140 research outputs found
Governor Lake\u27s March
https://digitalcommons.library.umaine.edu/mmb-ps/2340/thumbnail.jp
What is the Total Deuterium Abundance in the Local Galactic Disk?
Analyses of spectra obtained with the Far Ultraviolet Spectroscopic Explorer
(FUSE) satellite, together with spectra from the Copernicus and IMAPS
instruments, reveal an unexplained very wide range in the observed
deuterium/hydrogen (D/H) ratios for interstellar gas in the Galactic disk
beyond the Local Bubble. We argue that spatial variations in the depletion of
deuterium onto dust grains can explain these local variations in the observed
gas-phase D/H ratios. We present a variable deuterium depletion model that
naturally explains the constant measured values of D/H inside the Local Bubble,
the wide range of gas-phase D/H ratios observed in the intermediate regime (log
N(H I} = 19.2-20.7), and the low gas-phase D/H ratios observed at larger
hydrogen column densities. We consider empirical tests of the deuterium
depletion hypothesis: (i) correlations of gas-phase D/H ratios with depletions
of the refractory metals iron and silicon, and (ii) correlation with the
molecular hydrogen rotational temperature. Both of these tests are consistent
with deuterium depletion from the gas phase in cold, not recently shocked,
regions of the ISM, and high gas-phase D/H ratios in gas that has been shocked
or otherwise heated recently. We argue that the most representative value for
the total (gas plus dust) D/H ratio within 1 kpc of the Sun is >=23.1 +/- 2.4
(1 sigma) parts per million (ppm). This ratio constrains Galactic chemical
evolution models to have a very small deuterium astration factor, the ratio of
primordial to total (D/H) ratio in the local region of the Galactic disk, which
we estimate to be f_d <= 1.19 +/-0.16 (1 sigma) or <= 1.12 +/- 0.14 (1 sigma)
depending on the adopted light element nuclear reaction rates.Comment: 19 pages, 9 figure
The low density, hot Jupiter TOI-640 b is on a polar orbit
TOI-640 b is a hot, puffy Jupiter with a mass of M
and radius of R, orbiting a slightly evolved F-type
star with a separation of R. Through
spectroscopic in-transit observations made with the HARPS spectrograph, we
measured the Rossiter-McLaughlin effect, analysing both in-transit radial
velocities and the distortion of the stellar spectral lines. From these
observations, we find the host star to have a projected obliquity of
. From the TESS light curve, we measured the stellar
rotation period, allowing us to determine the stellar inclination,
, meaning we are viewing the star pole-on. Combining
this with the orbital inclination allowed us to calculate the host star
obliquity, . TOI-640 b joins a group of planets orbiting
over stellar poles within the range . The origin of this
orbital configuration is not well understood.Comment: 15 pages, 12 figures, accepted for publication in A&A, in pres
TOI-1268b: The youngest hot Saturn-mass transiting exoplanet
We report the discovery of TOI-1268b, a transiting Saturn-mass planet from the TESS space mission. With an age of less than 1 Gyr, derived from various age indicators, TOI-1268b is the youngest Saturn-mass planet known to date; it contributes to the small sample of well-characterised young planets. It has an orbital period of P = 8.1577080 \ub1 0.0000044 days, and transits an early K-dwarf star with a mass of Mâ = 0.96 \ub1 0.04 M+, a radius of Râ = 0.92 \ub1 0.06 R+, an effective temperature of Teff = 5300 \ub1 100 K, and a metallicity of 0.36 \ub1 0.06 dex. By combining TESS photometry with high-resolution spectra acquired with the Tull spectrograph at the McDonald Observatory, and the high-resolution spectrographs at the Tautenburg and OndR ejov Observatories, we measured a planetary mass of Mp = 96.4 \ub1 8.3 Mp and a radius of Rp = 9.1 \ub1 0.6 Rp. TOI-1268 is an ideal system for studying the role of star-planet tidal interactions for non-inflated Saturn-mass planets. We used system parameters derived in this paper to constrain the planeta\u27s tidal quality factor to the range of 104.5-5.3. When compared with the sample of other non-inflated Saturn-mass planets, TOI-1268b is one of the best candidates for transmission spectroscopy studies
TOI-733 b -- a planet in the small-planet radius valley orbiting a Sun-like star
We report the discovery of a hot ( 1055 K) planet in
the small planet radius valley transiting the Sun-like star TOI-733, as part of
the KESPRINT follow-up program of TESS planets carried out with the HARPS
spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of
= days and a radius of
= .
Multi-dimensional Gaussian process modelling of the radial velocity
measurements from HARPS and activity indicators, gives a semi-amplitude of
= m s, translating into a planet mass of
= . These
parameters imply that the planet is of moderate density ( =
g cm) and place it in the transition
region between rocky and volatile-rich planets with H/He-dominated envelopes on
the mass-radius diagram. Combining these with stellar parameters and
abundances, we calculate planet interior and atmosphere models, which in turn
suggest that TOI-733 b has a volatile-enriched, most likely secondary outer
envelope, and may represent a highly irradiated ocean world - one of only a few
such planets around G-type stars that are well-characterised.Comment: Accepted for publication in A&
Radial velocity confirmation of K2-100b: A young, highly irradiated, and low-density transiting hot Neptune
We present a detailed analysis of HARPS-N radial velocity observations of K2-100, a young and active star in the Praesepe cluster, which hosts a transiting planet with a period of 1.7 d. We model the activity-induced radial velocity variations of the host star with a multidimensional Gaussian Process framework and detect a planetary signal of 10.6 \ub1 3.0 m sâ1, which matches the transit ephemeris, and translates to a planet mass of 21.8 \ub1 6.2 M. We perform a suite of validation tests to confirm that our detected signal is genuine. This is the first mass measurement for a transiting planet in a young open cluster. The relatively low density of the planet, 2.04+â006661 g cmâ3, implies that K2-100b retains a significant volatile envelope. We estimate that the planet is losing its atmosphere at a rate of 1011â1012 g sâ1 due to the high level of radiation it receives from its host star
Company for the ultra-high density, ultra-short period sub-Earth GJ 367 b: discovery of two additional low-mass planets at 11.5 and 34 days
GJ 367 is a bright (V 10.2) M1 V star that has been recently found
to host a transiting ultra-short period sub-Earth on a 7.7 hr orbit. With the
aim of improving the planetary mass and radius and unveiling the inner
architecture of the system, we performed an intensive radial velocity follow-up
campaign with the HARPS spectrograph -- collecting 371 high-precision
measurements over a baseline of nearly 3 years -- and combined our Doppler
measurements with new TESS observations from sectors 35 and 36. We found that
GJ 367 b has a mass of = 0.633 0.050 M and a
radius of = 0.699 0.024 R, corresponding to
precisions of 8% and 3.4%, respectively. This implies a planetary bulk density
of = 10.2 1.3 g cm, i.e., 85% higher than
Earth's density. We revealed the presence of two additional non transiting
low-mass companions with orbital periods of 11.5 and 34 days and minimum
masses of = 4.13 0.36 M and
= 6.03 0.49 M, respectively,
which lie close to the 3:1 mean motion commensurability. GJ 367 b joins the
small class of high-density planets, namely the class of super-Mercuries, being
the densest ultra-short period small planet known to date. Thanks to our
precise mass and radius estimates, we explored the potential internal
composition and structure of GJ 367 b, and found that it is expected to have an
iron core with a mass fraction of 0.91. How this iron core is
formed and how such a high density is reached is still not clear, and we
discuss the possible pathways of formation of such a small ultra-dense planet.Comment: 28 pages, 11 figures. Accepted for publication in ApJ
A Radial Velocity Study of the Planetary System of pi Mensae: Improved Planet Parameters for pi Mensae c and a Third Planet on a 125 Day Orbit
Ï Men hosts a transiting planet detected by the Transiting Exoplanet Survey Satellite space mission and an outer planet in a 5.7 yr orbit discovered by radial velocity (RV) surveys. We studied this system using new RV measurements taken with the HARPS spectrograph on ESO's 3.6 m telescope, as well as archival data. We constrain the stellar RV semiamplitude due to the transiting planet, Ï Men c, as Kc = 1.21 ± 0.12 m s^{â1}, resulting in a planet mass of M_{c} = 3.63 ± 0.38 M_{â}. A planet radius of R_{c} = 2.145 ± 0.015 R_{â} yields a bulk density of Ïc = 2.03 ± 0.22 g cm^{â3}. The precisely determined density of this planet and the brightness of the host star make Ï Men c an excellent laboratory for internal structure and atmospheric characterization studies. Our HARPS RV measurements also reveal compelling evidence for a third body, Ï Men d, with a minimum mass M_{d} sin i_{d} = 13.38 ± 1.35 M_{â} orbiting with a period of Porb,d = 125 days on an eccentric orbit (e_{d} = 0.22). A simple dynamical analysis indicates that the orbit of Ï Men d is stable on timescales of at least 20 Myr. Given the mutual inclination between the outer gaseous giant and the inner rocky planet and the presence of a third body at 125 days, Ï Men is an important planetary system for dynamical and formation studies
- âŠ