Cohen Hubal, E. A.; Vallero, D. A. (2013) Comparison of modeling approaches to prioritize
- 622 chemicals based on estimates of exposure and exposure potential. Sci. Total Environ., 458-460, 555–567.
- 623 Möhle, E.; Metzger, J. W. (2001) Drugs in Municipal Sewage Effluents: Screening and Biodegradation Studies,
- 624 Chapter 11 in ACS Symposium Series "Pharmaceuticals and Care Products in the Environment", Vol. 791, 192–
 625 205.
- Montes, R.; Aguirre, J.; Vidal, X.; Rodil, R.; Cela, R.; Quintana, J. B. (2017) Screening for Polar Chemicals in
- Wolnes, K., Aguirie, J., Vida, X., Roui, K., Ceta, K., Quintana, J. B. (2017) Screening for Folar Chemicals in
 Water by Trifunctional Mixed-Mode Liquid Chromatography-High Resolution Mass Spectrometry, Environ. Sci.
 Technol., 51 (11), 6250–6259.
- Montes, R.; Rodil, R.; Cela, R.; Quintana, J. B. (manuscript) Determination of persistent and mobile organic
 contaminants (PMOCs) in water samples by mixed-mode liquid chromatography-tandem mass spectrometry.
- Muir, D. C. G.; Howard, P. H. (2006) Are there other persistent organic pollutants? A challenge for
 environmental chemists. Environ. Sci. Technol., 40, 7157–7166.
- 633 Neumann, M. (2017) Vorschlag für Kriterien und ein Bewertungskonzept zur Identifizierung von persistenten,
- mobile und toxischen (PMT-) Stoffen zum Schutz des Rohwassers zur Trinkwassergewinnung unter der EU Verordnung REACH, Zbl. Geol. Paläontol. Teil I 1, 91–101.
- 636 Neumann, M.; Schliebner, I. (2017) Protecting the sources of our drinking water. A revised proposal for
- 637 implementing criteria and an assessment procedure to identify Persistent, Mobile and Toxic (PMT) and very
- 638 Persistent, very Mobile (vPvM) substances registered under REACH. German Environment Agency, Dessau-
- 639 Rosslau (16 pages, ISSN 2363-8273). Online available at
- 640 https://www.umweltbundesamt.de/publikationen/protecting-the-sources-of-our-drinking-water-from
- Parr, M. K.; Wuest, B.; Naegele, E.; Joseph, J. F.; Wenzel, M.; Schmidt, A. H.; Stanic, M.; de la Torre, X.;
- Botrè, F. (2016) SFC-MS/MS as an orthogonal technique for improved screening of polar analytes in anti-doping
 control, Anal. Bioanal. Chem., 408 (24), 6789–6797.
- Reemtsma, T.; Quintana, J. B.; Rodil, R.; Garcia-Lopez, M.; Rodriguez, I. (2008) Organophosphorus flame
 retardants and plasticizers in water and air I. Occurrence and fate, Trends Analyt. Chem., 27 (9), 727–737.
- 646 Reemtsma, T.; Alder, L.; Bansiak, U. (2013) A multimethod for the determination of 150 pesticide metabolites
- 647 in surface water and groundwater using direct injection liquid chromatography mass spectrometry, J.
 648 Chromatogr. A, 1271, 95–104.
- Reemtsma, T.; Berger, U.; Arp, H. P. H.; Gallard, H.; Knepper, T. P.; Neumann, M.; Quintana, J. B.; de Voogt,
 P. (2016) Mind the Gap: Persistent and Mobile Organic Compounds Water Contaminants That Slip Through,
 Environ. Sci. Technol., 50 (19), 10308–10315.
- Richter, D.; Dünnbier, U.; Massmann, G.; Pekdeger, A. (2007) Quantitative determination of three sulfonamides
 in environmental water samples using liquid chromatography coupled to electrospray tandem mass spectrometry,
 J. Chromatogr. A, 1157, 115–121.
- Ruff, M.; Mueller, M. S.; Loos, M.; Singer, H. P. (2015) Quantitative target and systematic non-target analysis
 of polar organic micro-pollutants along the river Rhine using high-resolution mass-spectrometry Identification
- of unknown sources and compounds, Water Res., 87, 145–154.
- 658 Scheurer, M.; Brauch, H.-J.; Lange, F. T. (2009) Analysis and occurrence of seven artificial sweeteners in
- 659 German waste water and surface water and in soil aquifer treatment (SAT), Anal. Bioanal. Chem., 394, 1585–
 660 1594.
- Scheurer, M.; Brauch, H.-J.; Schmidt, C. K.; Sacher, F. (2016) Occurrence and fate of nitrification and urease
 inhibitors in the aquatic environment, Environ. Sci.: Processes Impacts, 18 (8), 999–1010.
- 663 Schulze, S.; Sättler, D.; Neumann, M.; Arp, H. P. H.; Reemtsma, T.; Berger, U. (2018) Using REACH
- registration data to rank the environmental emission potential of persistent and mobile organic chemicals, Sci.
 Total Environ., 625, 1122–1128.
- 666 Singer, H.P.; Wössner, A.E.; McArdell C.S.; Fenner, K. (2016) Rapid Screening for Exposure to "Non-Target"
- Pharmaceuticals from Wastewater Effluents by Combining HRMS-Based Suspect Screening and Exposure
 Modeling, Environ. Sci. Technol., 50, 6698–6707.
- Sjerps, R.M.A.; Vughs, D.; van Leerdam, J.A.; ter Laak, T.L.; van Wezel, A.P. (2016) Data-driven prioritization
 of chemicals for various water types using suspect screening LC-HRMS, Water Res., 93, 254–264.

- 671 Smith, I.; Schallenberg, M. (2013) Occurrence of the agricultural nitrification inhibitor, dicyandiamide, in
- surface waters and its effects on nitrogen dynamics in an experimental aquatic system, Agr. Ecosyst. Environ.,
 164, 23–31.
- 674 Stüber, M.; Reemtsma, T. (2004) Evaluation of three calibration methods to compensate matrix effects in
- environmental analysis with LC-ESI-MS, Anal. Bioanal. Chem., 378 (4), 910–916.
- Tang, J.; Tang, L.; Zhang, C.; Zeng, G.; Deng, Y.; Dong, H.; Wang, J.; Wu, Y. (2015) Different senescent HDPE
- pipe-risk: brief field investigation from source water to tap water in China (Changsha City), Environ. Sci. Pollut.
 Res. Int., 22 (20), 16210–16214.
- Wang, H.; Wang, C.; Wu, W.; Mo, Z. Wang, Z. (2003) Persistent organic pollutants in water and surface
 sediments of Taihu Lake, China and risk assessment, Chemosphere, 50, 557–562.
- 681 Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Lam, J.; Lam, P. K. S.; Moon, H.-B.; Jeong, Y.; Kannan, P.;
- 682 Achyuthan, H.; Munuswamy, N.; Kannan, K. (2015) Bisphenol A and other bisphenol analogues including BPS
- and BPF in surface water samples from Japan, China, Korea and India, Ecotoxicol. Environ. Saf., 122, 565–572.
- Zahn, D.; Frömel, T.; Knepper, T. P. (2016) Halogenated methanesulfonic acids: A new class of organic
 micropollutants in the water cycle, Water Res., 101, 292–299.
- 686 Zahn, D.; Meusinger, R.; Frömel, T.; Knepper, T.P. (submitted) Halomethanesulfonic acids a new class of
- 687 polar disinfection by-products: standard synthesis, occurrence, and indirect assessment of mitigation options.

CEP CEP

Table 1. PMOCs detected in at least one water sample classified according to their frequency of detection and level of awareness (Figure 3). The underlying analytical methods are listed in Table S9.

Index	Substance name	logD*	CAS no.	Use**	Tonnage/yr**	Literature	
Priority 1: Novel and high frequency of detection							
ID-14	Methyl sulfate	-2.84	512-42-5	Surface active agent Laboratory chemical	10 - 100		
ID-16	2-Acrylamino-2-methylpropane sulfonate	-2.71	5165-97-9	• Monomer for polymerization and in hydrogels	10 000 - 100 000		
ID-23	Benzyltrimethylammonium	-2.24	56-93-9	 Process regulator, surface active agent Used in vulcanization or polymerization processes Removal of charged micropollutants from water by ion exchange polymers 	100 - 1 000		
ID-33	Trifluoromethanesulfonic acid	-1.23	1493-13-6	 Processing aid, process regulator, laboratory chemical Used in vulcanization or polymerization processes Ingredient of ionic liquids 	100 - 1 000	Zahn (2016) Montes (2017)	
ID-42	6-Methyl-1,3,5-triazine-diamine	-0.39	542-02-9	 Stabilizer for formaldehyde solutions Used in the manufacturing of melamine resins, in adhesives and sealants, in the decorative layer of high-pressure laminates 	0 - 10		
ID-45	Benzyldimethylamine	0.02	103-83-3	 Process regulator Used in vulcanization or polymerization processes Used in binding agents, fixing agents, polymers, adhesives and sealants, and coating products 	100 - 1 000		
ID-58	1,3-Di-o-tolylguanidine	2.25	97-39-2	 Process regulator Used in vulcanization or polymerization processes and in rubber products 	100 - 1 000	Montes (2017)	
Priority	2: Scarcely investigated and high freq	uency o	f detection				
ID-32	Adamantan-1-amine	-1.49	768-94-5	IntermediateAntiviral and antiparkinsonian pharmaceutical	Intermediate	Möhle and Metzger (2001)	
ID-37	Cyanoguanidine	-1.03	461-58-5	 Modifying agent for melamine resins Processing aid Used in fertilizers, textile treatment products, and dyes Used for the manufacture of textile, leather and fur 	10 000 - 100 000	Scheurer et al. (2016) Smith and Schallenberg (2013)	
ID-39	<i>p</i> -Toluenesulfonic acid	-0.71	104-15-4	 Processing aid, process regulator, pH-regulating agent Used in vulcanization or polymerization processes and in water treatment products 	10 000 - 100 000	Crathorne et al. (1984)	

ID-44	Dimethylbenzenesulfonic acid	-0.20	1300-72-7 25321-41-9	 Process regulator Used in vulcanization or polymerization processes pH-regulating agent Laboratory chemical 	1 000 - 10 000	Betwoski et al. (1996)
ID-51	Toluenesulfonamide	1.09	70-55-3 88-19-7	Processing aid, laboratory chemicalUsed in polymers	10 - 100	Richter et al. (2007)
ID-52	1,3-Diphenylguanidine	1.23	102-06-7	 Process regulator Used in vulcanization or polymerization processes In rubber products, polymers, tires, treated wooden products, bridges a.o. 	1 000 - 10 000	Tang et al. (2015)
Priority	3: Novel and low frequency of detecti	on				
ID-2	2-Piperazin-1-ylethylamine	-5.61	140-31-8	 Used in adhesives and sealants Coating products, fillers, putties, plasters, modelling clay, finger paints and polymers 	1 000 - 10 000	
ID-3	Isophoronediamine	-4.59	2855-13-2	 Adhesives and sealants Coating products, fillers, putties, plasters, modelling clay Laboratory chemical 	10 000 - 100 000	
ID-6	Methacrylamido propyl trimethyl ammonium	-3.74	51410-72-1	 Intermediate Industrial use of monomers for manufacture of thermoplastics 	100 - 1 000	
ID-9	2-[4-(2-hydroxyethyl)-1- piperazinyl]ethanesulfonic acid	-3.25	7365-45-9	• Used in water treatment products, adhesives and sealants, coatings, fillers, putties, plasters, modelling clay, inks, toners, leather and textile treatment products, lubricants, greases, perfumes, fragrances, polishes, waxes, dyes, cosmetics, and personal care products	100 - 1 000	
ID-12	3-Allyloxy-2-hydroxy-1- propanesulfonic acid	-3.13	52556-42-0	 Processing aids at industrial sites Corrosion inhibitor Anti-scaling agent 	1 000 - 10 000	
ID-15	1,4-Diazabicyclo-[2.2.2]octane	-2.83	280-57-9	Process regulatorUsed in vulcanization or polymerization processes	1 000 - 10 000	
ID-17	4-Hydroxy-1-(2-hydroxyehtyl)- 2,2,6,6,-tetramethylpiperidine	-2.62	52722-86-8	• Used for the manufacture of chemicals and plastic products	1 000 - 10 000	
ID-18	Vinylsulfonate	-2.60	3 039-83-6	Plating agents and metal surface treating agentsSurface active agentUsed in metal working fluids	100 - 1 000	
ID-24	2-Methyl-2-propene-1-sulfonic acid	-2.21	1561-92-8	Process regulatorUsed in vulcanization or polymerization processes	1 000 - 10 000	

				• Used for the manufacture of textile, leather, and fur (water repellent)	
ID-28	Carbodihydrazide	-1.96	497-18-7	Corrosion inhibitor and anti-scaling agentUsed in water treatment chemicals and polymers	100 - 1 000
ID-29	<i>N</i> -(3-(Dimethylamino)- propyl)methacrylamide	-1.85	5205-93-6	• Used in adhesives and sealants	1 000 - 10 000
ID-34	Dimethyl-5-sulfoisophthalate	-1.22	3965-55-7	 Processing aid Used for the manufacture of plastic products and chemicals Used in textile and leather treatment products and dyes, polymers, and non-metal-surface treatment products 	100 - 1 000
ID-47	Dicyclohexyl sulfosuccinate	0.42	23386-52-9	• Used in adhesives and sealants, coating products and fillers, putties, plasters, modelling clay	100 - 1 000
ID-50	4-((4- Aminophenyl)diazenyl)benzene- sulfonic acid	0.36	104-23-4	IntermediateLaboratory chemical	Intermediate
ID-54	3,5-Di- <i>tert</i> -butylsalicylic acid	1.62	19715-19-6	Surface active agentUsed in inks and toners, electrical batteries and accumulators	10 - 100
ID-60	4,4-Diaminodiphenylmethane	2.40	101-77-9	• Used in lubricants and lubricant additives, polymers, greases	10 000 - 100 000

Priority 4: Well-known and high frequency of detection

ID-13	Acesulfame	-3.06	55589-62-3	• Sweetener	1 000 - 10 000	Buerge et al. (2009)
ID-22	Cyanuric acid	-2.39	108-80-5	 Water treatment chemical Used in health services and municipal supply (e.g. electricity, steam, gas, water), in sewage treatment, and in swimming pools for pH control Used for the manufacture of plastic products 	10 000 - 100 000	Reemtsma et al. (2013)
ID-25	Sulfanilic acid	-2.04	121-47-1 121-57-3	 pH regulator Water treatment product Laboratory chemical	1 000 - 10 000	Holm et al. (1995)
ID-26	Melamine	-2.02	108-78-1	 Production of melamine resins Used flame retardants, laboratory chemicals, anti-set off and adhesive agents, impregnation agents, coloring agents, dyes, textile treatment products, non-metal-surface treatment products, paper chemicals, pH regulators, water and leather treatment products, and finger paints 	100 000 - 1 000 000	Ruff et al. (2015) Jiang et al. (2015)
ID-43	Naphthalene-1-sulfonic acid	-0.23	85-47-2	• Used in rubbers, pharmaceuticals, pesticides, varnishes and	no information	Alonso and Barcelo

				dyestuffs	available	(1999)
ID-46	ε-Caprolactam	0.31	105-60-2	 Processing aid Used in tanning agents, solvents, impregnation agents, reprographic agents (roners), bleaching agents, inks and toners, plastic products, textile, leather, and fur Laboratory chemical 	1 000 000 - 10 000 000	Wang et al. (2003)
ID-61	Ametryn	2.57	834-12-8	Plant protection active substance	1 000 - 10 000	Lanchote et al. (1999)
ID-63	Tri-(2-chloroisopropyl)phosphate	3.36	13674-84-5	 Flame retardant Used in adhesives and sealants, coating products, laboratory chemicals, leather treatment products, plastic and rubber products 	0 - 10	Reemtsma et al. (2008) Li et al. (2014)
Priority	5: Scarcely investigated and low freq	uency oj	f detection			
ID-38	2-Amino-4,5- dichlorobenzenesulfonic acid	-0.84	6331-96-0	• Intermediate (for paints)	10 - 100	Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland-Pfalz (2011)
ID-41	1,2,4-Triazole	-0.41	288-88-0	Semiconductors and photovoltaic agentsIn fertilizers, forestry, fishing	1 000 - 10 000	Scheurer et al. (2016)
Priority	v 6: Well-known and low frequency of	detection	ı			
ID-8	1,5-Naphthalenedisulfonic acid	-3.43	81-04-9	• Intermediate	Intermediate	Knepper et al. (1999)
ID-20	Ethyl sulfate	-2.48	342573-75- 5	• Anti-static agent	Pre-registration process	Mastroianni et al. (2014)
ID-40	Saccharine	-0.49	81-07-2	 Food/feedstuff additive (sweetener) Used in cosmetics and personal care products, textile treatment products, fur, leather Pharmaceutical substance 	100 - 1 000	Buerge et al. (2009) Scheurer et al. (2009)
ID-57	Bisphenol S	2.17	80-09-1	 Homologue to BPA Used in leather treatment products, polymers, coating products, pH regulators, water and textile treatment products, paper chemicals and dyes 	10 000 - 100 000	Yamazaki et al. (2015)

* Calculated at pH 7.0 using ChemAxon (https://www.chemaxon.com/download/jchem-for-office/#jc4x) ** ECHA 2018

Figure 1. Detection frequencies of the target PMOCs in the 14 water samples. The gray shading shows the number of principally different separation methods (*Chromatography A-D*) with which the PMOCs were detected.

Figure 2. Estimated concentrations of selected PMOCs in the water samples. The color shading indicates the detection frequency in the 14 samples. The horizontal line marks the median value, the box comprises the interquartile range (IQR), and the whiskers reach to the outmost measuring points that are within 1.5 times the IQR. Dots represent single high concentrations. ID-6: methacrylamido propyl trimethyl ammonium, ID-13: acesulfame, ID-15: 1,4-diazabicyclo-[2.2.2]octane, ID-16: 2-acrylamino-2-methylpropane sulfonate, ID-23: benzyltrimethylammonium, ID-25: sulfanilic acid, ID-26: melamine, ID-29: N-(3-(dimethylamino)-propyl)methacrylamide, ID-32: adamantan-1-amine, ID-33: trifluoromethanesulfonic acid, ID-37: cyanoguanidine. ID-38: 2-amino-4,5-dichlorobenzenesulfonic acid, ID-39: *p*-toluenesulfonic acid, ID-40: saccharine, ID-42: 6-methyl-1,3,5,-triazine-diamine, ID-44: dimethylbenzenesulfonic acid, ID-45: benzyldimethylamine, ID-52: 1,3-diphenylguanidine, ID-57: bisphenol S, ID-58: 1,3-di-*o*-tolylguanidine, ID-61: ametryn.

Figure 3. Classification of PMOCs in priority classes (1-6) according to their frequency of detection and level of awareness as environmental water pollutants.

Highlights

- Persistent and mobile organic chemicals (PMOCs) occur in drinking water resources -
- Innovative methods for analysis of PMOCs in water samples are presented _
- 57 PMOCs are selected and analyzed in 14 European water samples -
- -
- 43 PMOCs (75 %) are detected, among them 23 for the first time PMOC concentrations range up to μ g L⁻¹ in surface and groundwater -

Supplementary Data

Occurrence of emerging persistent and mobile organic contaminants in European water samples

Stefanie Schulze¹, Daniel Zahn², Rosa Montes³, Rosario Rodil³, José Benito Quintana³, Thomas P. Knepper², Thorsten Reemtsma¹, Urs Berger^{1,*}

¹ Helmholtz Centre for Environmental Research – UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany

² Hochschule Fresenius University of Applied Sciences, Institute for Analytical Research, Limburger Strasse 2, 65510 Idstein, Germany

³ Universidade de Santiago de Compostela, Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain

* Corresponding author:

Urs Berger, e-mail: urs.berger@ufz.de; phone: +49 341 235 4654; fax: +49 341 235 450822

Table of contents

Table S1. List of target PMOCs sorted by logD (pH 7.0)	S3
Table S2. Sample description	S10
Figure S1. Sampling regions	S11
Table S3. Materials, chemicals and instrumentation for Enrichment I-VIII	S12
Table S4. Chemicals and instrumentation for the instrumental methods Chromatography A-D	S14
Figure S2. Gradient profiles of the mobile phases as a function of time	S15
Table S5A. Chromatography A (MMLC-MS/MS) mass spectrometric parameters	S16
Table S5B. Chromatography B (HILIC-MS/MS) mass spectrometric parameters	S18
Table S5C. Chromatography C_1/C_2 (RPLC-MS/MS) mass spectrometric parameters	S21
Table S5D. Chromatography D_1/D_2 (SFC-HRMS) mass spectrometric parameters	S23
Method performance evaluation and semi-quantitative concentration estimates	S24
Table S6. Retention time repeatability for the different chromatographic methods over arelevant sample batch bracketed between standards	S24
Table S7. Instrumental detection limits for the target PMOCs given as injected quantities [ng] with the different instrumental methods	S25
Table S8. Retention factor k' of the target chemicals for the different chromatographic methods	S27
Figure S3. Retention factors k' of all PMOCs for the different chromatographic method	S28
Figure S4. Retention factors k' versus log <i>D</i> for all PMOCs and all chromatographic methods	S29
Figure S5. Number of PMOCs that were amenable to the different combinations of enrichment and instrumental methods	S30
Table S9. Enrichment and instrumental methods that were successfully applied foranalysis of the different PMOCs (indicated with a +)	S31
Figure S6. Frequency of detection (including all methdos) and maximum estimated concentration of the detected PMOCs in the 14 water samples	S34
Table S10. Chromatography method-specific detection frequencies (number of samples) of the detected PMOCs in the 14 water samples	S35

Index	CAS registry number	Substance name	log <i>D</i> (pH 7.0) ¹	Structure (main structure at pH 7.0) ¹	Supplier	Chemical standard grade
ID-1	299-27-4	(Potassium) gluconate	-6.68		Sigma Aldrich	Pharmace utical secondary standard
ID-2	140-31-8	2-Piperazin-1-ylethylamine	-5.61	NH3 ²¹ N H ₂	Fluorochem	
ID-3	2855-13-2	Isophoronediamine	-4.59	H_3C CH_3 $H_3N^{(2)}$ H_3C $NH_3^{(2)}$	abcr GmbH	99%
ID-4	45021-77-0	(3-Acrylamidopropyl)- trimethylammonium (chloride)	-4.13	H ₃ C H ₃ C CH ₃ CH ₃	Sigma Aldrich	75%
ID-5	83016-70-0	N,N,N'-Trimethyl-N'-(2- hydroxyethyl)-bis(2- aminoethyl)ether	-3.99	H ₃ C N OH	abcr GmbH	98%
ID-6	51410-72-1	Methacrylamido propyl trimethyl ammonium (chloride)	-3.74	H_3C H_2 H_3C OH_3 OH_3 OH_3 OH_3	abcr GmbH	50%
ID-7	3033-62-3	Bis(2-dimethylaminoethyl)ether	-3.57	H ₃ C N CH ₃ CH ₃ O O O O O O O O O O O O O O O O O O O	Alfa Aesar	98%
ID-8	81-04-9	1,5-Naphthalenedisulfonic acid	-3.43		abcr GmbH	
ID-9	7365-45-9	2-[4-(2-hydroxyethyl)-1- piperazinyl]ethanesulfonic acid	-3.25		Sigma Aldrich	≥ 99,5 %

Table S1. List of target PMOCs sorted by $\log D (pH 7.0)^{1}$

ID-10	34730-59-1	(Sodium) 2-(2- aminoethylamino)ethanesulfon ate	-3.25		Ark Pharm Fine Chemicals	40%
ID-11	3030-47-5	1,1,4,7,7-Pentamethyl- diethylenetriamine	-3.20	H_3C N N H_3 H_3C H_3 H_3C H_3	Acros Organics	≥ 99,5 %
ID-12	52556-42-0	3-Allyloxy-2-hydroxy-1- propanesulfonic acid (sodium salt)	-3.13		Sigma Aldrich	
ID-13	55589-62-3	Acesulfame (K)	-3.06		Sigma Aldrich	≥ 99 %
ID-14	512-42-5	(Sodium) methyl sulfate	-2.84		Sigma Aldrich	
ID-15	280-57-9	1,4-diazabicyclo-[2.2.2]octane	-2.83		Sigma Aldrich	≥ 99 %
ID-16	5165-97-9	(Sodium) 2-acrylamino-2- methylpropane sulfonate	-2.71		abcr GmbH	
ID-17	52722-86-8	4-Hydroxy-1-(2-hydroxyethyl)- 2,2,6,6,-tetramethylpiperidine	-2.62	HO H ₃ C H ₃ C CH ₃ OH	abcr GmbH	98%
ID-18	3039-83-6	(Sodium) vinylsulfonate	-2.60	H ₂ C	abcr GmbH	25%
ID-19	17636-10-1	3-Mercapto-1-propanesulfonic acid (sodium salt)	-2.56		Sigma Aldrich	90 % (technical grade)
ID-20	342573-75- 5	(1-Ethyl-3-methylimidazolium) ethyl sulfate	-2.48		Fluka Analytical	≥ 98,5 %

ID-21	1704-62-7	2-(2- (Dimethylamino)ethoxy)ethanol	-2.41	H ₃ C OH	Sigma Aldrich	98%
ID-22	108-80-5	Cyanuric acid	-2.39		Sigma Aldrich	analytical standard
ID-23	56-93-9	Benzyltrimethylammonium (chloride)	-2.24	H ₃ C CH ₃ H ₃ C	Sigma Aldrich	97%
ID-24	1561-92-8	2-Methyl-2-propene-1-sulfonic acid (sodium salt)	-2.21		Sigma Aldrich	98%
ID-25	121-47-1 121-57-3	Sulfanilic acid	-2.04		Sigma Aldrich	99%
ID-26	108-78-1	Melamine	-2.02		Sigma Aldrich	analytical standard
ID-27	1571-33-1	Phenylphosphonic acid	-1.98		Sigma Aldrich	98%
ID-28	497-18-7	Carbodihydrazide	-1.96	H ₂ N NH NH ₂ NH	Sigma Aldrich	98%
ID-29	5205-93-6	N-(3-(dimethylamino)- propyl)methacrylamide	-1.85	H_3C N H_3C H_3 H_3C H_3	Fluorochem	
ID-30	1071-93-8	Adipic acid dihydrazide	-1.72	H ₂ N N H ₂	Fluorochem	

ID-31	98-67-9	p-Phenolsulfonic acid hydrate	-1.53		abcr GmbH	85%
ID-32	768-94-5	Adamantan-1-amine	-1.49	NH ₂ ⁽⁺⁾	Fluorochem	
ID-33	1493-13-6	Trifluoromethanesulfonic acid	-1.23		Sigma Aldrich	≥ 99 %
ID-34	3965-55-7	Dimethyl 5-sulfoisophthalate (sodium salt)	-1.22		Alfa Aesar	98%
ID-35	7529-22-8	N-methylmorpholin-N-oxid	-1.15	OF CH ₃	Sigma Aldrich	97%
ID-36	622-40-2	2-(4-Morpholinyl)ethanol	-1.13	OH NH ^P	Sigma Aldrich	99%
ID-37	461-58-5	Cyanoguanidine	-1.03		Acros Organics	99.50%
ID-38	6331-96-0	2-Amino-4,5- Dichlorobenzenesulfonic acid	-0.84		Fluorochem	
ID-39	104-15-4	p-Toluenesulfonic acid	-0.71		MP Biomedicals	≥ 99 %
ID-40	81-07-2	Saccharine	-0.49		Sigma Aldrich	≥ 99%

ID-41	288-88-0	1,2,4-Triazole	-0.41		Fluorochem	
ID-42	542-02-9	6-Methyl-1,3,5-triazine-diamine	-0.39	H ₂ N NH ²	Sigma Aldrich	98%
ID-43	85-47-2	Naphtalene-1-sulfonic acid	-0.23		Fluorochem	
ID-44	1300-72-7 25321-41-9	Dimethylbenzenesulfonic acid	-0.20	H ₃ C H ₃ C	Sigma Aldrich	
ID-45	103-83-3	Benzyldimethylamine	0.02	H ₃ C	Serva	research grade
ID-46	105-60-2	ε-Caprolactam	0.31	HN	Sigma Aldrich	analytical standard
ID-47	23386-52-9	Dicyclohexyl sulfosuccinate (sodium salt)	0.42		Sigma Aldrich	≥ 98 %
ID-48	129909-90- 6	Amicarbazone	0.96		Sigma Aldrich	99.90%
ID-49	288-13-1	Pyrazole	0.28	N N	Sigma Aldrich	98%

ID-50	104-23-4	4-((4-Aminophenyl)diazenyl) benzene sulfonic acid	0.36		Fluorochem	
ID-51	70-55-3 88-19-7	Toluenesulfonamide	1.09		Sigma Aldrich	99%
ID-52	102-06-7	1,3-Diphenylguanidine	1.23	HEN HEN HEN HEN HEN HEN HEN HEN HEN HEN	Sigma Aldrich	97%
ID-53	80-08-0	Dapsone	1.27		Sigma Aldrich	99.50%
ID-54	19715-19-6	3,5-Di-tert-butylsalicylic acid	1.62		Sigma Aldrich	97%
ID-55	1025-15-6	1,3,5-Triallyl-1,3,5-triazinane- 2,4,6-trione	1.83		Fluorochem	
ID-56	87-62-7	2,6-Dimethylaniline	2.17	H ₂ N H ₃ C	Sigma Aldrich	Analytical standard
ID-57	80-09-1	Bisphenol S	2.17		Sigma Aldrich	≥ 98 %

ID-58	97-39-2	1,3-Di-o-tolylguanidine	2.25	CH ₃ HN ¹ HN CH ₃	Sigma Aldrich	99%
ID-59	95-79-4	5-Chloro-2-methylaniline	2.26	CH ₃ NH ₂	Alfa Aesar	99%
ID-60	101-77-9	4,4-Diaminodiphenylmethane	2.40	NH ₂	Sigma Aldrich	analytical standard
ID-61	834-12-8	Ametryn	2.57		Sigma Aldrich	98.50%
ID-62	35948-25-5	9,10-Dihydro-9-oxa-10- phosphaphenanthrene-10- oxide	2.74		abcr GmbH	97%
ID-63	13674-84-5	Tri-(2- chloroisopropyl)phosphate	3.36		Sigma Aldrich	analytical standard
ID-64	101-72-4	N1-isopropyl-N4- phenylbenzene-1,4-diamine	3.56	H ₃ C NH	Fluorochem	

¹ Calculated using ChemAxon (https://www.chemaxon.com/download/jchem-for-office/#jc4x)

Table S	52. Sam	ple desc	ription
---------	----------------	----------	---------

Name	Collection Sample type date	Depth	Location	Connections between the samples
DE-SW-1	19.10.2016 surface water from a river with expected sources from urban/industrial wastewater	-	South Hessia (Germany)	-
DE-SW-2	19.10.2016 surface water from a river with expected sources from urban/industrial wastewater	-	South Hessia (Germany)	-
DE-SW-3	24.10.2016 surface water from a river with expected sources from industrial wastewater	-	South Hessia (Germany)	DE-SW-3 and DE-GW-4 are hydrologically connected
DE-GW-4	26.10.2016 groundwater with expected sources from industrial wastewater	10.5 m	South Hessia (Germany)	DE-GW-4 and DE-SW-3 are hydrologically connected
DE-GW-5	20.10.2016 groundwater with expected sources from industrial wastewater	93 m	South Hessia (Germany)	-
DE-GW-6	25.10.2016 groundwater with expected sources from urban/industrial wastewater	75 m	South Hessia (Germany)	-
DE-GW-7	01.11.2016 groundwater from an active drinking water fountain with infiltration of municipial wastewater	32.3 m	South Hessia (Germany)	-
ES-SW-1	20.10.2016 surface water from a river near a landfill with expected sources from urban/industrial landfill	-	West Galicia (Spain)	ES-SW-1 is connected with ES-SW-2; large dilution between the sampling points (~10 km) (see also comment to ES-SW-2)
ES-SW-2	20.10.2016 surface water from a river with expected sources from urban/industrial landfill	-	West Galicia (Spain)	ES-SW-2 is connected with ES-SW-1, the river from which sample ES-SW-1 was collected runs into the river where sample ES-SW-2 was collected, with a large dilution in between the two sampling points; ES-SW-2 is connected with ES-SW-3, there is a large dam between both locations
ES-SW-3	20.10.2016 surface water from a river with expected sources from urban/industrial landfill	-	West Galicia (Spain)	ES-SW-3 is connected with ES-SW-2 with a large dam between ES-SW-2 and ES-SW-3

NL-SW-1	03.11.2016 surface water from a canal connected to Oude Rijn river	-	Zuid Holland (Netherlands)	all Dutch samples are connected among each other; the surface water was infiltrated to the water of the bank filtrate;
NL-BF-2	03.11.2016 river bank filtrate from sample NL-SW-1	15-40 m	n Zuid Holland (Netherlands)	the bank filtrate was used for the reverse osmosis; the permeate is the filtrated water and the concentrate is the residue (brine) of the reverse osmosis process
NL-ROC-3	03.11.2016 reverse osmosis concentrate produced from river bank filtrate NL-BF-2	-	Zuid Holland (Netherlands)	
NL-ROP-4	03.11.2016 reverse osmosis permeate produced from river ban filtrate NL-BF-2	< -	Zuid Holland (Netherlands)	

Samples from full-scale Reverse Osmosis installation operated at drinking water treatment plant for research purposes

SW - surface water; GW - groundwater; BF - bank filtrate; ROC - reverse osmosis concentrate; ROP - reverse osmosis permeate

Figure S 1. Sampling regions

Enrichment	
method	Materials, chemicals and instrumentation
I	<u>Materials:</u> Weak anion exchanger (WAX), OASIS, 150 mg, 6 mL (Waters, Milford, United States of America) Cellulose 0.45 um filters (Millipore, Bedford, MA, United States of America) PP 0.22 um filters (Millipore, Bedford, MA, United States of America)
	<u>Chemicals:</u> Formic acid, ammonia methanolic solution 7N (Sigma Aldrich, Milwaukee, United States of America)
11	<u>Materials:</u> Weak cation exchanger (WCX), OASIS, 150 mg, 6 mL (Waters, Milford, United States of America) Cellulose 0.45 um filters (Millipore, Bedford, MA, United States of America) PP 0.22 um filters (Millipore, Bedford, MA, United States of America) <u>Chemicals:</u> Earmin and ammonia methanolic solution 7NL (Sigma Aldrich, Milwaukoo, United
	States of America)
III	Materials:Multi-layer SPE: Chromabond polypropylene cartridges (3 mL), polyethylene filters (Macherey Nagel, Düren, Germany) Weak anion exchanger (60 mg WAX) and weak cation exchanger (60 mg WCX) (Waters, Eschborn, Germany) ENVI-Carb bulk material, 120-400 mesh, 60 mg (Supelco, Bellfonte, United States of America)Glass fiber filters, GF6 (GE Helathcare, Little Chalfont, UK) Cellulose syringe 0.2 um filters (GE Helathcare, Little Chalfont, UK)
	<u>Chemicals:</u> Formic acid (98-100%, Merck, Darmstadt, Germany), methanol (LC-MS Ultra Grade), ammonium hydroxide (30% in water), dichloromethane, acetonitrile (Carl Roth GmbH, Karlsruhe, Germany), ultrapure water (18 MΩcm, supplied by Simplicity UV water purification system, Merck, Darmstadt, Germany)
IV	Instrumentation: Genevac EZ-2 evaporation unit (Genevac, Ipswich, UK) Cellulose syringe 0.2 um filters (GE Helathcare, Little Chalfont, UK)
	<u>Chemicals:</u> Acetonitrile (Carl Roth GmbH, Karslruhe, Germany)

V	 <u>Materials and instrumentation:</u> Weak anion exchanger (WAX), OASIS, 150 mg, 6 mL (Waters, Eschborn, Germany) Freestyle SPE unit (LCTech GmbH, Obertaufkirchen, Germany) Glas Fibre Filters Whatman (GE Healthcare, Freiburg, Germany) <u>Chemicals:</u> Methanol (Biosolve, Valkenswaard, Netherlands) Hydrochloric acid (Chemsolute, Th. Geyer, Berlin, Germany) Glycine, formic acid (Sigma Aldrich, Taufkirchen, Germany) Ammonium hydroxide (Fisher Scientific, Schwerte, Germany)
VI	 <u>Materials and instrumentation:</u> Moderate cation exchanger (MCX), OASIS, 150 mg, 6 mL (Waters, Eschborn, Germany) Freestyle SPE unit (LCTech GmbH, Obertaufkirchen, Germany) <u>Chemicals:</u> Methanol (Biosolve, Valkenswaard, Netherlands) Hydrochloric acid (Chemsolute, Th. Geyer, Berlin, Germany) Glycine, formic acid (Sigma Aldrich, Taufkirchen, Germany) Ammonium hydroxide (Fisher Scientific, Schwerte, Germany)
VII	<u>Materials and instrumentation:</u> Hydroxylated polystyrene divenylbenzene (ENV+), Isolute, 150 mg, 6 mL (Biotage, Uppsala, Sweden) Freestyle SPE unit (LCTech GmbH, Obertaufkirchen, Germany) <u>Chemicals:</u> Methanol (Biosolve, Valkenswaard, Netherlands) Disodium hydrogen phosphate, potassium dihydrogen phosphate (abcr GmbH, Karlsruhe, Germany)
VIII	<u>Materials and instrumentation:</u> Graphitized carbon black (ENVI-Carb), Supelclean, 150 mg, 6 mL (Sigma Aldrich, Steinheim, Germany) Freestyle SPE unit (LCTech GmbH, Obertaufkirchen, Germany) <u>Chemicals:</u> Methanol (Biosolve, Valkenswaard, Netherlands) Dichloromethane (Fisher Scientific GmbH, Schwerte, Germany) Glycine, formic acid, sodium hydroxide (Sigma Aldrich, Taufkirchen, Germany)

Table S4. Chemicals and instrumentation for the instrumental methods Chromatography A-D.

Method	Material
A	<u>Instrumentation:</u> HPLC: Varian 212LC Column: Thermo Acclaim Trinity P1 2.1x50mm, 3 um Mass Spectrometer: Varian 320 MS Software: MS Workstation (Varian) <u>Chemicals:</u> Acetonitrile (Merck, Darmstadt, Germany) Ammonia, Acetic acid (Sigma Aldrich, St. Louis, United States of America)
В	<u>Instrumentation:</u> UHPLC: Nexera X2 (Shimadzu) Column: Waters Acquity BEH Amide 2.1x100mm, 1.7 um Mass Spectrometer: Qtrap 5500 (AB Sciex) Software: Analyst 1.6.2 (Build 8489) (AB Sciex) <u>Chemicals:</u> Acetonitrile (Carl Roth GmbH, KarsIruhe, Germany) Ammonium formate (Sigma Aldrich, Schnelldorf, Germany)
C ₁ /C ₂	<u>Instrumentation:</u> UHPLC: Acquity i-Class (Waters) Column: Waters Acquity UPLC HSS T3, 2.1x50mm, 1.8 um (C ₁) Thermo ScientificTM Hypercarb, 2.1x100mm, 3.0 um (C ₂) Mass Spectrometer: Xevo TQ-S (Waters) Software: MassLynx (Waters) <u>Chemicals:</u> Acetonitrile, methanol, ammonium formate (Biosolve, Valkenswaard, Netherlands) Diethylamine (Sigma Aldrich, Taufkirchen, Germany)
D ₁ /D ₂	<u>Instrumentation:</u> SFC: Acquity UPC2 (Waters) Column: Waters Acquity UPC2 BEH 3.0x100mm, 1.7 um (D ₁) Waters Acquity UPC2Torus Diol 3.0x100mm, 1.7 um (D ₂) Mass Spectrometer: Synapt G2S (Waters) Software: MassLynx (Waters) <u>Chemicals:</u> Carbon dioxide (Air Products, Pennsylvania, USA) Methanol, ammonium hydroxide (Biosolve, Valkenswaard, Netherlands) Formic acid (Sigma Aldrich, Taufkirchen, Germany)

Figure S2. Gradient profiles of the mobile phases as a function of time for A) MMLC on a Acclaim Trinity P1 column; solvent A: H2O/ACN 98/2, 5 mM NH4COO, pH 5.5; solvent B: H2O/ACN 20/80, 20 mM NH4COO, pH 5.5; B) HILIC on an Acquity BEH Amide column; solvent A: H2O/ACN 95/5, 5 mM NH4COO, pH 3; solvent B: H2O/ACN 5/95, 5 mM NH4COO, pH 3; C1) RPLC on an Acquity UPLC HSS T3; solvent A: H2O, 5 mM COOH; solvent B: MeOH, 5 mM COOH; C2) RPLC on a porous graphitic carbon Hypercarb column; solvent A: H2O, 0.1 % diethylamine; solvent B: ACN, 0.1 % diethylamine; D1/D2) SFC on an Acquity UPC2 BEH and Torus Diol column, respectively; solvent A: CO2; solvent B: MeOH/H2O 95/5, 0.2 % NH4OH; make-up: 0.3 mL min-1 MeOH/H2O 90/10, 0.1 % COOH, pH 6.

Index	ESI mode	Q1 <i>m/z</i>	Q2 <i>m/z</i>	Capillary [V]	Collision energy [eV]
ID-4	pos	171	112	52	8
ID-4	pos	171	84	52	16
ID-6	pos	185	126	44	8.5
ID-6	pos	185	69	44	21
ID-15	pos	113	84	80	14.5
ID-15	pos	113	70	80	17
ID-17	pos	202	102	64	13
ID-17	pos	202	84	64	23.5
ID-21	pos	134	72	36	9
ID-21	pos	134	57	36	22
ID-23	pos	150	91	48	15.5
ID-23	pos	150	65	48	32
ID-26	pos	127	85	64	13.5
ID-26	pos	127	68	64	21
ID-29	pos	171	126	32	9.5
ID-29	pos	171	69	32	19.5
ID-30	pos	175	143	44	6.5
ID-30	pos	175	115	44	14
ID-32	pos	152	135	52	14.5
ID-32	pos	152	93	52	24.5
ID-35	pos	118	101	60	9.5
ID-35	pos	118	71	60	16
ID-36	pos	132	114	48	10.5
ID-36	pos	132	70	48	14
ID-41	pos	70	43	60	16.5
ID-45	pos	136	91	36	13
ID-45	pos	136	65	36	31
ID-46	pos	114	79	72	11
ID-46	pos	114	96	72	9.5
ID-48	pos	242	143	30	6.5
ID-48	pos	242	113	30	26
ID-52	pos	212	119	64	15.5
ID-52	pos	212	94	64	13.5
ID-53	pos	249	156	72	10
ID-53	pos	249	92	72	19.5
ID-56	pos	122	105	56	12
ID-56	pos	122	77	56	23.5
ID-58	pos	240	133	60	16.5
ID-58	pos	240	108	60	17
ID-60	pos	199	106	76	18.5
ID-60	pos	199	77	76	40
ID-61	pos	228	186	56	15
ID-61	pos	228	96	56	21
ID-62	pos	217	199	88	16
ID-62	pos	217	152	88	35.5
ID-63	pos	327	99	44	20
ID-63	pos	327	251	44	7.5
ID-64	pos	227	184	40	13.5
ID-64	pos	227	107	40	36
ID-9	neg	237	80	-96	-27
ID-9	neg	237	206	-96	-19.5
ID-12	neg	195	80	-56	-25.5
ID-12	neg	195	95	-56	-17
ID-13	neg	162	82	-40	-12.5
ID-13	neg	162	40	-40	-15.5
ID-14	neg	111	80	-52	-20
ID-14	neg	111	96	-52	-19.5

Table S5A. Chromatography A (MMLC-MS/MS) mass spectrometric parameters (see also footnote).

ID-16	neg	206	80	-64	-28
ID-16	neg	206	135	-64	-15
ID-18	neg	107	80	-44	-19
ID-18	neg	107	45	-44	-30
ID-19	neg	155	80	-88	-29.5
ID-19	neg	155	121	-88	-13.5
ID-20	neg	125	97	-52	-13.5
ID-20	neg	125	80	-52	-28.5
ID-22	neg	128	85	-40	-9
ID-22	neg	128	42	-40	-13
ID-24	neg	135	80	-48	-15
ID-24	neg	135	64	-48	-45
ID-25	neg	172	80	-72	-24.5
ID-25	neg	172	108	-72	-17.5
ID-33	neg	149	99	-60	-22
ID-33	neg	149	80	-60	-38.5
ID-34	neg	273	150	-76	-27.5
ID-34	neg	273	209	-76	-21.5
ID-37	neg	83	41	-56	-9
ID-37	neg	83	66	-56	-23
ID-39	neg	171	80	-90	-25.5
ID-39	neg	171	107	-90	-20
ID-40	neg	182	106	-56	-17.5
ID-40	neg	182	62	-56	-16.5
ID-43	neg	207	143	-68	-21
ID-43	neg	207	80	-68	-29
ID-44	neg	185	80	-72	-26
ID-44	neg	185	121	-72	-19
ID-47	neg	361	81	-72	-21
ID-47	neg	361	133	-72	-31.5
ID-47	neg	361	81	-72	-21
ID-47	neg	361	133	-72	-31.5
ID-51	neg	170	79	-128	-25
ID-51	neg	170	62	-128	-29
ID-54	neg	249	205	-84	-21.5
ID-54	neg	249	189	-84	-28.5
ID-57	neg	249	108	-92	-29
ID-57	neg	249	156	-92	-20.5

ESI-MS/MS parameters: ESI needle voltage 4000 V; ionization source temperature 50°C; drying gas temperature (N_2) 200 °C; nebulizer gas pressure (N_2) 55 psi; drying gas pressure (N_2) 18 psi; CID gas pressure (Ar) 2 mTorr; resolution of Q1 and Q2 1 u; centroid mode for acquisition

Index	ESI mode	Q1 <i>m/z</i>	Q2 <i>m/z</i>	DP [V]	EP [V]	CE [V]	CXP [V]
ID-2	pos	113	84	140	10	20	10
ID-2	pos	113	70	140	10	23	10
ID-2	pos	113	56	140	10	23	10
ID-3	pos	171	154	76	10	19	14
ID-3	pos	171	81	76	10	31	10
ID-3	pos	171	95	76	10	29	10
ID-4	pos	171	112	61	10	17	10
ID-4	pos	171	55	61	10	37	8
ID-4	pos	171	84	61	10	27	10
ID-5	pos	191	102	66	10	23	12
ID-5	pos	191	72	66	10	23	12
ID-5	pos	191	116	66	10	19	12
ID-6	pos	185	126	46	10	17	12
ID-6	pos	185	69	46	10	33	10
ID-6	pos	185	41	46	10	55	8
ID-7	pos	161	72	66	10	23	10
ID-7	pos	161	116	66	10	17	12
ID-7	pos	161	42	66	10	59	8
ID-9	pos	239	131	141	10	29	10
ID-9	pos	239	70	141	10	41	8
ID-9	pos	239	56	141	10	67	8
ID-11	pos	174	72	66	10	25	14
ID-11	pos	174	129	66	10	17	12
ID-11	pos	174	42	66	10	69	10
ID-15	pos	113	84	236	10	29	10
ID-15	pos	113	56	236	10	31	8
ID-15	pos	113	70	236	10	29	10
ID-17	pos	202	102	61	10	25	10
ID-17	pos	202	62	61	10	25	8
ID-17	pos	202	44	61	10	49	8
ID-21	pos	134	72	61	10	19	10
ID-21	pos	134	42	61	10	49	8
ID-21	pos	134	44	61	10	33	8
ID-23	pos	150	91	61	10	25	8
ID-23	pos	150	65	61	10	51	10
ID-23	pos	150	58	61	10	19	8
ID-26	pos	127	85	101	10	25	10
ID-26	pos	127	43	101	10	45	8
ID-26	pos	127	68	101	10	39	10
ID-28	pos	91	65	171	10	25	10
ID-28	pos	91	39	171	10	43	8
ID-28	pos	91	50	171	10	59	8
ID-29	pos	171	126	71	10	19	12
ID-29	pos	171	69	71	10	31	12
ID-29	pos	171	41	71	10	53	8
ID-32	pos	152	135	96	10	23	12
ID-32	pos	152	77	96	10	55	10
ID-32	pos	152	79	96	10	41	10
ID-35	pos	118	101	81	10	21	12
ID-35	pos	118	71	81	10	27	12
ID-35	pos	118	42	81	10	51	6
ID-36	pos	132	114	86	10	21	12
ID-36	pos	132	70	86	10	27	10
ID-36	pos	132	45	86	10	37	8
ID-37	pos	85	68	76	10	25	10
ID-37	pos	85	43	76	10	21	6
ID-37	pos	85	41	76	10	43	6
ID-41	pos	70	43	120	10	30	7

 Table S5B. Chromatography B (HILIC-MS/MS) mass spectrometric parameters (see also footnote).

ID-41	pos	70	28	120	10	45	7
ID-41	pos	70	42	120	10	55	7
ID-42	pos	126	43	106	10	49	8
ID-42	pos	126	85	106	10	21	10
ID-42	pos	126	84	106	10	23	10
ID-45	pos	136	91	131	10	23	12
ID-45	pos	136	65	131	10	45	10
ID-45	pos	136	39	131	10	71	8
ID-46	pos	114	44	121	10	43	8
ID-46	pos	114	79	121	10	21	10
ID-46	pos	114	69	121	10	23	10
ID-48	pos	242	143	66	10	19	14
ID-48	pos	242	85	66	10	41	10
ID-48	pos	242	43	66	10	59	8
ID-49	pos	69	42	120	10	25	7
ID-49	pos	69	29	120	10	45	7
ID-49	pos	69	41	120	10	40	7
ID-50	pos	278	92	106	10	35	10
ID-50	pos	278	65	106	10	65	8
ID-50	nos	278	109	106	10	33	10
ID-52	nos	212	77	96	10	53	10
ID-52	pos	212	119	96	10	29	12
ID-52	pos	212	94	96	10	23	12
ID-53	pos	249	156	151	10	10	14
ID-53	pos	249	92	151	10	33	12
ID-53	pos	249	108	151	10	29	10
ID-56	pos	122	105	56	10	23	12
ID-56	pos	122	77	56	10	37	12
ID-56	pos	122	79	56	10	29	10
ID-58	pos	240	133	81	10	20	12
ID-58	pos	240	108	81	10	29	10
ID-58	pos	240	106	81	10	30	12
ID-50	pos	142	89	100	10	40	10
ID-59	pos	142	125	100	10	30	15
ID-59	pos	142	106	100	10	37	15
ID-60	pos	142	106	131	10	33	12
ID-60	pos	199	77	131	10	67	10
ID-60	pos	199	79	131	10	57	10
ID-61	pos	228	186	71	10	25	16
ID-61	pos	228	68	71	10	53	10
ID-61	pos	228	43	71	10	61	8
ID-63	pos	327	99	100	10	35	12
ID-63	pos	327	81	100	10	85	10
ID-63	pos	327	175	100	10	17	17
ID-03	pos	321 227	194	P1	10	20	16
ID-04	pos	221	212	01 91	10	23	6
ID-04	pos	221	107	01 91	10	55	10
	pos	227	80	160	10	55	10
	neg	237	107	-100	-10	-00	15
	neg	237	92	-100	-10	-52	10
	neg	239	80	105	-10	-00	-10
	neg	107	107	105	-10	-32	-9 11
	neg	107	01	-105	-10	-24	-11
1D-10	neg	107	01	-105	-10	-20	-9
ID-12	neg	195	00	-00	-10	-44	-9
בו-טו 10-12	neg	195	30 70	-00	-10	-20	-11
<u>م</u> ا-ت <u>م</u> ا 10-13	neg	162	82	-65	-10	-20	-9
טו-טו 10-13	neg	162	02 78	-05	-10	-20	-9
טו-טו 10-13	neg	162	70 40	-05	-10	-++	-9 .F
טו-טו 14 חו	ney	102	40 90	-00	10	-00	-0
10-14 ID 14	neg	111	00	-90	-10	-30	-9 11
	ney	111	90	-90	-10	-30	-11
ID-14	neg	206	01 90	-90 100	-10	-24 40	-9
01-01	neg	200	00	-100	-10	-42	-9

ID-16	neg	206	135	-100	-10	-26	-13
ID-16	neg	206	42	-100	-10	-60	-7
ID-18	neg	107	80	-35	-10	-28	-9
ID-18	neg	107	45	-35	-10	-20	-7
ID-18	neg	107	81	-35	-10	-24	-9
ID-19	neg	155	80	-80	-10	-42	-9
ID-19	neg	155	33	-80	-10	-34	-15
ID-19	neg	155	137	-80	-10	-28	-13
ID-20	neg	125	97	-70	-10	-25	-10
ID-20	neg	125	80	-70	-10	-45	-10
ID-20	neg	127	82	-70	-10	-45	-10
ID-22	neg	128	42	-75	-10	-36	-7
ID-22	neg	128	85	-75	-10	-14	-7
ID-22	neg	128	26	-75	-10	-110	-5
ID-24	neg	135	80	-60	-10	-25	-16
ID-24	neg	135	64	-60	-10	-75	-16
ID-24	nea	137	82	-60	-10	-25	-16
ID-25	nea	172	80	-155	-10	-38	-9
ID-25	nea	172	108	-155	-10	-28	-11
ID-25	nea	172	66	-155	-10	-36	-9
ID-33	neg	149	80	-80	-10	-30	-9
ID-33	neg	149	99	-80	-10	-34	-11
ID-33	neg	149	83	-80	-10	-26	-9
ID-34	neg	273	80	-170	-10	-68	-9
ID-34	neg	273	150	-170	-10	-38	-13
ID-34	neg	273	209	-170	-10	-34	-10
ID-38	neg	240	80	-130	-10	-56	-9
ID-38	neg	240	176	-130	-10	-32	-15
ID-38	neg	240	35	-130	-10	-64	-15
ID-39	neg	171	80	-125	-10	-38	-9
ID-39	neg	171	107	-125	-10	-28	_11
ID-39	neg	171	107	-125	-10	-36	_11
ID-40	neg	182	42	-105	-10	-60	-7
ID-40	neg	182	106	-105	-10	-00	- <i>1</i>
ID-40	neg	192	62	105	-10	-20	-11
ID-40	neg	207	02 80	-105	-10	-20	-/
ID-43	neg	207	142	-00	-10	-50	-9 10
ID-43	neg	207	140	-00	-10	-32	-13
ID-43	neg	207	80	-00	-10	-10	-15
ID-44	neg	100	00 101	-143	-10	-40	-9
ID-44	neg	185	121	-145	-10	-30	-11
ID-44	neg	185	170	-145	-10	-32	-15
ID-47	neg	361	81	-120	-10	-60	-10
ID-47	neg	361	197	-120	-10	-30	-10
ID-47	neg	363	83	-120	-10	-60	-10
ID-54	neg	249	205	-100	-10	-32	-15
ID-54	neg	249	189	-100	-10	-45	-11
ID-54	neg	249	93	-100	-10	-35	-7
ID-57	neg	249	108	-65	-10	-36	-11
ID-57	neg	249	113	-65	-10	-14	-9
ID-57	neg	249	92	-65	-10	-48	-11

ESI-MS/MS parameters: Ion spray voltage: 5500 V (pos), -4500 V (neg); Curtain gas: 45 psi; Temperature: 550 °C; Ion Source gas 1 (nebulizer gas): 55 psi; Ion Source gas 2 (heater gas): 65 psi

Index	ESI mode	Q1 <i>m/z</i>	Q2 <i>m/z</i>	Cone [V]	Collision energy
					[eV]
ID-2	pos	130	84	2	18
ID-2	pos	130	113	2	12
ID-4	pos	171	84	20	20
ID-4	pos	171	112	20	14
ID-5	pos	191	58	4	24
ID-5	pos	191	102	4	14
ID-6	pos	185	69	2	24
ID-6	pos	185	126	2	12
ID-9	pos	239	88	6	24
ID-9	pos	239	131	6	18
ID-15	pos	113	56	12	20
ID-15	pos	113	84	12	18
ID-17	pos	202	62	12	16
ID-17	pos	202	102	16	16
ID-21	pos	134	72	24	14
ID-21	pos	134	85	24	14
ID-23	pos	154	58	24	14
ID-23	pos	150	J0 01	2	14
ID-23	pos	100	42	2	20
ID-20	pos	127	45	2	20
ID-20	pos	01	65 47	2	0
ID-20	pos	91	47	24	0
ID-26	pos	91	74	24	0
ID-29	pos	171	126	2	12
ID-29	pos	171	120	2	12
ID-30	pos	175	110	2	0
ID-30	pos	175	145	29	0
ID-32	pos	152	125	20	24
ID-32	pos	112	71	12	16
ID-35	pos	118	101	12	10
ID-36	pos	132	69	40	14
ID-36	pos	132	114	40	14
ID-37	pos	85	41	4 0 60	14
ID-37	pos	85	68	60 60	12
ID-41	pos	70	43	42	14
ID-42	pos	126	43	50	18
ID-42	pos	126	85	50	14
ID-46	pos	114	69	12	16
ID-46	pos	114	79	12	14
ID-48	pos	264	165	44	16
ID-48	pos	264	202	44	12
ID-52	pos	212	77	28	32
ID-52	pos	212	119	28	20
ID-53	pos	249	65	2	40
ID-53	pos	249	156	2	14
ID-55	pos	250	41	18	22
ID-55	pos	250	81	18	22
ID-57	pos	251	93	50	22
ID-57	pos	251	157	50	18
ID-58	pos	240	108	2	20
ID-58	pos	240	133	2	20
ID-60	pos	199	106	54	26
ID-60	pos	199	167	54	4
ID-61	pos	228	96	30	28
ID-61	pos	228	186	30	18
ID-63	pos	327	99	10	26
ID-63	pos	327	175	10	12

Table S5C. Chromatography C_1/C_2 (RPLC-MS/MS) mass spectrometric parameters (see also footnote).

ID-1	neg	195	59	2	18
ID-1	neg	195	75	2	20
ID-8	neg	287	143	4	36
ID-8	neg	287	207	4	22
ID-10	neg	167	80	10	22
ID-10	neg	167	137	10	16
ID-12	neg	195	80	2	28
ID-12	nea	195	95	2	20
ID-13	neg	162	78	4	22
ID-13	neg	162	82	4	14
ID-14	nea	111	80	8	16
ID-14	neg	111	96	8	14
ID-16	neg	206	80	48	24
ID-16	neg	206	135	48	18
ID-18	neg	107	43	8	10
ID-18	neg	107	45 80	8	18
ID-10	neg	107	45	20	16
ID-20	neg	125	40	32	10
ID-20	neg	120	97	32	12
ID-22	neg	120	42	10	10
ID-22	neg	128	85	10	14
ID-24	neg	135	80	58	14
ID-24	neg	135	91	58	8
ID-25	neg	172	80	2	22
ID-25	neg	172	108	2	20
ID-27	neg	157	79	2	18
ID-31	neg	173	80	30	24
ID-31	neg	173	109	30	18
ID-33	neg	149	80	4	18
ID-33	neg	149	99	4	18
ID-34	neg	273	150	26	26
ID-34	neg	273	209	26	22
ID-38	neg	240	80	64	26
ID-38	neg	240	176	64	20
ID-39	neg	171	80	2	26
ID-39	neg	171	107	2	20
ID-40	neg	182	42	4	18
ID-40	neg	182	106	4	18
ID-43	neg	207	80	42	30
ID-43	neg	207	143	42	26
ID-44	neg	185	80	6	24
ID-44	neg	185	121	6	22
ID-47	neg	361	81	6	22
ID-47	neg	361	197	6	24
ID-50	neg	276	80	58	40
ID-50	neg	276	156	58	26
ID-51	neg	170	79	14	30
ID-51	neg	170	106	14	16
ID-51	nea	170	79	2	24
ID-51	nea	170	106	2	16
ID-54	nea	249	189	2	32
ID-54	nea	249	205	2	24
		2.0	200	-	∠ -1

ESI-MS/MS parameters: Capillary Voltage 1000 – 1420 V (+/-); Source Temperature 150 °C; Desolvation Temperature 600 °C; Cone Gas Flow 150 L h⁻¹; Collision Gas Flow 0.15 mL min⁻¹; Nebuliser Gas Flow 100 psi

Index	ESI mode	Quantifyer <i>m/z</i>	Qualifyer <i>m/z</i>
ID-3	pos	171.19	154.16
ID-4	pos	171.15	112.08
ID-5	pos	191.18	72.08
ID-6	pos	185.17	126.09
ID-9	pos	239.11	131.12
ID-11	pos	174.20	129.14
ID-15	pos	113.11	
ID-17	pos	202.18	102.09
ID-21	pos	134.12	72.08
ID-23	pos	150.13	91.06
ID-26	pos	127.07	85.05
ID-29	pos	171.15	126.09
ID-32	pos	152.14	134.11
ID-35	pos	118.09	101.09
ID-36	pos	132.10	114.09
ID-37	pos	85.05	
ID-42	pos	126.08	85.05
ID-45	pos	136.11	
ID-46	pos	114.09	96.08
ID-48	pos	143.09	264.14
ID-52	pos	212.12	195.09
ID-53	pos	249.07	156.01
ID-55	pos	250.12	
ID-56	pos	122.10	107.07
ID-58	pos	240.15	133.08
ID-60	pos	199.13	106.07
ID-61	pos	228.13	186.08
ID-63	pos	327.01	251.00
ID-64	pos	225.14	184.10
ID-1	neg	195.05	
ID-12	neg	195.03	94.98
ID-13	neg	161.99	82.03
ID-14	neg	110.98	
ID-16	neg	206.05	135.01
ID-18	neg	106.98	79.96
ID-19	neg	154.99	176.97
ID-20	neg	124.99	96.96
ID-24	neg	135.01	
ID-25	neg	172.01	108.05
ID-31	neg	172.99	108.02
ID-33	neg	148.95	79.96
ID-34	neg	273.01	209.05
ID-38	neg	239.93	203.95
ID-39	neg	171.01	107.05
ID-40	neg	181.99	105.96
ID-43	neg	207.01	143.05
ID-44	neg	185.03	121.07
ID-47	neg	361.13	80.97
ID-51	neg	170.03	205.16
ID-54	neg	249.15	205.16
ID-57	neg	249.02	108.02
ID-62	neg	169.07	215.03

Table S5D. Chromatography D_1/D_2 (SFC-HRMS) mass spectrometric parameters (see also
footnote).

ESI-HRMS parameters: Full Scan recording *m*/z 50 to 600; Analyser Mode Resolution; Scan time 0.08 sec; Cone Voltage 20000 V; Capillary 700 V (+) / 2000 V (-); Source Temperature 140 °C; Desolvation Temperature 550 °C; Function 1: Trap Collision Energy 4 eV, Transfer Collision Energy 2 eV; Function 2: Trap Collision Energy 15 eV, Transfer Collision Energy 40 eV; Function 3 (Lock Spray Configuration): Reference Cone Voltage 30 V, Reference Trap Collision Energy 4 eV, Lock Mass (leucine enkephaline) 556.2771 (+) / 554.2615 (-)

Method performance evaluation and semi-quantitative concentration estimates

Instrumental blanks were determined by 10 solvent injections and IDLs were defined as the amount of chemical standard injected producing a signal with a signal-to-noise ratio of 3 or, in case of instrumental blank contamination, the amount of chemical injected leading to a signal area exceeding the mean signal area + 3 times standard deviation of the blank injections.

Retention time repeatability was investigated within one analytical sequence. The approaches for retention time repeatability testing for the different chromatographic methods *Chromatography A-D* are listed in Table S6 below.

Procedural blank experiments for the different methods were performed as follows, applying the full sample preparation procedure. For *Enrichments I-II* triplicates of procedural blank extractions were performed starting from 5 mL ultrapure water, for *Enrichments III-IV* triplicates were performed with 100 mL ultrapure water, and for *Enrichments V-VIII* a single procedural blank experiment was performed per method starting from 1 mL ultrapure water. For compounds that did not show procedural blank contamination, estimation of the MDL was based on quantification of the signal area in a sample chromatogram close to the MDL and extrapolation to a signal to noise ratio of 3. In case of procedural blank contamination, the MDL was calculated as mean + 3 times standard deviation of 3 quantified procedural blanks for *Chromatography A*, as 2x(mean + 3 times standard deviation) of 3 quantified procedural blanks for *Chromatography B*, or as 3 times the quantified procedural blank signal for *Chromatography C* and *D*.

Semi-quantitative concentration estimates were based on solvent-based external one-point calibration without correction for apparent recoveries. However, for analytes showing signals in the procedural blank chromatograms, the average blank signal area was subtracted from the signal area in the sample before concentration estimation.

Method	Approach	Retention time variabiltiy
A	5 injections of the same standard in solvent	max. +/- 0.1 min
В	3 injections evenly distributed over a 10 hour sequence	max. +/- 0.05 min
C ₁	3 injections of the same standard in solvent/matrix with 10 other samples in between	max. +/- 0.05 min
C ₂	3 injections of the same standard in solvent/matrix with 10 other samples in between	max. +/- 0.1 min
D ₁	3 injections of the same standard in solvent/matrix with 8 other samples in between	max. +/- 0.03 min
D ₂	3 injections of the same standard in solvent/matrix with 8 other samples in between	max. +/- 0.03 min

Table S6. Retention time repeatability for the different chromatographic methods over a relevant sample batch bracketed between standards.

Method abbreviations: A) MMLC-MS/MS; B) HILIC-MS/MS; C1/C2) RPLC-MS/MS; D1/D2) SFC-HRMS

Index	Α	В	C ₁	C ₂	D ₁	D_2
ID-1	-	-	0.031	0.0018	-	-
ID-2	-	0.005	0.0064	0.0045	-	-
ID-3	-	0.005	-	-	0.002	0.0125
ID-4	0.006	-	0.00008	0.00065	-	0.005
ID-5	-	0.00025	-	-	-	0.00125
ID-6	0.003	0.00025	0.000033	0.000082	0.01	0.0017
ID-7	-	0.125	-	-	-	-
ID-8	-	-	-	0.00073	-	-
ID-9	0.18	-	0.00006	0.00048	-	0.003
ID-10	-	-	0.0014	-	-	-
ID-11	-	-	-	-	-	0.0015
ID-12	0.015	0.0005	-	0.0068	0.005	0.0009
ID-13	0.0018	0.00025	0.0005	0.00005	0.0006	0.0005
ID-14	0.06	0.0005	-	0.00153	0.003	0.0008
ID-15	0.03	0.005	0.004	0.0052	0.005	0.002
ID-16	0.09	0.00025	0.00023	0.00021	0.00021	0.00003
ID-17	0.02	0.00025	0.00003	0.0002	0.00004	0.00009
ID-18	0.03	0.0005	0.0038		0.0023	0.00038
ID-19	0.072	0.3	-	-	-	0.005
ID-20	0.009	0.025	-	0.00023	0.0015	0.0003
ID-21	0.009	0.00005	0.00025	0.00021	0.00034	0.0023
ID-22	1.5	0.005	0.0034	-	-	-
ID-23	0.0006	0.00005	0.00256	-	0.0003	0.0003
ID-24	0.015	0.0005	0.0005	0.00043	0.003	0.00039
ID-25	0.03	0.00025	-	0.003	0.0017	0.0075
ID-26	0.006	0.001	0.0035	-	0.00027	0.0038
ID-27	-	-	0.0054	0.002	-	-
ID-28	-	0.0025	0.0033	-	-	-
ID-29	0.003	0.000125	0.00031	0.000071	0.00027	0.00062
ID-30	0.21	-	0.00042	-	-	-
ID-31	-	-	0.0042	0.00062	0.0017	0.025
ID-32	0.006	0.00025	0.00041	-	0.0002	0.0038
ID-33	0.006	0.0005	0.00075	0.000134	0.00012	0.00005
ID-34	0.003	0.0005	0.0001	0.00008	0.00013	0.0001
ID-35	0.001	0.5	0.000078	0.000079	0.0013	0.017
ID-36	0.15	0.00025	0.00152	-	0.0011	0.00036
ID-37	0.3	0.0025	0.0027	-	0.005	0.0107
ID-38	-	0.0005	0.00033	-	0.00015	0.00009
ID-39	0.22	0.0005	0.029	0.00018	0.0005	0.0002
ID-40	0.015	0.0025	0.00072	0.019	0.0008	0.0008
ID-41	0.62	0.0025	0.0053	-	-	-
ID-42	-	0.00025	0.00019	-	0.00008	0.00028
ID-43	0.0039	0.0005	0.001	0.00042	0.0004	0.,0005
ID-44	0.0015	0.00025	-	0.0007	0.00066	0.00017
ID-45	0.015	0.0005	0.014	-	0.0005	0.0002
ID-46	0.03	0.005	-	-	0.0011	0.0015

Table S7. Instrumental detection limits for the target PMOCs given as injected quantities [ng] with the different instrumental methods.

ID-47	0.018	0.00025	0.0001	0.00025	0.0003	0.00008
ID-48	0.009	0.025	0.000147	-	0.00011	0.00025
ID-49	-	0.5	-	-	-	-
ID-50	-	0.0025	0.000253	-	-	-
ID-51	0.15	-	0.0005	0.0007	0.013	0.0125
ID-52	0.003	0.00025	0.0004	-	0.00003	0.00003
ID-53	0.003	-	0.000015	-	0.0003	0.0025
ID-54	0.009	0.00025	0.0016	0.000047	0.0005	0.00054
ID-55	-	-	-	-	0.013	-
ID-56	0.45	0.25	-	-	-	0.012
ID-57	0.0033	0.00025	0.00071	-	0.00008	0.00023
ID-58	0.0015	0.00025	0.0002	-	0.0003	0.001
ID-59	-	0.005	-	-	-	-
ID-60	0.01	0.005	0.00006	-	0.00009	0.0022
ID-61	0.008	0.00005	0.00002	0.0011	0.00008	0.00004
ID-62	0.0045	-	0.00357	-	0.001	0.0015
ID-63	0.33	0.015	0.08	-	0.0013	0.0003
ID-64	0.3	0.25	-	-	0.0014	0.00049
Method abb	previations: A) M	MLC-MS/MS: B) HILIC-MS/MS	C ₁ /C ₂) RPLC-N	1S/MS: D1/D2) S	FC-HRMS

Method abbreviations: A) MMLC-MS/MS; B) HILIC-MS/MS; C₁/C₂) RPLC-MS/MS; D₁/D₂) SFC-HRMS

Index	Α	В	C ₁	C ₂	D ₁	D ₂
ID-1	n.p. ²	n.p.	0.1	0.1	n.p.	n.p.
ID-2	n.p.	11.9	0.3	1.4	n.p.	n.p.
ID-3	n.p.	13.1	n.p.	n.p.	17.5	15.0
ID-4	16.8	9.2	1.3	3.1	n.p.	14.2
ID-5	n.p.	13. 5	n.p.	n.p.	n.p.	13.4
ID-6	16.7	8.3	3.4	4.2	19.2	13.7
ID-7	n.p.	13.1	n.p.	n.p.	n.p.	n.p.
ID-8	n.p.	n.p.	n.p.	4.1	n.p.	n.p.
ID-9	33.9	12.8	0.3	2	n.p.	17.1
ID-10	n.p.	14.7	0.2	n.p.	n.p.	n.p.
ID-11	n.p.	12.8	n.p.	n.p.	n.p.	13.1
ID-12	32.4	3.2	n.p.	2.5	13.1	13.9
ID-13	24.2	0.6	1.8	3.9	12.6	14.0
ID-14	25.2	1.5	n.p.	0.1	13.0	14.4
ID-15	21.3	11.9	0.4	0.5	20.0	11.1
ID-16	24.9	3.2	4.6	3.9	13.7	14.1
ID-17	17.5	9.1	3.4	4.7	12.6	10.0
ID-18	24.2	3.3	0.3	0.1	13.1	14.2
ID-19	26.7	3.5	n.p.	n.p.	n.p.	14.3
ID-20	19.4	1.2	n.p.	0.2	12.6	13.7
ID-21	15.4	9.3	0.7	3.7	15.1	9.3
ID-22	2.7	3.8	0.7	n.p.	n.p.	n.p.
ID-23	20.9	3.4	9.4	n.p.	12.8	13.7
ID-24	27.0	3.1	1.4	1	12.4	13.1
ID-25	26.4	4.7	n.p.	3	15.7	18.0
ID-26	14.6	8.8	0.6	n.p.	12.5	14.0
ID-27	n.p.	n.p.	0.8	0.2	n.p.	n.p.
ID-28	n.p.	4.0	0.3	n.p.	n.p.	n.p.
ID-29	17.5	7.84	5.4	4.9	14.2	9.6
ID-30	2.9	n.p.	1.0	n.p.	n.p.	n.p.
ID-31	n.p.	n.p.	0.3	0.2	14.9	17.3
ID-32	24.5	8.1	19.0	n.p.	12.3	11.2
ID-33	27.7	0.2	0.8	0.4	12.1	13.1
ID-34	40.5	0.7	18	5.8	12.7	13.7
ID-35	4.6	10.3	0.5	0.2	14.9	9.5
ID-36	17.3	8.5	1.9	n.p.	7.7	4.2
ID-37	1.9	1.7	0.4	n.p.	10.4	9.6
ID-38	n.p.	0.8	17.3	n.p.	13.8	16.5
ID-39	23.0	2.6	7.3	4.2	12.8	14.1
ID-40	27.6	1.0	1.0	4.4	13.0	14.8
ID-41	2.17	1.4	0.6	n.p.	n.p.	n.p.
ID-42	n.p.	4.2	2.3	n.p.	9.7	9.6
ID-43	32.4	1.1	17.0	5	13.3	15.4
ID-44	29.2	1.3	n.p.	4.52	12.5	13.6
ID-45	21.8	4.0	16.1	n.p.	6.6	11.2
ID-46	3.1	1.0	n.p.	n.p.	6.5	5.3

Table S8. Retention factor k' of the target chemicals for the different chromatographic methods.¹

ID-47	28.7	0.6	23.5	5.4	11.7	12.2
ID-48	13.7	0.5	21.7	n.p.	6.2	5.8
ID-49	n.p.	0.8	n.p.	n.p.	n.p.	n.p.
ID-50	n.p.	1.4	17.5	n.p.	n.p.	n.p.
ID-51	12.8	n.p.	18.0	11	6.7	7.7
ID-52	22.2	4.9	19.2	n.p.	12.1	11.6
ID-53	15.3	0.6	17.3	n.p.	11.9	12.9
ID-54	21.0	0.5	25	5.5	8.2	8.4
ID-55	n.p.	n.p.	n.p.	n.p.	1.2	n.p.
ID-56	15.2	0.5	n.p.	n.p.	n.p.	1.2
ID-57	33.9	0.7	19.0	n.p.	10.1	11.1
ID-58	21.2	2.5	19.9	n.p.	11.7	11.2
ID-59	n.p.	0.4	n.p.	n.p.	n.p.	n.p.
ID-60	19.7	0.5	20.6	n.p.	8.6	8.8
ID-61	17.9	0.5	24.1	8.9	4.2	3.9
ID-62	16.2	n.p.	19.3	n.p.	14.8	14.6
ID-63	17.9	0.4	24.4	n.p.	3.5	1.7
ID-64	21.7	0.7	n.p.	n.p.	3.2	3.0

Method abbreviations: A) MMLC-MS/MS; B) HILIC-MS/MS; C1/C2) RPLC-MS/MS; D1/D2) SFC-HRMS

¹ k' = $(t_R-t_0)/t_0$, t_R – retention time of the substance, t_0 – void time ² n.p. means that it was not possible to analyze the chemical (no peak) with the chromatographic method in combination with ESI-MS

Figure S3. Retention factors k' of all PMOCs for the different chromatographic method.

Figure S4. Retention factors k' versus log*D* for all PMOCs and all chromatographic methods. Method abbreviations: A) MMLC-MS/MS; B) HILIC-MS/MS; C_1/C_2) RPLC-MS/MS; D_1/D_2) SFC-HRMS

Figure S5. Number of PMOCs that were amenable to the different combinations of enrichment and instrumental methods.

Table S9. Enrichment and instrumental methods that were successfully applied for analysis of the different PMOCs (indicated with +). Combinations of enrichment and instrumental methods that were used in the target screening of water samples are listed in the last column with their individual estimated method detection limits (MDLs).

Index	Applicability of enrichment methods								App inst	olicat rume	oility ental	of metl	nods		Method combinations applied in the target screening of water samples In gray: methods that led to only not-detects In blue: methods that led to at least one detect In parentheses: estimated MDL [ng L ⁻¹]		
	Ι	П	III	IV	V	VI	VII	VIII	А	В	C ₁	C ₂	D ₁	D ₂			
ID-1	n.t.	n.t.	n.t.	n.t.	-	-	-	-	-	-	+	+	-	-			
ID-2	n.t.	n.t.	-	+	+	-	+	-	-	+	+	+	-	-	B-IV (37), C ₁ -V (335)		
ID-3	n.t.	n.t.	+	-	-	-	-	-	-	+	-	-	+	+	B-III (0.4)		
ID-4	-	+	-	-	-	-	-	+	+	+	+	+	-	+	A-II (0.5), C ₂ -VIII (60), D ₂ -VIII (2000)		
ID-5	n.t.	n.t.	+	-	-	-	-	-	-	+	-	-	-	+	B-III (0.06)		
ID-6	-	+	-	+	-	-	-	+	+ + + + + ,		+	A-II (5.5), B-IV (5), C ₂ - VIII (0.5)					
ID-7	n.t.	n.t.	-	+	n.t.	n.t.	n.t.	n.t.	- +		-	B-VI (1250)					
ID-8	n.t.	n.t.	n.t.	n.t.	+	-	-	-	+		-	C ₂ -V (1.2)					
ID-9	-	-	-	-	-	-	-	+	+ + + + - +		+	C ₂ -VIII (3), D2-VIII (5)					
ID-10	n.t.	n.t.	-	-	+	-	-	-	- + +		-	C1-V (600)					
ID-11	n.t.	n.t.	-	-	-	-	-	-	-	+	-	-	-	+			
ID-12	+	-	+	-	+	-	-	-	+	+ + - + + +		+	A-I (189), B-III (3.9), C₂-V (600)				
ID-13	+	-	-	+	+	-	-	-	+	+ + + + + +		+	A-I (16.8), B-IV (11), C ₂ -V (0.5), D ₂ -V (10)				
ID-14	+	-	+	-	-	-	-	+	+	+	-	+	+	+	A-I (367), B-III (375), C ₂ -VIII (39)		
ID-15	-	+	-	+	-	+	-	-	+	+	+	+	+	+	A-II (15.4), B-IV (19), C ₁ -VI (600), D ₁ -VI (10), D ₂ -VI (15)		
ID-16	+	-	+	-	+	-	-	-	+	+	+	+	+	+	A-I (182), B-III (0.6), C ₂ -V (0.2), D ₂ -V (4)		
ID-17	-	+	-	+	-	+	+	+	+	+	+	+	+	+	A-II (46), B-IV (3), C ₂ -VII (42), D ₁ -VII (30)		
ID-18	-	-	-	+	+	-	-	-	+	+	+	+	+	+	B-IV (12), C ₁ -V (60)		
ID-19	-	-	-	-	-	-	-	-	+	+	-	-	-	+			
ID-20	+	-	+	-	+	-	-	-	+	+	-	+	+	+	A-I (219), B-III (20), C ₂ -V (10), D ₂ -V (40)		

ID-21	-	+	-	+	-	+	+	+	+	+	+	+	+	+	A-II (30), B-IV (0.9), C ₂ -VI (600)
ID-22	+	-	-	+	-	-	-	+	+	+	+	-	-	-	A-I (500), B-IV (38), C₁-VIII (2.5)
ID-23	-	+	+	-	-	-	+	+	+	+	+	-	+	+	A-II (0.3), B-III (0.75), C ₁ -VIII (0.2), D ₂ -VIII (2.5)
ID-24	+	-	-	+	+	-	-	-	+	+	+	+	+	+	A-I (15.6), B-IV (140), C₁-V (10), D₂-V (55)
ID-25	+	-	+	-	+	-	+	-	+	+	-	+	+	+	A-I (167), B-III (0.04), C ₂ -V (6), D ₂ -V (140)
ID-26	-	+	-	+	-	+	+	+	+	+	+	-	+	+	A-II (176), B-IV (23), C ₁ -VIII (10), D ₁ -VIII (1.4)
ID-27	n.t.	n.t.	n.t.	n.t.	-	-	-	-	-	-	+	+	-	-	
ID-28	n.t.	n.t.	+	-	-	-	-	-	-	+	+	-	-	-	B-III (0.3)
ID-29	-	+	-	+	-	-	-	+	+	+	+	+	+	+	A-II (3.1), B-IV (1.4), C ₂ -VIII (0.7), D ₁ -VIII (0.6)
ID-30	-	-	n.t.	n.t.	-	-	+	-	+	-	+	-	-	-	C ₁ -VII (100)
ID-31	n.t.	n.t.	n.t.	n.t.	-	-	-	-	-	-	+	+	+	+	C ₂ -V (60)
ID-32	-	+	+	-	-	-	-	+	+	+	+	-	+	+	A-II (11.4), B-III (0.12), C ₁ -VIII (1.2), D ₁ -VIII (0.9)
ID-33	+	-	+	-	+	-	-	-	+	+	+	+	+	+	A-I (55.1), B-III (0.21), C ₁ -V (3), D ₂ -V (0.7)
ID-34	+	-	+	-	+	-	+	-	+	+	+	+	+	+	A-I (4.0), B-III (0.2), C ₁ -V (0.6)
ID-35	-	-	-	-	-	+	+	-	+	+	+	+	+	+	C ₁ -VII (0.1)
ID-36	-	+	-	+	-	+	+	-	+	+	+	-	+	+	A-II (50.9), B-IV (1), C ₁ -VI (600)
ID-37	+	-	-	+	-	-	-	+	+	+	+	-	+	+	A-I (372), B-IV (70) , D ₁ - VIII (20)
ID-38	n.t.	n.t.	+	-	-	-	+	-	-	+	+	-	+	+	B-III (0.2), C ₁ -VII (1), D ₂ -VII (8)
ID-39	-	-	+	-	+	-	+	-	+	+	+	+	+	+	B-III (0.6), C ₂ -V (18), D ₂ -V (2.5)
ID-40	+	-	-	+	+	+	+	-	+	+	+	+	+	+	B-IV (50), C ₁ -V (2), D ₂ -V (32)
ID-41	-	-	-	+	-	-	-	-	+	+	+	-	-	-	B-IV (7.6)
ID-42	n.t.	n.t.	-	+	-	+	+	+	-	+	+	-	+	+	B-IV (1.2), C ₁ -VII (0.8), D ₁ -VII (0.6)
ID-43	+	-	+	+	+	-	+	-	+	+	+	+	+	+	A-I (10), B-III (15), C ₁ -VII (10), D ₂ -VII (10)
ID-44	+	-	+	-	+	-	+	-	+	+	-	+	+	+	A-I (26.6), B-III (2.6), C ₂ -V (9), D ₂ -V (3)
ID-45	-	+	+	-	-	-	-	+	+	+	+	-	+	+	A-II (9.6), B-III (0.07)
ID-46	-	+	-	+	-	-	+	-	+	+	-	-	+	+	A-II (14.6), B-IV (1400), C ₁ -VII (600)
ID-47	+	-	-	-	+	-	+	-	+	+	+	+	+	+	A-I (0.6), C ₁ -V (1.5)
ID-48	-	+	-	-	-	-	+	-	+	+	+	-	+	+	A-II (15.7), C1-VII (6)
ID-49	n.t.	n.t.	-	-	-	-	-	-	-	+	-	-	-	-	

ID-50	n.t.	n.t.	+	-	-	-	+	-	-	+	+	-	-	-	B-III (4), C1-VII (0.01)
ID-51	+	-	n.t.	n.t.	-	-	+	+	+	-	+	+	+	+	A-I (105), C ₂ -VIII (1.6), D ₂ -VII (100)
ID-52	-	+	-	+	+	-	-	+	+	+	+	-	+	+	A-II (3.2), B-IV (0.5), C ₁ -VIII (1), D ₁ -VIII (0.6)
ID-53	-	+	n.t.	n.t.	-	-	+	-	+	-	+	-	+	+	A-II (3.9), C ₁ -VII (60)
ID-54	+	-	-	+	+	-	+	+	+	+	+	+	+	+	A-I (20.6), B-IV (2.9) , C1-VII (91)
ID-55	n.t.	n.t.	n.t.	n.t.	-	-	+	-	-	-	-	-	+	-	D1-VII (2000)
ID-56	-	+	-	-	-	-	-	-	+	+	-	-	-	+	A-II (85)
ID-57	+	-	+	-	+	-	+	+	+	+	+	-	+	+	A-I (5.7), B-III (20), C ₁ -V (1.7), D ₂ -V (3.2)
ID-58	-	+	+	-	+	+	-	+	+	+	+	-	+	+	A-II (4.3), B-III (0.28), C ₁ -VIII (1.5), D ₁ -VIII (1.5)
ID-59	n.t.	n.t.	-	-	-	-	-	-	-	+	-	-	-	-	
ID-60	-	-	+	-	-	+	-	-	+	+	+	-	+	+	B-III (0.02), C ₁ -VI (60), D ₁ -VI (9)
ID-61	-	+	-	+	+	-	-	+	+	+	+	+	+	+	A-II (7.5), B-IV (0.5), C₁-VIII (0.02), D₂-VIII (0.7)
ID-62	-	+	n.t.	n.t.	-	-	+	-	+	-	+	-	+	+	A-II (71.1), D ₁ -VII (15), D2-VII ()
ID-63	-	+	+	-	-	-	+	+	+	+	+	-	+	+	A-II (72.1), B-III (0.5), C ₁ -VIII (100), D ₁ -VIII (120)
ID-64	-	-	-	-	-	-	-	-	+	+	-	-	+	+	

 ID-64
 +
 +
 +
 +

 Method abbreviations – Enrichment methods: I) SPE-WAX; II) SPE-WCX; III) SPE-Multilayer; IV) Evaporation; V) SPE-WAX; VI) SPE-MSX; VII) SPE-ENV+; VIII)

 SPE-EnviCarb

Instrumental methods: A) MMLC-MS/MS; B) HILIC-MS/MS; C₁/C₂) UHPLC-MS/MS; D₁/D₂) SFC-HRMS

+ enrichment or chromatographic method applicable - enrichment or chromatographic method not applicable

n.t. not tested

Figure S6. Frequency of detection (including all methdos) and maximum estimated concentration of the detected PMOCs in the 14 water samples.

ID-2 - 2 2 - ID-3 - 4 - - ID-6 2 - 1 - ID-8 - - 3 - ID-9 - - 1 - ID-12 1 1 - - ID-13 12 13 13 12 ID-14 8 2 4 - ID-15 5 4 - - ID-16 13 7 10 5 ID-17 - - 1 1 ID-18 - 3 - - ID-20 - - 1 3 ID-22 - 5 5 - ID-23 6 - 5 2 ID-24 - 1 - - ID-28 - 1 - - ID-33 5 8 10 13 ID-34 - - 1	Index	Detection frequency <i>Chromatography A</i> (with <i>Enrichment I/II</i>)	Detection frequency <i>Chromatography B</i> (with <i>Enrichment III/IV</i>)	Detection frequency <i>Chromatography</i> C ₁ /C ₂ (with <i>Enrichment V-VIII</i>)	Detection frequency Chromatography D ₁ /D ₂ (with Enrichment V-VIII)
ID-3 - 4 - - ID-6 2 - 1 - ID-8 - 3 - ID-9 - - 1 - ID-12 1 1 - - ID-13 12 13 13 12 ID-14 8 2 4 - ID-15 5 4 - - ID-16 13 7 10 5 ID-17 - - 1 3 ID-20 - - 1 3 ID-22 - 5 5 - ID-23 6 - 5 1 ID-24 - 1 5 2 ID-25 9 6 2 2 ID-24 - 1 - - ID-28 - 1 - - ID-32 6 10 8 8 ID-33 5 8 10 13	ID-2	-	2	2	-
ID-6 2 - 1 - ID-8 - 3 - ID-9 - 1 - ID-12 1 1 - - ID-13 12 13 13 12 ID-14 8 2 4 - ID-15 5 4 - - ID-16 13 7 10 5 ID-17 - - 1 1 ID-18 - 3 - - ID-20 - - 1 3 ID-22 - 5 5 1 ID-23 6 - 5 1 ID-24 - 1 - - ID-25 - 9 6 2 ID-26 3 7 8 14 ID-28 1 - - ID-32 6 10 13 ID-34 - 1 - ID-33 1 1 <td>ID-3</td> <td>-</td> <td>4</td> <td>-</td> <td>-</td>	ID-3	-	4	-	-
ID-8 - - 3 - ID-9 - - 1 - ID-12 1 1 - - ID-13 12 13 13 12 ID-14 8 2 4 - ID-15 5 4 - - ID-16 13 7 10 5 ID-17 - - 1 1 ID-18 - 3 - - ID-20 - - 1 3 ID-22 - 5 5 - ID-23 6 - 5 1 ID-24 - 1 5 2 ID-25 - 9 6 2 ID-26 3 7 8 14 ID-28 - 1 - - ID-32 6 10 8 8 ID-33 5 8 10 13 ID-34 - - 6	ID-6	2	-	1	-
ID-9 - - 1 - ID-12 1 1 - - ID-13 12 13 13 12 ID-14 8 2 4 - ID-15 5 4 - - ID-16 13 7 10 5 ID-17 - 1 1 - ID-18 - 3 - - ID-17 - 1 1 - ID-18 - 3 - - ID-17 - 1 3 - ID-20 - - 1 3 ID-22 - 5 5 - ID-23 6 - 5 1 ID-24 - 1 - - ID-25 - 9 6 2 ID-26 3 7 8 14 ID-28 - 1 - - ID-33 5 8 10	ID-8	-	-	3	-
ID-1211 $ID-13$ 12131312 $ID-13$ 12131312 $ID-14$ 824- $ID-15$ 54 $ID-16$ 137105 $ID-17$ 11 $ID-18$ -3 $ID-20$ 13 $ID-22$ -551 $ID-23$ 6-51 $ID-24$ -152 $ID-25$ -962 $ID-26$ 37814 $ID-28$ -1 $ID-29$ 1-31 $ID-33$ 581013 $ID-34$ 11 $ID-39$ -41014 $ID-40$ 2133 $ID-41$ -2 $ID-43$ 3-14 $ID-44$ 3101313 $ID-45$ 65	ID-9	-	-	1	-
ID.13 12 13 13 12 $ID.14$ 8 2 4 $ ID.15$ 5 4 $ ID.16$ 13 7 10 5 $ID.17$ $ 1$ 1 $ID.18$ $ 3$ $ ID.20$ $ 1$ 3 $ID.22$ $ 5$ 5 $ ID.23$ 6 $ 5$ 1 $ID.24$ $ 1$ 5 2 $ID.24$ $ 1$ 5 2 $ID.25$ $ 9$ 6 2 $ID.28$ $ 1$ $ ID.29$ 1 $ 3$ 1 $ID.33$ 5 8 10 13 $ID.34$ $ 1$ $ ID.38$ $ 1$ 1 1 $ID.39$ $ 4$ 10 14 $ID.40$ 2 1 3 3 $ID.41$ $ 2$ $ ID.43$ 3 $ 1$ 4 $ID.44$ 3 10 13 13 $ID.45$ 6 5 $ -$	ID-12	1	1	-	-
ID.14824- $ID.15$ 54 $ID.16$ 137105 $ID.17$ 11 $ID.18$ -3 $ID.20$ 13 $ID.22$ -55- $ID.23$ 6-51 $ID.23$ 6-51 $ID.24$ -152 $ID.24$ -152 $ID.26$ 37814 $ID.28$ -1 $ID.29$ 1-31 $ID.32$ 61088 $ID.33$ 581013 $ID.34$ -111 $ID.39$ -41014 $ID.40$ 2133 $ID.41$ -2 $ID.43$ 3-14 $ID.44$ 3101313 $ID.45$ 65-67	ID-13	12	13	13	12
ID.1554 $ID.16$ 137105 $ID.17$ 11 $ID.18$ -3 $ID.20$ 13 $ID.22$ -55- $ID.23$ 6-51 $ID.24$ -152 $ID.25$ -962 $ID.26$ 37814 $ID.28$ -1 $ID.29$ 1-31 $ID.32$ 61088 $ID.33$ 581013 $ID.34$ 1- $ID.39$ -41014 $ID.40$ 2133 $ID.41$ -2 $ID.43$ 3-14 $ID.44$ 31013 $ID.45$ 65	ID-14	8	2	4	-
ID-16137105ID-1711ID-18-3ID-2013ID-22-55-ID-236-51ID-24-152ID-25-962ID-2637814ID-28-1ID-3261088ID-33581013ID-341-ID-39-41014ID-39-6-8ID-34-111ID-38-114ID-443101313ID-4565-14ID-4465-1ID-4565-1	ID-15	5	4	-	-
ID-1711 $ID-18$ -3 $ID-20$ 13 $ID-22$ -55- $ID-23$ 6-51 $ID-24$ -152 $ID-25$ -962 $ID-26$ 37814 $ID-28$ -1 $ID-29$ 1-31 $ID-32$ 61088 $ID-33$ 581013 $ID-34$ 1- $ID-39$ -41014 $ID-39$ -6-8 $ID-39$ -41014 $ID-40$ 2133 $ID-41$ -2 $ID-43$ 3-14 $ID-44$ 3101313 $ID-45$ 65-1	ID-16	13	7	10	5
ID-18-3 $ID-20$ 13 $ID-20$ -55- $ID-22$ -551 $ID-23$ 6-51 $ID-24$ -152 $ID-25$ -962 $ID-26$ 37814 $ID-28$ -1 $ID-29$ 1-31 $ID-32$ 61088 $ID-33$ 581013 $ID-34$ 1- $ID-37$ -6-8 $ID-38$ -111 $ID-39$ -41014 $ID-40$ 2133 $ID-41$ -2 $ID-42$ -67 $ID-43$ 3101313 $ID-45$ 65 $ID-45$ 65	ID-17	-	-	1	1
ID-2013 $ID-22$ -55- $ID-23$ 6-51 $ID-23$ 6-51 $ID-24$ -152 $ID-25$ -962 $ID-26$ 37814 $ID-28$ -1 $ID-29$ 1-31 $ID-32$ 61088 $ID-33$ 581013 $ID-34$ 1- $ID-37$ -6-8 $ID-38$ -111 $ID-39$ -41014 $ID-40$ 2133 $ID-41$ -2 $ID-42$ 67 $ID-43$ 3-14 $ID-44$ 3101313 $ID-45$ 65	ID-18	-	3	-	-
ID-22-55-ID-236-51ID-24-152ID-25-962ID-2637814ID-28-1ID-291-31ID-3261088ID-33581013ID-341-ID-38-111ID-39-41014ID-402133ID-41-2ID-433-14ID-443101313ID-4565-1	ID-20	-	-	1	3
ID-236-51ID-24-152ID-25-962ID-2637814ID-28-1ID-291-31ID-3261088ID-33581013ID-341-ID-37-6-8ID-38-111ID-39-41014ID-402133ID-41-2ID-42-67ID-433-14ID-443101313ID-4565	ID-22	-	5	5	-
ID-24-152 $ID-25$ -962 $ID-26$ 37814 $ID-28$ -1 $ID-29$ 1-31 $ID-32$ 61088 $ID-33$ 581013 $ID-34$ 1- $ID-37$ -6-8 $ID-38$ -111 $ID-39$ -41014 $ID-40$ 2133 $ID-41$ -67 $ID-43$ 3-14 $ID-44$ 3101313 $ID-45$ 65	ID-23	6	-	5	1
ID-25-962ID-2637814ID-28-1ID-291-31ID-3261088ID-33581013ID-341-ID-37-6-8ID-38-111ID-39-41014ID-402133ID-41-2ID-433-14ID-443101313ID-4565	ID-24	-	1	5	2
ID-2637814ID-28-1ID-291-31ID-3261088ID-33581013ID-341-ID-37-6-8ID-38-111ID-39-41014ID-402133ID-41-2ID-433-14ID-443101313ID-4565	ID-25	-	9	6	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ID-26	3	7	8	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ID-28	-	1	-	-
ID-3261088ID-33581013ID-341-ID-37-6-8ID-38-111ID-39-41014ID-402133ID-41-2ID-42-67ID-433-14ID-443101313ID-4565	ID-29	1	-	3	1
ID-33581013ID-341-ID-37-6-8ID-38-111ID-39-41014ID-402133ID-41-2ID-42-67ID-433-14ID-443101313ID-4565	ID-32	6	10	8	8
ID-341-ID-37-6-8ID-38-111ID-39-41014ID-402133ID-41-2ID-42-67ID-433-14ID-443101313ID-4565	ID-33	5	8	10	13
ID-37-6-8ID-38-111ID-39-41014ID-402133ID-41-2ID-42-67ID-433-14ID-443101313ID-4565	ID-34	-	-	1	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ID-37	-	6	-	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ID-38	-	1	1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ID-39	-	4	10	14
ID-41 - 2 - - ID-42 - - 6 7 ID-43 3 - 1 4 ID-44 3 10 13 13 ID-45 6 5 - - ID-46 0 1 4 -	ID-40	2	1	3	3
ID-42 - 6 7 ID-43 3 - 1 4 ID-44 3 10 13 13 ID-45 6 5 - - ID 46 0 1 1 1	ID-41	-	2	-	-
ID-43 3 - 1 4 ID-44 3 10 13 13 ID-45 6 5 - - ID-46 0 1 1	ID-42	-	-	6	7
ID-44 3 10 13 13 ID-45 6 5	ID-43	3	-	1	4
ID-45 6 5	ID-44	3	10	13	13
	ID-45	6	5	-	-
	ID-46	9	-	1	-
ID-47 4 -	ID-47	-	-	4	-
ID-50	ID-50	-	-	2	-
ID-51 12 1	ID-51	-	-	12	1
ID-52 14 - 8 /	1D-52	14	-	ŏ	1
	10-54	-	4	-	- A
	ום-גרעו ער-עו	3	-	۲ ۲ ۸	4
	1D-20	4	-	14	11 つ
	1D-00	-	-	-	∠ 1
10^{-63} 7^{-10} 10^{-63} 7^{-10} 4^{-5}	ID-63	- 7	10	то Д	י ג

Table S10.	Chromatography	method-specific	detection	frequencies	(number of	f samples)	of
the detected	d PMOCs in the 14	4 water samples.					