206 research outputs found
Light Rare Earth Element Depletion During Deepwater Horizon Blowout Methanotrophy
Rare earth elements have generally not been thought to have a biological role. However, recent work has demonstrated that the light REEs (LREEs: La, Ce, Pr, and Nd) are essential for at least some methanotrophs, being co-factors in the XoxF type of methanol dehydrogenase (MDH). We show here that dissolved LREEs were significantly removed in a submerged plume of methane-rich water during the Deepwater Horizon (DWH) well blowout. Furthermore, incubation experiments conducted with naturally methane-enriched waters from hydrocarbon seeps in the vicinity of the DWH wellhead also showed LREE removal concurrent with methane consumption. Metagenomic sequencing of incubation samples revealed that LREE-containing MDHs were present. Our field and laboratory observations provide further insight into the biochemical pathways of methanotrophy during the DWH blowout. Additionally, our results are the first observations of direct biological alteration of REE distributions in oceanic systems. In view of the ubiquity of LREE-containing MDHs in oceanic systems, our results suggest that biological uptake of LREEs is an overlooked aspect of the oceanic geochemistry of this group of elements previously thought to be biologically inactive and an unresolved factor in the flux of methane, a potent greenhouse gas, from the ocean
Light Rare Earth Element Depletion During Deepwater Horizon Blowout Methanotrophy
Rare earth elements have generally not been thought to have a biological role. However, recent work has demonstrated that the light REEs (LREEs: La, Ce, Pr, and Nd) are essential for at least some methanotrophs, being co-factors in the XoxF type of methanol dehydrogenase (MDH). We show here that dissolved LREEs were significantly removed in a submerged plume of methane-rich water during the Deepwater Horizon (DWH) well blowout. Furthermore, incubation experiments conducted with naturally methane-enriched waters from hydrocarbon seeps in the vicinity of the DWH wellhead also showed LREE removal concurrent with methane consumption. Metagenomic sequencing of incubation samples revealed that LREE-containing MDHs were present. Our field and laboratory observations provide further insight into the biochemical pathways of methanotrophy during the DWH blowout. Additionally, our results are the first observations of direct biological alteration of REE distributions in oceanic systems. In view of the ubiquity of LREE-containing MDHs in oceanic systems, our results suggest that biological uptake of LREEs is an overlooked aspect of the oceanic geochemistry of this group of elements previously thought to be biologically inactive and an unresolved factor in the flux of methane, a potent greenhouse gas, from the ocean
Investigations of Aerobic Methane Oxidation in Two Marine Seep Environments: Part 1—Chemical Kinetics
Microbial aerobic oxidation is known to be a significant sink of marine methane (CH4), contributing to the relatively minor atmospheric release of this greenhouse gas over vast stretches of the ocean. However, the chemical kinetics of aerobic CH4 oxidation are not well established, making it difficult to predict and assess the extent that CH4 is oxidized in seawater following seafloor release. Here we investigate the kinetics of aerobic CH4 oxidation using mesocosm incubations of fresh seawater samples collected from seep fields in Hudson Canyon, U.S. Atlantic Margin and MC118, Gulf of Mexico to gain a fundamental chemical understanding of this CH4 sink. The goals of this investigation were to determine the response or lag time following CH4 release until more rapid oxidation begins, the reaction order, and the stoichiometry of reactants utilized (i.e., CH4, oxygen, nitrate, phosphate, trace metals) during CH4 oxidation. The results for both Hudson Canyon and MC118 environments show that CH4 oxidation rates sharply increased within less than one month following the CH4 inoculation of seawater. However, the exact temporal characteristics of this more rapid CH4 oxidation varied based on location, possibly dependent on the local circulation and biogeochemical conditions at the point of seawater collection. The data further suggest that methane oxidation behaves as a first‐order kinetic process and that the reaction rate constant remains constant once rapid CH4 oxidation begins
Investigations of Aerobic Methane Oxidation in Two Marine Seep Environments: Part 2—Isotopic Kinetics
During aerobic oxidation of methane (CH4) in seawater, a process which mitigates atmospheric emissions, the 12C‐isotopologue reacts with a slightly greater rate constant than the 13C‐isotopologue, leaving the residual CH4 isotopically fractionated. Prior studies have attempted to exploit this systematic isotopic fractionation from methane oxidation to quantify the extent that a CH4 pool has been oxidized in seawater. However, cultivation‐based studies have suggested that isotopic fractionation fundamentally changes as a microbial population blooms in response to an influx of reactive substrates. Using a systematic mesocosm incubation study with recently collected seawater, here we investigate the fundamental isotopic kinetics of aerobic CH4 oxidation during a microbial bloom. As detailed in a companion paper, seawater samples were collected from seep fields in Hudson Canyon, U.S. Atlantic Margin, and atop Woolsey Mound (also known as Sleeping Dragon) which is part of lease block MC118 in the northern Gulf of Mexico, and used in these investigations. The results from both Hudson Canyon and MC118 show that in these natural environments isotopic fraction for CH4 oxidation follows a first‐order kinetic process. The results also show that the isotopic fractionation factor remains constant during this methanotrophic bloom once rapid CH4 oxidation begins and that the magnitude of the fractionation factor appears correlated with the first‐order reaction rate constant. These findings greatly simplify the use of natural stable isotope changes in CH4 to assess the extent that CH4 is oxidized in seawater following seafloor release
Estimation of value of travel-time savings using mixed logit models
In this paper, we discuss some of the issues that arise with the computation of the implied value of travel-time savings in the case of discrete choice models allowing for random taste heterogeneity. We specifically look at the case of models producing a non-zero probability of positive travel-time coefficients, and discuss the consistency of such estimates with theories of rational economic behaviour. We then describe how the presence of unobserved travel-experience attributes or conjoint activities can bias the estimation of the travel-time coefficient, and can lead to false conclusions with regards to the existence of negative valuations of travel-time savings. We note that while it is important not to interpret such estimates as travel-time coefficients per se, it is nevertheless similarly important to allow such effects to manifest themselves; as such, the use of distributions with fixed bounds is inappropriate. On the other hand, the use of unbounded distributions can lead to further problems, as their shape (especially in the case of symmetrical distributions) can falsely imply the presence of positive estimates. We note that a preferable solution is to use bounded distributions where the bounds are estimated from the data during model calibration. This allows for the effects of data impurities or model misspecifications to manifest themselves, while reducing the risk of bias as a result of the shape of the distribution. To conclude, a brief application is conducted to support the theoretical claims made in the paper
Peripheral Nerve Activation Evokes Machine-Learnable Signals in the Dorsal Column Nuclei
The brainstem dorsal column nuclei (DCN) are essential to inform the brain of tactile and proprioceptive events experienced by the body. However, little is known about how ascending somatosensory information is represented in the DCN. Our objective was to investigate the usefulness of high-frequency (HF) and low-frequency (LF) DCN signal features (SFs) in predicting the nerve from which signals were evoked. We also aimed to explore the robustness of DCN SFs and map their relative information content across the brainstem surface. DCN surface potentials were recorded from urethane-anesthetized Wistar rats during sural and peroneal nerve electrical stimulation. Five salient SFs were extracted from each recording electrode of a seven-electrode array. We used a machine learning approach to quantify and rank information content contained within DCN surface-potential signals following peripheral nerve activation. Machine-learning of SF and electrode position combinations was quantified to determine a hierarchy of information importance for resolving the peripheral origin of nerve activation. A supervised back-propagation artificial neural network (ANN) could predict the nerve from which a response was evoked with up to 96.8 ± 0.8% accuracy. Guided by feature-learnability, we maintained high prediction accuracy after reducing ANN algorithm inputs from 35 (5 SFs from 7 electrodes) to 6 (4 SFs from one electrode and 2 SFs from a second electrode). When the number of input features were reduced, the best performing input combinations included HF and LF features. Feature-learnability also revealed that signals recorded from the same midline electrode can be accurately classified when evoked from bilateral nerve pairs, suggesting DCN surface activity asymmetry. Here we demonstrate a novel method for mapping the information content of signal patterns across the DCN surface and show that DCN SFs are robust across a population. Finally, we also show that the DCN is functionally asymmetrically organized, which challenges our current understanding of somatotopic symmetry across the midline at sub-cortical levels
A survey to investigate the association of pain, foot disability and quality of life with corns
Background
Corns are a common foot problem affecting a large proportion of the population. This study describes the characteristics of corns experienced by 201 participants taking part in a randomised controlled trial to investigate associations between demographic and corn parameters on pain, foot related disability and quality of life (QoL).
Methods
Pain from the main (index) corn was measured using a visual analogue scale (VAS); foot related disability was assessed with the Foot Disability Questionnaire (now known as the Manchester Foot Pain and Disability Index) and quality of life was recorded with the EQ-5D questionnaire. The effect of demographic and corn parameters on the pain and quality of life outcomes was assessed with analysis of variance (ANOVA) methods. The effect of the same factors on a linear combination of the foot-related disability outcome measures was assessed using multivariate ANOVA methods. Pain was also tested for its mediating properties on the causal pathway between the independent variables and quality of life.
Results
The mean pain score was 5.29 points on a 10 cm VAS, with females reporting substantively higher pain levels than males. Age affected foot-related disability, with lower levels on all domains of the MFPDI reported in older participants; each year of advancing age was associated with falls of: 0.009 points on the Concern about Appearance (CA) domain; 0.047 points on the Functional Limitation (FL) domain and 0.048 points on the Pain Intensity (PI) domain. Sex and corn type also affected disability, with higher scores reported by females and participants with plantar corns.
Conclusions
The effect of pain was shown to mediate the relationship between sex and foot-related disability. The presence of plantar corns has a more detrimental effect on QoL than dorsal/inter-digital corns
Time to diagnostic certainty for saddle pulmonary embolism in hospitalized patients
There is a lack of diagnostic performance measures associated with pulmonary embolism (PE). We aimed to explore the concept of the time to diagnostic certainty, which we defined as the time interval that elapses between first presentation of a patient to a confirmed PE diagnosis with computed tomography pulmonary angiogram (CT PA). This approach could be used to highlight variability in health system diagnostic performance, and to select patient outliers for structured chart review in order to identify underlying contributors to diagnostic error or delay. We performed a retrospective observational study at academic medical centers and associated community-based hospitals in one health system, examining randomly selected adult patients admitted to study sites with a diagnosis of acute saddle PE. One hundred patients were randomly selected from 340 patients discharged with saddle PE. Twenty-four patients were excluded. Among the 76 included patients, time to diagnostic certainty ranged from 1.5 to 310 hours. We found that 73/76 patients were considered to have PE present on admission (CT PA ≤ 48 hours). The proportion of patients with PE present on admission with time to diagnostic certainty of > 6 hours was 26% (19/73). The median (IQR) time to treatment (thrombolytics/anticoagulants) was 3.5 (2.5-5.1) hours among the 73 patients. The proportion of patients with PE present on admission with treatment delays of > 6 hours was 16% (12/73). Three patients acquired PE during hospitalization (CT PA > 48 hours). In this study, we developed and successfully tested the concept of time to diagnostic certainty for saddle PE
European security in the 1990s and beyond : the implications of the accession of Cyprus and Malta to the European Union
For the last decade, the dramatic events in eastern and central Europe have (rightly)
dominated the security debate in Europe and, indeed, the wider world. One of the
consequences of this has been that the traditional neglect of the Mediterranean region has
been compounded. However, there are now signs-notably the recent Barcelona conference
at which the European Union's Mediterranean policy was relaunched and extended (to incorporate the grand design of a Mediterranean free trade area) - that the Mediterranean is, at last, receiving some of the attention it deserves and justifies.peer-reviewe
Dual Anti-OX40/IL-2 Therapy Augments Tumor Immunotherapy via IL-2R-Mediated Regulation of OX40 Expression
The provision of T cell co-stimulation via members of the TNFR super-family, including OX40 (CD134) and 4-1BB (CD137), provides critical signals that promote T cell survival and differentiation. Recent studies have demonstrated that ligation of OX40 can augment T cell-mediated anti-tumor immunity in pre-clinical models and more importantly, OX40 agonists are under clinical development for cancer immunotherapy. OX40 is of particular interest as a therapeutic target as it is not expressed on naïve T cells but rather, is transiently up-regulated following TCR stimulation. Although TCR engagement is necessary for inducing OX40 expression, the downstream signals that regulate OX40 itself remain unclear. In this study, we demonstrate that OX40 expression is regulated through a TCR and common gamma chain cytokine-dependent signaling cascade that requires JAK3-mediated activation of the downstream transcription factors STAT3 and STAT5. Furthermore, combined treatment with an agonist anti-OX40 mAb and IL-2 augmented tumor immunotherapy against multiple tumor types. Dual therapy was also able to restore the function of anergic tumor-reactive CD8 T cells in mice with long-term well-established (>5 wks) tumors, leading to increased survival of the tumor-bearing hosts. Together, these data reveal the ability of TCR/common gamma chain cytokine signaling to regulate OX40 expression and demonstrate a novel means of augmenting cancer immunotherapy by providing dual anti-OX40/common gamma chain cytokine-directed therapy
- …