25,566 research outputs found

    Finite element solver for 3-D compressible viscous flows

    Get PDF
    The space shuttle main engine (SSME) has extremely complex internal flow structure. The geometry of the flow domain is three-dimensional with complicated topology. The flow is compressible, viscous, and turbulent with large gradients in flow quantities and regions of recirculations. The analysis of the flow field in SSME involves several tedious steps. One is the geometrical modeling of the particular zone of the SSME being studied. Accessing the geometry definition, digitalizing it, and developing surface interpolations suitable for an interior grid generator require considerable amount of manual labor. There are several types of grid generators available with some general-purpose finite element programs. An efficient and robust computational scheme for solving 3D Navier-Stokes equations has to be implemented. Post processing software has to be adapted to visualize and analyze the computed 3D flow field. The progress made in a project to develop software for the analysis of the flow is discussed. The technical approach to the development of the finite element scheme and the relaxation procedure are discussed. The three dimensional finite element code for the compressible Navier-Stokes equations is listed

    A finite element solver for 3-D compressible viscous flows

    Get PDF
    Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers

    Geometrically nonlinear analysis of layered composite plates and shells

    Get PDF
    A degenerated three dimensional finite element, based on the incremental total Lagrangian formulation of a three dimensional layered anisotropic medium was developed. Its use in the geometrically nonlinear, static and dynamic, analysis of layered composite plates and shells is demonstrated. A two dimenisonal finite element based on the Sanders shell theory with the von Karman (nonlinear) strains was developed. It is shown that the deflections obtained by the 2D shell element deviate from those obtained by the more accurate 3D element for deep shells. The 3D degenerated element can be used to model general shells that are not necessarily doubly curved. The 3D degenerated element is computationally more demanding than the 2D shell theory element for a given problem. It is found that the 3D element is an efficient element for the analysis of layered composite plates and shells undergoing large displacements and transient motion

    A higher-order theory for geometrically nonlinear analysis of composite laminates

    Get PDF
    A third-order shear deformation theory of laminated composite plates and shells is developed, the Navier solutions are derived, and its finite element models are developed. The theory allows parabolic description of the transverse shear stresses, and therefore the shear correction factors of the usual shear deformation theory are not required in the present theory. The theory also accounts for the von Karman nonlinear strains. Closed-form solutions of the theory for rectangular cross-ply and angle-ply plates and cross-ply shells are developed. The finite element model is based on independent approximations of the displacements and bending moments (i.e., mixed finite element model), and therefore, only C sup o -approximation is required. The finite element model is used to analyze cross-ply and angle-ply laminated plates and shells for bending and natural vibration. Many of the numerical results presented here should serve as references for future investigations. Three major conclusions resulted from the research: First, for thick laminates, shear deformation theories predict deflections, stresses and vibration frequencies significantly different from those predicted by classical theories. Second, even for thin laminates, shear deformation effects are significant in dynamic and geometrically nonlinear analyses. Third, the present third-order theory is more accurate compared to the classical and firt-order theories in predicting static and dynamic response of laminated plates and shells made of high-modulus composite materials

    Radiated noise from an externally blown flap

    Get PDF
    The far field noise from subsonic jet impingement on a wing-flap with a 45 deg bend was experimentally investigated. The test parameters are jet Mach number and flap length. For long flaps, the primary source mechanisms are found to be turbulent mixing and flow impingement. For short flaps, the interaction of turbulent flow with the flap trailing edge appears to strongly influence the radiated noise

    Effect of calf-starter protein solubility on calf performance

    Get PDF
    Three starters containing differently processed protein supplements were fed to Holstein heifer calves, using an early weaning program. One starter contained soybean meal. The other starters contained soybean grits processed through an extrusion cooker to reduce the protein solubility to an intermediate (PDI> 50%) or low (PDI < 15 %) level. Calf performance was similar on all three starters

    Geometrically nonlinear analysis of laminated elastic structures

    Get PDF
    This final technical report contains three parts: Part 1 deals with the 2-D shell theory and its element formulation and applications. Part 2 deals with the 3-D degenerated element. These two parts constitute the two major tasks that were completed under the grant. Another related topic that was initiated during the present investigation is the development of a nonlinear material model. This topic is briefly discussed in Part 3. To make each part self-contained, conclusions and references are included in each part. In the interest of brevity, the discussions presented are relatively brief. The details and additional topics are described in the references cited

    Dispersion and decay of collective modes in neutron star cores

    Full text link
    We calculate the frequencies of collective modes of neutrons, protons and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and protons, which is not well characterized. The contribution of collective modes to the thermal conductivity is evaluated.Comment: 10 pages, 4 figure

    User's Manual for FEMOM3DR

    Get PDF
    FEMoM3DR is a computer code written in FORTRAN 77 to compute radiation characteristics of antennas on 3D body using combined Finite Element Method (FEM)/Method of Moments (MoM) technique. The code is written to handle different feeding structures like coaxial line, rectangular waveguide, and circular waveguide. This code uses the tetrahedral elements, with vector edge basis functions for FEM and triangular elements with roof-top basis functions for MoM. By virtue of FEM, this code can handle any arbitrary shaped three dimensional bodies with inhomogeneous lossy materials; and due to MoM the computational domain can be terminated in any arbitrary shape. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computers on which the code is intended to run

    Corticosteroid implants for chronic non-infectious uveitis.

    Get PDF
    BACKGROUND: Uveitis is a term used to describe a heterogeneous group of intraocular inflammatory diseases of the anterior, intermediate, and posterior uveal tract (iris, ciliary body, choroid). Uveitis is the fifth most common cause of vision loss in high-income countries, accounting for 5% to 20% of legal blindness, with the highest incidence of disease in the working-age population.Corticosteroids are the mainstay of acute treatment for all anatomical subtypes of non-infectious uveitis and can be administered orally, topically with drops or ointments, by periocular (around the eye) or intravitreal (inside the eye) injection, or by surgical implantation. OBJECTIVES: To determine the efficacy and safety of steroid implants in people with chronic non-infectious posterior uveitis, intermediate uveitis, and panuveitis. SEARCH METHODS: We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (Issue 10, 2015), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to November 2015), EMBASE (January 1980 to November 2015), PubMed (1948 to November 2015), Latin American and Caribbean Health Sciences Literature Database (LILACS) (1982 to November 2015), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com) (last searched 15 April 2013), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic search for studies. We last searched the electronic databases on 6 November 2015.We also searched reference lists of included study reports, citation databases, and abstracts and clinical study presentations from professional meetings. SELECTION CRITERIA: We included randomized controlled trials comparing either fluocinolone acetonide (FA) or dexamethasone intravitreal implants with standard-of-care therapy with at least six months of follow-up after treatment. We included studies that enrolled participants of all ages who had chronic non-infectious posterior uveitis, intermediate uveitis, or panuveitis with vision that was better than hand-motion. DATA COLLECTION AND ANALYSIS: Two review authors independently reviewed studies for inclusion. Two review authors independently extracted data and assessed the risk of bias for each study. MAIN RESULTS: We included data from two studies (619 eyes of 401 participants) that compared FA implants with standard-of-care therapy. Both studies used similar standard-of-care therapy that included administration of prednisolone and, if needed, immunosuppressive agents. The studies included participants from Australia, France, Germany, Israel, Italy, Portugal, Saudi Arabia, Spain, Switzerland, Turkey, the United Kingdom, and the United States. We assessed both studies at high risk of performance and detection bias.Only one study reported our primary outcome, recurrence of uveitis at any point during the study through 24 months. The evidence, judged as moderate-quality, showed that a FA implant probably prevents recurrence of uveitis compared with standard-of-care therapy (risk ratio (RR) 0.29, 95% confidence interval (CI) 0.14 to 0.59; 132 eyes). Both studies reported safety outcomes, and moderate-quality evidence showed increased risks of needing cataract surgery (RR 2.98, 95% CI 2.33 to 3.79; 371 eyes) and surgery to lower intraocular pressure (RR 7.48, 95% CI 3.94 to 14.19; 599 eyes) in the implant group compared with standard-of-care therapy through two years of follow-up. No studies compared dexamethasone implants with standard-of-care therapy. AUTHORS\u27 CONCLUSIONS: After considering both benefits and harms reported from two studies in which corticosteroids implants were compared with standard-of-care therapy, we are unable to conclude that the implants are superior to traditional systemic therapy for the treatment of non-infectious uveitis. These studies exhibited heterogeneity in design and outcomes that measured efficacy. Pooled findings regarding safety outcomes suggest increased risks of post-implant surgery for cataract and high intraocular pressure compared with standard-of-care therapy
    corecore