A Finite Element Solver for 3-D Compressible Viscous Flows

K. C. Reddy, J. N. Reddy and S. Nayani
The University of Tennessee Space Institute
Tullahoma, Tennessee 37388

Final Report of Contract No. NAS8-36555

Submitted to
NASA/MSFC
Marshall Space Flight Center, AL 35812

by
The University of Tennessee Space Institute Tullahoma, Tennessee 37388

January 1990

Table of Contents

1. Introduction 1
2. Locally Implicit Scheme for a Model Equation 4
3. Locally Implicit Scheme for Navier-Stokes Equations 8
3.1 Finite Element Approximations 8
3.2 Locally Implicit Scheme 10
3.3 Surface Flux Computation 12
3.4 Artificial Dissipation 13
4. Test Calculations 14
4.1 Couette Flow 14
4.2 Laminar Boundary Layer Over a Flat Plate 14
4.3 Flow Over an Airfoil 14
4.4 Flow in a Turn-around Duct 15
5. References 16
Figures 17
Appendix I 31
Appendix II 33
Appendix III 38

1. Introduction

Computation of the flow field inside a space shuttle main engine (SSME) requires the application of the state-of-the-art CFD technology. Several computer codes are under development to solve three dimensional Navier-Stokes equations for analyzing the SSME internal flow, such as the flow through the hot gas manifold. The computational methods used in the Navier-Stokes codes fall into two major categories: finite difference and finite element methods. Some of the algorithms are designed to solve the unsteady compressible Navier-Stokes equations, either by explicit or by implicit factorization methods, using several hundred or thousands of time steps to reach a steady-state solution asymptotically. Other algorithms attempt to solve the steady-state equations by relaxation methods. All of them require body-fitting curvilinear grids with sufficient resolution. Grid requirements, however, differ greatly with the region being modelled and the algorithm used. Implicit factorization based on finite differences typically uses global numerical transformations whereby the transformed grid in the computational space is uniform and rectilinear. This requires the grid to have indices which are separable in the three directions for three dimensional problems, and also be reasonably smooth. However, such requirements may introduce grid singularities when complicated domains are discretized. Flow solver algorithm will have to deal with such grid singularities. Explicit schemes and finite element algorithms have less stringent requirements on the grid structure. However, explicit schemes are slow to converge because of the stability limitations on time step, particularly for large scale viscous problems.

The finite element method is characterized by three basic features which are credited for the enormous success the method has enjoyed in the solution of practical engineering problems. The first feature is that every computational domain is viewed as a collection of simple subdomains, called finite elements. This feature allows us to represent complicated geometries as assemblages of simple parts. It is a desirable feature in the solution of flow problems in complex configurations, not only to describe the complex geometry but also to choose the most suitable computational grid for a particular flow. This feature also allows us to place or remove any obstructions routinely into the flow field. The second feature is that over each element the solution is represented by polynomials of desired degree. This allows us to compute the solution as a continuous function of position instead of at selected few points. The third feature is that the relationship (i.e., the algebraic equations) between the solution and its dual variables is developed using a variational method, such as the Galerkin method. The boundary conditions are then applied on the algebraic equations directly before solving. The three features of the finite element method also allow the easy development and interfacing of pre- and post-processors, and user-defined subroutines for equations for state and turbulence models.

The Galerkin finite element method (i.e., the weight functions are the same as the approximation functions) applied to flow problems always results in implicit schemes. The
weighted-residual (or Petrov-Galerkin) method, in which the weight functions are different from the approximation functions, can be used in conjunction with explicit schemes to obtain explicit final equations. For example, by selecting the weight functions to be orthogonal to the approximation functions, the mass matrix can be diagonalized. However, such considerations are entirely in the interest of obtaining explicit schemes and not necessarily in the interest of accuracy or even computational efficiency. In the current project an implicit finite element scheme with suitable dissipation terms for stability is developed. A relaxation procedure, known as the locally implicit scheme is developed to solve the coupled set of algebraic equations efficiently.

Allowing the possibility of unstructured grids is important for discretizing complex flow domains efficiently and also for adding the features of solution-adaptive grids. For grids with large numbers of nodes, direct solution procedures for the finite element equations become impractical. Thus we have undertaken the development of a new iterative algorithm for the solution of implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified non-linear Gauss-Seidel iteration with symmetric sweeps. This algorithm is analyzed for a model equation and is shown to be unconditionally stable. This analysis is reported in the next Section.

The locally implicit scheme is unconditionally stable based on local linearized analysis. However, for strongly convective flows there is a possibility of non-linear numerical instabilities occurring in some parts of the flow domain and eventually destabilizing the entire flow domain. We have added adaptive artificial dissipation terms of third order to the finite element approximations similar to Jameson and others ${ }^{(1)}$. These are designed to suppress non-linear instabilities if they appear and at the same time be much smaller than the real viscosity terms in viscous zones.

In numerical schemes for solving fluid flow equations, there is some degree of uncertainty as to the imposition of boundary conditions on some of the variables at different types of boundaries, particularly at the inflow and outflow boundaries. In the current finite element code we have developed special procedures to compute the required flux terms at the boundary surfaces to the same degrees of accuracy as in the interior. We expect that our technique of computing the required surface fluxes iteratively, together with the interior flow variables, should minimize the uncertainties in the imposition of boundary conditions.

The locally implicit scheme is tested on a variety of problems. It has been shown to be efficient with multi-grid acceleration procedures for elliptic problems by Reddy and Nayani ${ }^{(2)}$ and for inviscid compressible flows from transonic to supersonic Mach numbers by Reddy and Jacocks ${ }^{(3)}$. Reddy, Reddy and Nayani ${ }^{(4)}$ have developed this scheme for viscous flow problems. We developed a 2-D test code for solving unsteady compressible Navier-Stokes equations with finite volume approximation, which is a special case of the finite element approximation. This code has been used to check various features of the
locally implicit solution algorithm. We have also added an algebraic turbulence model developed by Baldwin and Lomax ${ }^{(5)}$.

Results for a series of test problems are presented in this report. The finite element code has been tested for Couette flow, described in Schlichting ${ }^{(6)}$, which is a flow under a pressure gradient between two parallel plates in relative motion. Another problem that has been solved is viscous laminar flow over a flat plate. As a test case for the locally implicit scheme, the 2-D finite volume code has been applied to compute subsonic and transonic viscous flows over airfoils for both laminar and turbulent cases. The general 3-D finite element code has been used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.

2. Locally Implicit Scheme for a Model Equation

Locally implicit scheme is a relaxation method for solving the non-linear finite element equations approximating the Navier-Stokes equations. It is a point iteration method at each time step. However, it is not necessary for the iteration to converge fully at each time step if we are interested in computing the time asymptotic steady-state solutions. The analysis of the consistency, stability and hence convergence of the scheme is presented for a model equation for the Navier-Stokes equations.

Consider a one-dimensional convection-diffusion equation,

$$
\begin{equation*}
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}} \tag{2.1}
\end{equation*}
$$

Finite element approximation at a node j on a uniform mesh for equation (2.1) can be written as

$$
\begin{equation*}
\frac{\partial}{\partial t} \int u \phi_{j} d x+\int\left(-a u+\nu \frac{\partial u}{\partial x}\right) \frac{\partial \phi_{j}}{\partial x} d x=0 \tag{2.2}
\end{equation*}
$$

where ϕ_{j} is a global test function corresponding to the node j. For a linear element approximation, equation (2.2) gives

$$
\begin{gather*}
\frac{\partial}{\partial t}\left\{\frac{1}{6} u_{j-1}+\frac{2}{3} u_{j}+\frac{1}{6} u_{j+1}\right\}+\left(\frac{a}{2 \Delta x}\right)\left(u_{j+1}-u_{j-1}\right) \tag{2.3}\\
-\left(\frac{\nu}{\Delta x^{2}}\right)\left(u_{j-1}-2 u_{j}+u_{j+1}\right)=0
\end{gather*}
$$

Implicit time integration gives

$$
\begin{align*}
\frac{1}{6} \Delta u_{j-1} & +\frac{2}{3} \Delta u_{j}+\frac{1}{6} \Delta u_{j+1}+\frac{C}{2}\left(u_{j+1}^{n+1}-u_{j-1}^{n+1}\right) \tag{2.4}\\
& -R\left(u_{j-1}^{n+1}-2 u_{j}^{n+1}+u_{j+1}^{n+1}\right)=0
\end{align*}
$$

where $\Delta u_{j}=u_{j}^{n+1}-u_{j}^{n}$

$$
C=a \Delta t / \Delta x, \quad R=\nu \Delta t / \Delta x^{2}
$$

Equation (2.4), together with appropriate boundary conditions, gives a system of linear equations which can be solved easily in one-dimension and this scheme is unconditionally stable. However, the system of equations becomes too large in multi-dimensions and various types of sparse matrix solvers are developed in the literature, but they are usable only with a modest number of nodes. Alternately, we develop a relaxation scheme to solve (2.4) approximately at each time step. The scheme is a modification of the symmetric GaussSeidel iteration. The basic Gauss-Seidel iteration, even with symmetric sweeps, is unstable
for a whole range of Courant number C in equation (2.4). The present modification makes it unconditionally stable. Rewrite the equation (2.4) in delta form as

$$
\begin{align*}
& \frac{1}{6} \Delta u_{j-1}+\frac{2}{3} \Delta u_{j}+\frac{1}{6} \Delta u_{j+1}+\frac{C}{2}\left(\Delta u_{j+1}-\Delta u_{j-1}\right) \tag{2.5}\\
& \quad-R\left(\Delta u_{j-1}-2 \Delta u_{j}+\Delta u_{j+1}\right)=R e s_{j}^{n}
\end{align*}
$$

where

$$
\begin{equation*}
\operatorname{Res}_{j}^{n}=-\frac{C}{2}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)+R\left(u_{j-1}^{n}-2 u_{j}^{n}+u_{j+1}^{n}\right) \tag{2.6}
\end{equation*}
$$

As $\Delta u_{j}=u_{j}^{n+1}-u_{j}^{n} \rightarrow 0$ as $n \rightarrow \infty$, we obtain the asymptotic steady-state solution as the Res $_{j}$ function is driven to zero. This process may be speeded up and made more robust by choosing a value for R on the left side of equation (2.5) larger than the value of R on the right side of equation (2.5). To analyze this process we use the notation \bar{R} for R on the left side of equation (2.5). It may be noted that we can always obtain time accurate solution, if that is required, by choosing $\bar{R}=R$. We solve for Δu_{j} at each time step by a modified Gauss-Seidel iteration:

$$
\begin{equation*}
\Delta u_{j}^{(m+1)}=\Delta u_{j}^{(m)}+d u_{j}, \quad \Delta u_{j}^{(0)}=0 \tag{2.7}
\end{equation*}
$$

Left-to-right sweep yields

$$
\begin{align*}
& \frac{2}{3} d u_{j}+\frac{1}{6} d u_{j+1}+\frac{C}{2} d u_{j+1} \tag{2.8}\\
& -\bar{R}\left(-2 d u_{j}+d u_{j+1}\right)=R H S
\end{align*}
$$

where

$$
\begin{align*}
R H S= & \operatorname{Res}_{j}^{n}-\left[\frac{1}{6} \Delta u_{j-1}^{(m+1)}+\frac{2}{3} \Delta u_{j}^{(m)}+\frac{1}{6} \Delta u_{j+1}^{(m)}\right. \\
& \left.+\frac{C}{2}\left(\Delta u_{j+1}^{(m)}-\Delta u_{j-1}^{(m+1)}\right)-\bar{R}\left(\Delta u_{j-1}^{(m+1)}-2 \Delta u_{j}^{(m)}+\Delta u_{j+1}^{(m)}\right)\right] \tag{2.9}
\end{align*}
$$

Now we approximate $d u_{j+1} \simeq d u_{j}$ and replace C by its absolute value $|C|$ on the left side of equation (2.8), to accommodate convection velocity direction either in or opposite to the iteration sweep direction. This leads to an explicit expression for $d u_{j}$:

$$
\begin{equation*}
\left(\frac{5}{6}+\frac{|C|}{2}+\bar{R}\right) d u_{j}=R H S \tag{2.10}
\end{equation*}
$$

Right-to-left sweep is defined similarly. A symmetric iteration sweep consists of a left-toright sweep followed by a right-to-left sweep. It may be noted that $d u_{j}$ is the iterative correction to the time change iterates $\Delta u_{j}^{(m)}$ and if the iteration process is convergent,

RHS $\rightarrow 0$ and the equation (2.5) can be satisfied as accurately as we wish by carrying out the necessary number of symmetric iteration sweeps. The approximations made in the iteration do not affect the actual solution itself. Thus the iteration equations are consistent with the basic equations. One or two symmetric sweeps per time step are usually sufficient for obtaining steady-state solutions. Local stability analysis can be carried out by computing the amplification factor of discrete Fourier modal solutions per time step. In this analysis, we seek modal solutions of the equations (2.9) and (2.10) in the form

$$
\begin{aligned}
u_{j}^{n} & =v^{n} e^{i j \xi}, \quad 0 \leq \xi=\alpha \Delta x \leq \pi \\
\Delta u_{j}^{(m)} & =\Delta v^{(m)} e^{i j \xi}, \quad m=0,1, \ldots \\
u_{j}^{n+1} & =v^{n+1} e^{i j \xi}
\end{aligned}
$$

For a single symmetric sweep per time step ($m=0,1$),

$$
v^{n+1}=v^{n}+\Delta v^{(2)}=g(\xi) v^{n}
$$

where $g(\xi)$ is known as the amplification factor from one time step to the next and is given by

$$
\begin{align*}
g(\xi) & =1+\frac{r}{h_{3}}\left[1+\frac{h_{2}}{h_{1}}\right], \quad 0 \leq \xi \leq \pi \\
r & =-C i \sin \xi+2 R(\cos \xi-1) \\
h_{1} & =b-e^{-i \xi}\left(\frac{C}{2}+\bar{R}-\frac{1}{6}\right) \\
h_{2} & =b-\frac{2}{3}-2 \bar{R}+e^{-i \xi}\left(\frac{C}{2}+\bar{R}-\frac{1}{6}\right) \tag{2.11}\\
h_{3} & =b+e^{i \xi}\left(\frac{C}{2}-\bar{R}+\frac{1}{6}\right) \\
b & =\frac{5}{6}+\frac{|C|}{2}+\bar{R}
\end{align*}
$$

A necessary condition for stability is $|g(\xi)| \leq 1$. It can be shown that $|g(\xi)|$ is indeed ≤ 1 unconditionally. It is also desirable to have $|g(\xi)|<1$ as much as possible for ξ closer to π which represents the range of high frequency modes of the solution. Figure 1 shows plots of $|g(\xi)|$ versus ξ for different Courant numbers for $R=\bar{R}=\frac{C}{64}$. Figure 2 shows plots of $|g|$ versus ξ for $C=10, \bar{R}=R$ and R takes different values. Figure 3 shows the plots for $C=$ $10, \bar{R}=2 R$ and R takes different values. Numerical plots of $|g|$ against ξ confirm that the scheme is unconditionally stable. However, very large Courant numbers are not necessarily the best. Courant number $C \simeq 10$ and $\bar{R}=2 R \rightarrow 4 R$ seem desirable ranges. Amplification factors corresponding to two or more symmetric modified Gauss-Seidel iterations have similar behavior. Thus we establish unconditional stability for the modified Gauss-Seidel iteration scheme for the convection-diffusion equation. Similar stability can be shown
when the diffusion term is replaced by a 4th difference term of the type that is used as artificial viscosity term of third order for suppressing non-linear instabilities for convection dominated flows. It is possible to use artificial viscosity terms which are smaller than the truncation terms of the second order accurate finite element approximations. In the present Navier-Stokes finite element code where we compute all terms to full second order accuracy, artificial dissipation terms, which are an order of magnitude smaller then truncation error, are included to suppress non-linear instabilities. Stability analysis of the model equation indicates that the locally implicit scheme is unconditionally stable in a local linearized sense.

3. Locally Implicit Scheme for Navier-Stokes Equations

Many algorithms designed to solve the unsteady compressible Navier-Stokes equations use either explicit methods or implicit factorization methods. Finite element approximations usually yield implicit equations. These are solved by explicit time integration methods after making additional approximations. Explicit methods may take thousands of time steps to converge. Solving them implicitly with Newton iteration is possible, but the matrix storage requirements for the resulting algebraic equations and the solution process make it prohibitive even for modest size three dimensional flow problems. There are other algorithms based on relaxation methods. We have developed a locally implicit method for solving the non-linear finite element approximations for 3-D Navier-Stokes equations at each time step.

The method is based on a relaxation procedure for solving the finite element equations corresponding to each node iteratively. The equations for the elements surrounding a particular node are evaluated based on the latest iterates for the flow variables at the nodes around it and the solution is updated at that node by a modified Gauss-Seidel iteration. This procedure does not require the assembly of a global matrix, in contrast to the standard finite element algorithms. It does not require the solution of a system of large number of equations. Thus it is a matrix-free implicit finite element algorithm. An additional feature of the algorithm is that while it uses tri-linear approximations for the flow variables in quadilateral (brick) elements, all the non-linear fluxes in the NavierStokes equations are evaluated without any further linear approximation. The fluxes are non-linear and are computed accordingly. This assures the second order spatial accuracy of the scheme even for unstructured grids.

3.1 Finite Element Approximations

The unsteady, compressible Navier-Stokes equations are written in conservation form as

$$
\begin{equation*}
\left\{\frac{\partial U}{\partial t}\right\}+\vec{\nabla} \cdot\left\{\vec{F}^{v}\right\}+\vec{\nabla} \cdot\left\{\vec{F}^{I}\right\}=\{0\} \tag{3.1}
\end{equation*}
$$

where

$$
\{U\}=\left\{\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
\rho w \\
\rho \varepsilon
\end{array}\right\},\left\{\vec{F}^{v}\right\}=\left\{\begin{array}{c}
\overrightarrow{\underline{0}} \\
-\underline{\tau} \\
-\underline{\tau} \cdot \vec{v}+q
\end{array}\right\},\left\{\vec{F}^{I}\right\}=\left\{\begin{array}{c}
\rho \overrightarrow{\mathrm{v}} \\
\rho \overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{v}}+p \vec{I} \\
\overrightarrow{\mathrm{v}}(\rho \varepsilon+p)
\end{array}\right\}
$$

$\left\{\vec{F}^{I}\right\}$ and $\left\{\vec{F}^{v}\right\}$ represent the inviscid and viscous fluxes respectively. Details of these equations are given in Appendix I.

The variational form (weak form) of equation (3.1) over an element Ω^{e} is written as

$$
\begin{equation*}
0=\int_{\Omega e}\left(\{\Phi\}^{T}\left\{\frac{\partial U}{\partial t}\right\}-\{\vec{\nabla} \Phi\}^{T} \cdot\left\{\vec{F}^{v}+\vec{F}^{I}\right\}\right) d V+\oint_{S^{e}}\{\Phi\}^{T}\left\{F_{n}\right\} d S \tag{3.2}
\end{equation*}
$$

where $\{\Phi\}$ are test functions. They are tri-linear functions for linear finite element approximation and piecewise constants for finite volume approximations. $F_{n}=\left(\vec{F}^{v}+\vec{F}^{I}\right) \cdot \vec{n}$ where \vec{n} is the outward drawn unit normal to the surface S^{e} of the element Ω^{e}. The conservation variables $\vec{U}=\left(U_{\alpha}, \alpha=1, \cdots 5\right)$ are approximated by the interpolation functions Ψ_{j} as

$$
\begin{equation*}
U_{\alpha}=\sum_{j=1}^{N} \widehat{U}_{\alpha}^{j} \Psi_{j}(x, y, z) \equiv\{\Psi\}\left\{\widehat{U}_{\alpha}\right\} \tag{3.3}
\end{equation*}
$$

where

$$
\{\Psi\}=\left\{\Psi_{1} \Psi_{2} \cdots \Psi_{N}\right\},\left\{\hat{U}_{\alpha}\right\}=\left(\hat{U}_{\alpha}^{1}, \hat{U}_{\alpha}^{2}, \cdots \hat{U}_{\alpha}^{N}\right)^{T}
$$

\hat{U}_{α}^{j} is the numerical value of the α th component of the conservation flow variable U at j th local node of the element Ω^{e}. The interpolation functions Ψ and test functions Φ are chosen to be the same for compressible flow equations. $N=8$ for tri-linear approximations on quadrilateral brick elements. These approximations are done according to the standard finite element approximations (Ref. 7).

Define the total nodal vector of the conservation variables at the nodes of an element as

$$
\begin{gather*}
\{\hat{U}\} \tag{3.4}\\
5 N \times 1
\end{gather*}=\left\{\begin{array}{c}
\left\{\hat{U}_{1}\right\} \\
\left\{\hat{U}_{2}\right\} \\
\vdots \\
\left\{\dot{U}_{5}\right\}
\end{array}\right\} ;[\Psi]^{e}=\left[\begin{array}{ccccc}
\{\Psi\} & \{0\} & \{0\} & \{0\} & \{0\} \\
5 \times 5 N & \{\Psi\} & \{0\} & \{0\} & \{0\} \\
\{0\} & \{0\} & \{\Psi\} & \{0\} & \{0\} \\
\{0\} & \{0\} & \{0\} & \{\Psi\} & \{0\} \\
\{0\} & \{0\} & \{0\} & \{0\} & \{\Psi\}
\end{array}\right]
$$

Then

$$
\left\{\begin{array}{l}
\{U\} \\
5 \times 1
\end{array}=\left\{\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{5}
\end{array}\right\}=[\Psi]^{e}\{\widehat{U}\}^{e}\right.
$$

Now the variational statement (2) can be written as

$$
\begin{equation*}
\{0\}=\int_{\Omega^{e}}\left([\Psi]^{T}[\Psi]\{\dot{\widehat{U}}\}-[\vec{\nabla} \Psi]^{T} \cdot\{\vec{F}\}\right) d V+\oint_{S^{\varepsilon}}[\Psi]^{T}\left\{F_{n}\right\} d S \tag{3.5}
\end{equation*}
$$

It should be noted at this point that \vec{F} and F_{n} are non-linear functions of \vec{U} and thus the integrals involving them can be expressed analytically in terms of the components of \hat{U}. These expressions are long but they can be programmed into the computer code
efficiently. The coupled non-linear differential equations (3.5) are discretized in time by the Euler implicit scheme as follows:

$$
\begin{equation*}
\frac{1}{\Delta t}\left[M^{e}\right]\left\{\Delta \widehat{U}^{e}\right\}+\left\{\mathcal{R}^{e}\right\}^{m+1}=\{0\} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{gather*}
\Delta \hat{U}^{e} \equiv\left(\hat{U}^{e}\right)^{m+1}-\left(\hat{U}^{e}\right)^{m}, \quad m-\text { time level } \\
{\left[M^{e}\right]=\int_{\Omega^{e}}[\Psi]^{T}[\Psi] d V} \tag{3.7}\\
\left\{\mathcal{R}^{e}\right\}=-\int_{\Omega^{e}}[\vec{\nabla} \Psi]^{T} \cdot\{\vec{F}\} d V+\oint_{S^{e}}[\Psi]^{T}\left\{F_{n}\right\} d S \tag{3.8}
\end{gather*}
$$

Details of the expression $\left\{\mathcal{R}^{e}\right\}$ in equation (3.8) are given in Appendix II. In the standard finite element algorithms, the element equations (3.6) are linearized, usually by Newton method, and all the element equations are assembled to derive a global system of linear equations which are solved by sparse matrix solvers. For large scale problems the matrices involved become too big to be practical. Here we develop a matrix-free relaxation method to solve the non-linear equations directly by a modified Gauss-Seidel iteration.

3.2 Locally Implicit Scheme

We wish to solve the non-linear finite element equations iteratively at a node i. We assume the nodal values of the solution at all the surrounding nodes from their latest iterates. The test function Ψi, corresponding to the node i, in equation (3.6) gives the contribution of element Ω^{e} to the node i in the finite element approximation. Adding similar equations from all the elements surrounding a node $N D$ yields the nodal finite element equation. Thus the equations corresponding to a single node, $N D$ are

$$
\begin{equation*}
\sum_{e}\left(\frac{1}{\Delta t}\left[M^{e}\right]\left\{\Delta U^{e}\right\}+\left\{\mathcal{R}^{e}\right\}^{n+1}\right)_{N D}=0 \tag{3.9}
\end{equation*}
$$

where \widehat{U}^{e} is replaced by U^{e} for convenience. Thus U^{e} is the conservation variable vector at all the nodes of the element e, and the summation in equation (3.9) is over all elements e surrounding the node $N D$. Equation (3.9) represents 5 equations at $N D$ corresponding to each of the 5 conservation equations. The ath conservation equation at $N D$ can be written as

$$
\begin{align*}
{\left[\sum_{e} \frac{1}{\Delta t} \int_{\Omega^{e}}\left(\sum_{j=1}^{8} \Delta U_{\alpha, j} \Psi_{j}\right)^{e} \Psi_{(N D)}^{e} d V\right.} & -\int_{\Omega^{e}} \vec{\nabla} \Psi_{(N D)}^{e} \cdot \vec{F}^{\alpha^{(n+1)}} d V \tag{3.10}\\
& \left.+\oint_{\partial \Omega^{e}} \Psi_{(N D)}^{e} \vec{F}^{\alpha^{(n+1)}} \cdot \vec{n} d S\right]=0
\end{align*}
$$

where $\Psi_{(N D)}^{e}=\Psi_{i}^{e}$ with i corresponding to the local index of the global node $N D$ in element e. For all interior nodes $N D$, the surface flux integral in equation (3.10) vanishes. This equation couples U at all the nodes surrounding the node $N D$. We develop a modified symmetric non-linear Gauss-Seidel iteration to solve the coupled system of non-linear equations directly without linearization. This leads to a matrix-free algorithm for the solution.

For a particular time step n, the iteration is carried out as follows. During the iteration process, we assume that all U 's in the α th equation other than U_{α} are known from the previous step of the iteration. We solve for ΔU_{α} at node $N D$ approximately by a modified Gauss-Seidel iteration.

$$
\begin{equation*}
\Delta U_{\alpha, j}^{(m+1)}=\Delta U_{\alpha, j}^{(m)}+d U_{\alpha, j} \tag{3.11}
\end{equation*}
$$

for all nodes j where $(m+1)$ th iterates are not available.

$$
\begin{equation*}
\vec{F}^{\alpha^{(n+1)}} \simeq \vec{F}^{\alpha}\left(U^{n}+\Delta U^{(m+1)}\right) \tag{3.12}
\end{equation*}
$$

at nodes where $\Delta U^{(m+1)}$ is available. At other nodes where only $\Delta U^{(m)}$ is available,

$$
\begin{align*}
\vec{F}^{\alpha(n+1)} & \simeq \vec{F}^{\alpha}\left(U^{n}+\Delta U^{(m)}+d U\right) \\
& \simeq \vec{F}^{\alpha}\left(U^{n}+\Delta U^{(m)}\right)+\frac{\partial \vec{F}}{\partial U} d U \tag{3.13}
\end{align*}
$$

The Jacobian matrices $\frac{\partial \vec{F}}{\partial U}$ have inviscid and viscous parts $\frac{\partial \vec{F}^{I n v i s}}{\partial U}, \frac{\partial \vec{F}^{V i s}}{\partial U}$ respectively. The inviscid part is approximated by the spectral radii of the Jacobian matrices multiplied by identity matrices.

$$
\begin{equation*}
\frac{\partial \vec{F}^{I n v i s}}{\partial U} \longrightarrow(|u|+a,|v|+a,|w|+a) I=\overrightarrow{S R} \tag{3.14}
\end{equation*}
$$

where u, v, w are velocity components and a is the speed of sound. The viscous parts of the Jacobian matrices are not altered. For the iterative corrections $d U$'s we make the approximation,

$$
\begin{equation*}
d U_{\alpha, j} \simeq d U_{\alpha,(N D)} \tag{3.15}
\end{equation*}
$$

for all the nodes j at which the latest iterates are not available. $d U_{\alpha,(N D)}=d U_{\alpha, i}$ where i is the local index corresponding to the global node $N D$. With this approximation, we obtain explicit scalar expression for the iterative correction at the node $N D, d U_{\alpha,(N D)}$.

$$
\begin{equation*}
C d U_{\alpha, N D}=-\operatorname{Res} s_{\alpha, N D}^{(*)} \tag{3.16}
\end{equation*}
$$

where

$$
\begin{align*}
\operatorname{Res}_{\alpha, N D}^{(*)} & =\sum_{e} \frac{1}{\Delta t} \int_{\Omega^{e}}\left(\sum_{j=1}^{8} \Delta U_{\alpha, j}^{(*)} \Psi_{j}\right)^{e} \Psi_{(N D)}^{e} d V \tag{3.17}\\
& -\int_{\Omega^{e}} \vec{\nabla}^{e} \Psi_{(N D)}^{e} \cdot \vec{F}^{\alpha^{(\cdot)}} d V+\oint_{\partial \Omega^{e}} \Psi_{(N D)}^{e} \vec{F}^{\alpha^{(\cdot)}} \cdot \vec{n} d S
\end{align*}
$$

The superscript $\left(^{*}\right)$ corresponds to the iteration level (m) or ($m+1$) which ever is available at the nodes surrounding the node (ND).

$$
\begin{gather*}
C=\sum_{e}\left[\frac{1}{\Delta t} \int_{\Omega^{e}} \sum_{j} \Psi_{j}^{e} \Psi_{(N D)}^{e} I N D(j) d V\right] \\
+\sum_{e} \int_{\Omega^{e}}\left|\vec{\nabla} \Psi_{(N D)}^{e}\right| \cdot \overrightarrow{S R} \Psi_{(N D)}^{e} d V+\sum_{e}\left[\int_{\Omega^{e}} \vec{\nabla} \Psi_{(N D)}^{e} \cdot \sum_{j} I N D(j) \frac{\partial \vec{F}^{\alpha} V i s}{\partial U_{\alpha, j}} d V\right] \tag{3.18}\\
I N D(j)= \begin{cases}1 & , \text { for nodes } j \text { at iteration level } m \\
0 & , \text { for nodes } j \text { at iteration level } m+1\end{cases} \tag{3.19}
\end{gather*}
$$

The absolute value sign $|\cdot|$ in the middle integral indicates the absolute values of each of its components. In defining the coefficient C, contributions of surface integrals do not exist for all interior nodes and they are ignored for boundary nodes for simplicity. Approximations made in C to simplify the algorithm while preserving numerical stability for large Courant numbers, do not affect the solution which is obtained by driving Res function to zero. One iteration sweep starting from the initial node to the final node followed by a reverse sweep makes one symmetric sweep. Typically two symmetric sweeps per time step are sufficient for obtaining time asymptotic solutions.

3.3 Surface Flux Computation

Volume integrals over quadrilateral brick elements are computed by isoparametric transformations to a standard cube and by the use of two point Gaussian integration in each direction. The details of such computations are available in many books on finite element methods. Surface flux computation, however, is less known and the basic idea is outlined below.

Suppose ξ, η, ζ are the local coordinates and x, y, z are global coordinates and we wish to compute the surface flux on the surface $\zeta=1$ of an element.

$$
\left\{\begin{array}{c}
Q(\xi+\Delta \xi, \eta, \varsigma) \\
y(\xi+\Delta \xi, \eta, \varsigma) \\
z(\xi+\Delta \xi, \eta, \varsigma))
\end{array}\right.
$$

$$
\begin{align*}
& \oint_{\zeta=1} \vec{F} \cdot \vec{n} d S=\oint_{\zeta=1} \vec{F} \cdot d \vec{S} \tag{3.20}\\
& d \vec{S}=\vec{n} d S=\overrightarrow{O P} \times \overrightarrow{O Q} \\
&=\left(x_{\xi} \Delta \xi, y_{\xi} \Delta \xi, z_{\xi} \Delta \xi\right) \times\left(x_{\eta} \Delta \eta, y_{\eta} \Delta \eta, z_{\eta} \Delta \eta\right) \tag{3.21}\\
&=\left(\frac{\partial(y, z)}{\partial(\xi, \eta)}, \frac{\partial(z, x)}{\partial(\xi, \eta}, \frac{\partial(x, y)}{\partial(\xi, \eta)}\right) d \xi d \eta
\end{align*}
$$

$\oint_{\zeta=1} \vec{F} \cdot d \vec{S}$ can now be computed with Gaussian integration in ξ and η directions, at ζ $=1$. The values of \vec{F} and the surface Jacobians are evaluated at the Gaussian points on the surfaces of the elements, in contrast to the interior evaluation of volume integral computations.

3.4 Artificial Dissipation

Though the scheme is linearly stable, non-linear numerical instabilities could arise in strongly convective flows. Various artificial dissipation terms have been developed in the literature to suppress the numerical instabilities. The features we seek for artificial dissipation terms are that they only suppress numerical instabilities, they be smaller than the real viscous terms, they are of higher order than the truncation terms and finally they should be implementable in the code without excessive computation. For this purpose, we choose the adaptive artificial dissipation terms of third order similar to those developed by Jameson ${ }^{(1)}$ and others. These terms are included in the finite element code. A listing of the code is given in Appendix III.

4. Test Calculations

4.1 Couette Flow

The first test problem is the simulation of a one dimensional shear flow under pressure gradient. It has been computed with a uniform mesh of $2 \times 6 \times 2$ linear (eight-node) elements with the following boundary conditions.

$$
\begin{array}{r}
u=v=w=0 \text { at } y=0 \text { plane } \\
u=U_{0}, v=w=0 \text { at } y=6 \text { plane } \\
w=0 \text { at } z=0 \text { and } z=2 \text { plane } \\
v=0 \text { at } x=0 \text { and } x=2 \text { plane }
\end{array}
$$

A favorable pressure gradient of $\frac{\partial p}{\partial x}=-1$ is imposed. Fig. 4 shows the computed solution with wall velocity $U_{0}=3$. This problem has a simple exact solution as given in Schliching ${ }^{(6)}$. The computed solution agrees with the exact solution and the two are indistinguishable on the plot. For this simple problem, it takes very few time steps to reach a steady state solution starting from uniform flow conditions. The table of global and local correspondence of nodes, typical of finite element codes is also shown in Fig. 4.

4.2 Laminar Boundary Layer Over a Flat Plate

As another check case, laminar boundary layer over a flat plate has been computed with a stretched mesh of $4 \times 6 \times 1$ linear elements. In this problem the convective terms are of the same order as some of the viscous terms. The finite element solution for a Reynolds number of $R e=10^{4}$, along with the boundary conditions and the mesh used are shown in Fig. 5. The computed solution agrees qualitatively with the exact solution even with a very coarse mesh. A converged solution can also be obtained for $\operatorname{Re}=10^{5}$.

4.3 Flow Over an Airfoil

The locally implicit scheme for two dimensional Navier-Stokes equations with finite volume discretization is applied to compute airfoil flows. Calculations have been carried out with the code and comparisons have been made with experimental results. High Reynolds number viscous flows over an RAE 2822 airfoil have been computed from subsonic to transonic Mach numbers. An algebraic turbulence model developed by Baldwin and Lomax ${ }^{(5)}$ has been incorporated into the code. A body conforming C-grid (128×32) for an RAE 2822 airfoil is shown in Fig. 6. The mesh spacing normal to the airfoil is highly stretched to resolve turbulent viscous layer. The spacing ranges from .00005 to 3 chord lengths from inner to outer grid lines. Mach contours for turbulent flow at Mach number, $M=0.6$, angle of attack, $\alpha=2.57$ and Reynolds number, $R e=6.3 \times 10^{6}$ are shown in Fig. 7a. Fig. 7b shows the corresponding C_{p} plot where numerical results are compared
with experimental values published by Cook, McDonald and Firmin ${ }^{(8)}$. The agreement of numerical and experimental values for C_{p} is reasonable for a relatively coarse grid. Similar Mach contour and C_{p} plots are presented for transonic flow case with $M=0.725, \alpha=2.92$ and $R e=6.5 \times 10^{6}$ in Figs. 8 a and 8 b .

4.4 Flow in a Turn-around Duct

As a test for the 3-D finite element code, flow in an axisymmetric turnaround duct is computed at Mach number $=0.1$. The schematic sketch of the turnaround duct is shown in Fig. 9. The geometry used corresponds to a test rig at Rockwell International which is shown in Fig. 10. A relatively coarse grid of $8 \times 15 \times 2$ elements are chosen. Since the flow is axisymmetric, 3 sectional planes with 2 elements in the circumferential direction are chosen and flow is set to be the same in each of the planes in the boundary conditions. The grid in one of the constant-angle planes and the computed velocity vectors are shown in Fig. 11 and a more detailed view of the velocity vectors in the bend region are shown in Fig. 12. The flow features are qualitatively correct. But a finer grid computation is necessary for quantitative comparisons with experimental results and it will be carried out later.

5. References

1. Jameson, A., Baker, T. J., Weatherill, N. P., "Calculation of Inviscid Transonic Flow Over a Complete Aircraft", AIAA-86-0103, AIAA 24th Aerospace Sciences Meeting, January 1986.
2. Reddy, K. C., Nayani, S. N., "A Locally Implicit Scheme for Elliptic Partial Differential Equations", presented at the SSME/CFD Working Group Meeting, NASA Marshall Space Flight Center, April 8-11, 1986.
3. Reddy, K. C., Jacocks, J. L., "A Locally Implicit Scheme for the Euler Equations", Proceedings of the AIAA 8th Computational Fluid Dynamics Conference, Honolulu, June 1987.
4. Reddy, K. C., Reddy, J. N., Nayani, S. N., "Finite Element Solver for 3-D Compressible Viscous Flows", Interim Report of Contract No. NASA8-36555, September 1987, submitted to NASA/MSFC, Marshall Space Flight Center, AL by The University of Tennessee Space Institute, Tullahoma, TN.
5. Baldwin, B. S., Lomax, H., "Thin Layer Approximation and Algebraic Model for Seperated Turbulent Flows", AIAA Paper 78-257, January 1978.
6. Schlichting, H., Boundary Layer Theory, Pergamon Press, 1955.
7. Reddy, J. N., An Introduction to the Finite Element Method, McGraw-Hill Book Company, 1984.
8. Cook, P. H., McDonald, M. A., Firmin, M. C. P., "Airfoil RAE 2822 - Pressure Distributions, and Boundary Layer and Wake Measurements", AGARD-AR-138, 1979.

Fig. 1 Amplification Factor for Different Courant Numbers ($\bar{R}=R=C / 64$)

Fig. 3 Amplification Factor for Different
Dissipation Parameters ($C=10, \bar{R}=2 R$)

Fig. 4 Couette Flow

Fig. 5 Flat Plate Boundary Layer Flow

Fig. 6 Computational Grid for Viscous Flows RAE 2822 Airfoil - C grid (128×32)

Fig. 7a Mach Number Contours for Viscous Flow
RAE 2822 Airfoil $-M_{\infty}=0.6, \quad \alpha=2.57^{\circ}, \quad R e=6.3 \times 10^{6}$

Fig. 7b Numerical and Experimental Pressure Coefficients RAE 2822 Airfoil $-M_{\infty}=0.6, \alpha=2.57^{\circ}, R e=6.3 \times 10^{6}$

Fig. 8a Mach Number Contours for Viscous Flow RAE 2822 Airfoil $-M_{\infty}=0.7 .25, \alpha=2.92^{\circ}, \quad R e=6.5 \times 10^{6}$

Fig. 8b Numerical and Experimental Pressure Coefficients RAE 2822 Airfoil $-M_{\infty}=0.725, \alpha=2.92^{\circ}, R e=6.5 \times 10^{6}$

Fig. 9 Sketch of a Section of a Turnaround Duct

END VIEH OF
TURNAROUND BASE
0

Fig. 10 Geometry of a Test Rig for a Turnaround Duct

Fig. 11 Computational Grid and Velocity Vectors in a Cross Section of the Turnaround Duct

Fig. 12 Velocity Vectors in the Re Bend Region of the Turnaround Duct

APPENDIX I

The details of the Unsteady Compressible Navier-Stokes equations, which are used in the finite element code are given below. The equations are written in conservation form as

$$
\left\{\frac{\partial U}{\partial t}\right\}+\vec{\nabla} \cdot\left\{\vec{F}^{v}\right\}+\vec{\nabla} \cdot\left\{\vec{F}^{I}\right\}=\{0\}
$$

where

$$
\begin{gathered}
\{U\}=\left\{\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
\rho w \\
\rho \varepsilon
\end{array}\right\},\left\{\vec{F}^{v}\right\}=\left\{\begin{array}{c}
\overrightarrow{\mathbf{Q}} \\
-\underline{I} \\
-\tau \cdot \vec{v}+q
\end{array}\right\},\left\{\vec{F}^{I}\right\}=\left\{\begin{array}{c}
\rho \vec{v} \\
\rho \vec{v} \vec{v}+p \vec{I} \\
\vec{v}(\rho \varepsilon+p)
\end{array}\right\} \\
q=-k \vec{\nabla} T, \quad \tau_{i j}=-\frac{2}{3} \mu \delta_{i j} e_{k k}+2 \mu e_{i j} \\
p=(\gamma-1)\left[\rho \varepsilon-\frac{\rho}{2}\left(u^{2}+v^{2}+w^{2}\right)\right] \quad e_{i j}=\frac{1}{2}\left(u_{i, j}+v_{j, i}\right)
\end{gathered}
$$

The viscous and inviscid fluxes are given by

$$
\begin{aligned}
& \underset{(5 \times 3)}{\vec{F} v}=\left\{\begin{array}{ccc}
0 & 0 & 0 \\
\tau_{11} & \tau_{12} & \tau_{13} \\
\tau_{21} & \tau_{22} & \tau_{23} \\
\tau_{31} & \tau_{32} & \tau_{33} \\
D_{1} & D_{2} & D_{3}
\end{array}\right\}, \underset{(5 \times 3)}{\vec{F}^{I}}=\left\{\begin{array}{ccc}
\rho u & \rho v & \rho w \\
\rho u^{2}+p & \rho u v & \rho u w \\
\rho v u & \rho v^{2}+p & \rho v w \\
\rho w u & \rho w v & \rho w^{2}+p \\
u(\rho \varepsilon+p) & v(\rho \varepsilon+p) & w(\rho \varepsilon+p)
\end{array}\right\} \\
& p=(\gamma-1)\left[e-\frac{\rho}{2}\left(u^{2}+v^{2}+w^{2}\right)\right] \quad(p=\rho R T), \quad e=\rho \varepsilon
\end{aligned}
$$

- Sutherland's theory of viscosity:

$$
\mu=\mu_{0}\left(\frac{T}{T_{0}}\right)^{\frac{3}{2}} \quad\left(\frac{T_{0}+S_{1}}{T+S_{1}}\right)
$$

$$
S_{1}=\text { constant }\left(=110^{\circ} \mathrm{K} \text { for air }\right)
$$

- Properties of air at $20^{\circ} \mathrm{C}\left(=T_{0}\right)$ and atmospheric pressure ($p_{1}=1 \mathrm{~atm}$)

$$
\begin{aligned}
\rho_{0} & =1.205 \mathrm{Kg} / \mathrm{m}^{3} \\
p_{0} & =0.101325 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \\
T_{0} & =20{ }^{\circ} \mathrm{C}=293{ }^{\circ} \mathrm{K} \\
R & =\left(\frac{p_{0}}{\rho_{0} T_{0}}\right)=287\left(\frac{N \cdot m}{\mathrm{Kg} \cdot \mathrm{~K}} \text { or } \frac{\mathrm{m}^{2}}{S_{e c}-{ }^{\circ} \mathrm{K}}\right) \\
\mu_{0} & =17.9 \times 10^{-6}(\mathrm{~Pa}-\mathrm{Sec}) \\
k & =2.5 \times 10^{-2}\left(\mathrm{~W} / \mathrm{m}-{ }^{\circ} \mathrm{K}\right) \\
P_{r} & =0.72 \\
\alpha & =0.208 \\
\gamma & =1.402
\end{aligned}
$$

AUXILIARY RELATIONS

$$
\begin{aligned}
p & =\text { Pressure }\left(N / m^{2}\right) \\
T & =\text { Temperature }\left({ }^{\circ} K\right) \\
\gamma & =\frac{C_{p}}{C_{v}} \\
C_{p} & =\text { Specific heat at constant pressure } \\
C_{v} & =\text { Specific heat at constant volume } \\
R & =\text { Gas constant }\left(N \cdot m / K g-{ }^{\circ} K\right) \\
k & =\text { Thermal conductivity }\left(W / m-{ }^{\circ} K\right) \\
\mu_{0} & =\text { Reference viscosity }(P a-S e c .) \\
T_{0} & =\text { Reference temperature }\left({ }^{\circ} K\right) \\
\rho_{0} & =\text { Reference density }\left(K g / m^{3}\right) \\
p & =\rho R T \\
C_{p} & =\frac{\gamma R}{\gamma-1} \\
C_{v} & =\frac{R}{\gamma-1} \\
\alpha & =\text { Thermal diffusitivity }=\frac{k}{\rho C_{p}} \\
P_{r} & =\text { Prandtl number }=\frac{\mu C_{p}}{k} \\
M_{\infty} & =\text { Mach number }=\frac{U_{\infty}}{C_{\infty}}
\end{aligned}
$$

APPENDIX II

Details of Finite Element Equations

The details of finite element equations which approximate the Navier-Stokes equations are given below. In equation (3.8) the residual $\left\{\mathcal{R}^{e}\right\}$ has two parts. One is a volume integral, \mathcal{R}_{v} and the other is a surface integral, \mathcal{R}_{s}.

$$
\left\{\mathcal{R}^{e}\right\}=\left\{\mathcal{R}_{v}\right\}+\left\{\mathcal{R}_{s}\right\}
$$

where

$$
\begin{aligned}
& \left\{\mathcal{R}_{v}\right\}=-\int_{\Omega^{e}}[\vec{\nabla} \Psi]^{T}\{\vec{F}\} d V \\
& \left\{\mathcal{R}_{s}\right\}=\oint_{\partial \Omega^{e}}[\Psi]^{T}\left\{F_{n}\right\} d S
\end{aligned}
$$

The components of $\left\{\mathcal{R}_{v}\right\}$ for Ψ_{I} which corresponds to a node I are given by

$$
\begin{aligned}
\mathcal{R}_{v}^{1}=- & \int_{\Omega^{e}} \\
\mathcal{R}_{v}^{2}=-\int_{\Omega^{e}} & \left\{\left(\frac{\partial \Psi_{I}}{\partial x} U_{2}+\frac{\partial \Psi_{I}}{\partial y} U_{3}+\frac{\partial \Psi_{I}}{\partial z} U_{4}\right) d V\right. \\
& +\frac{\partial \Psi_{I}}{\partial x}\left[\frac{2}{3} \mu\left(-2 \frac{\partial}{\partial x}\left(\frac{U_{I}}{U_{1}}\right)+\frac{U_{2} U_{3}}{U_{1}} \frac{\partial \Psi_{I}}{\partial y}+\frac{\partial}{\partial y}\left(\frac{U_{2} U_{4}}{U_{1}} \frac{\partial \Psi_{I}}{\partial z}\right)+\frac{\partial}{\partial z}\left(\frac{U_{4}}{U_{1}}\right)\right)\right] \\
& +\frac{\partial \Psi_{I}}{\partial y}\left[-\mu\left(\frac{\partial}{\partial x}\left(\frac{U_{3}}{U_{1}}\right)+\frac{\partial}{\partial y}\left(\frac{U_{2}}{U_{1}}\right)\right)\right] \\
& \left.+\frac{\partial \Psi_{I}}{\partial z}\left[-\mu\left(\frac{\partial}{\partial z}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial x}\left(\frac{U_{4}}{U_{1}}\right)\right)\right]\right\} d V
\end{aligned}
$$

where

$$
\begin{aligned}
& \frac{\partial}{\partial x_{i}}\left(\frac{U_{\alpha}}{U_{1}}\right)=\frac{1}{U_{1}}\left(\frac{\partial U_{\alpha}}{\partial x_{i}}-\frac{U_{\alpha}}{U_{1}} \frac{\partial U_{1}}{\partial x_{i}}\right) \\
\mathcal{R}_{v}^{3}=-\int_{\Omega^{e}} & \left\{\frac{\partial \Psi_{I}}{\partial x} \cdot \frac{U_{2} U_{3}}{U_{1}}+\left(\frac{U_{3}^{2}}{U_{1}}+p\right) \frac{\partial \Psi_{I}}{\partial y}+\frac{U_{3} U_{4}}{U_{1}} \frac{\partial \Psi_{I}}{\partial z}\right. \\
+ & \frac{\partial \Psi_{I}}{\partial x}\left[-\mu \frac{\partial}{\partial y}\left(\frac{U_{2}}{U_{1}}\right)-\mu \frac{\partial}{\partial x}\left(\frac{U_{3}}{U_{1}}\right)\right] \\
+ & \frac{\partial \Psi_{I}}{\partial y}\left[\frac{2}{3} \mu\left(\frac{\partial}{\partial x}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial z}\left(\frac{U_{4}}{U_{1}}\right)-2 \frac{\partial}{\partial y}\left(\frac{U_{3}}{U_{1}}\right)\right)\right] \\
+ & \left.\frac{\partial \Psi_{I}}{\partial z}\left[-\mu \frac{\partial}{\partial z}\left(\frac{U_{3}}{U_{1}}\right)-\mu \frac{\partial}{\partial y}\left(\frac{U_{4}}{U_{1}}\right)\right]\right\} d V
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\mathcal{R}_{v}^{4}=-\int_{\Omega^{*}} & \left\{\frac{\partial \Psi_{I}}{\partial x} \frac{U_{2} U_{4}}{U_{1}}+\frac{\partial \Psi_{I}}{\partial y} \frac{U_{3} U_{4}}{U_{1}}+\left(\frac{U_{4}^{2}}{U_{1}}+p\right) \frac{\partial \Psi_{I}}{\partial z}\right. \\
& +\frac{\partial \Psi_{I}}{\partial x}\left[-\mu \frac{\partial}{\partial z}\left(\frac{U_{2}}{U_{1}}\right)-\mu \frac{\partial}{\partial x}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& +\frac{\partial \Psi_{I}}{\partial y}\left[-\mu \frac{\partial}{\partial z}\left(\frac{U_{2}}{U_{1}}\right)-\mu \frac{\partial}{\partial y}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& \left.+\frac{\partial \Psi_{I}}{\partial z}\left[\frac{2}{3} \mu\left(\frac{\partial}{\partial x}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial y}\left(\frac{U_{3}}{U_{1}}\right)-2 \frac{\partial}{\partial z}\left(\frac{U_{4}}{U_{1}}\right)\right)\right]\right\} d V \\
\mathcal{R}_{v}^{5}=-\int_{\Omega^{e}} & \left\{\frac{U_{2}}{U_{1}}\left(U_{5}+p\right) \frac{\partial \Psi_{I}}{\partial x}+\frac{U_{3}}{U_{1}}\left(U_{5}+p\right) \frac{\partial \Psi_{I}}{\partial y}+\frac{U_{4}}{U_{1}}\left(U_{5}+p\right) \frac{\partial \Psi_{I}}{\partial z}\right. \\
& -\frac{2}{3} \mu \frac{U_{2}}{U_{1}} \frac{\partial \Psi_{I}}{\partial x}\left[2 \frac{\partial}{\partial x}\left(\frac{U_{2}}{U_{1}}\right)-\frac{\partial}{\partial y}\left(\frac{U_{3}}{U_{1}}\right)-\frac{\partial}{\partial z}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& -\mu \frac{U_{3}}{U_{1}} \frac{\partial \Psi_{I}}{\partial x}\left[\frac{\partial}{\partial y}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial x}\left(\frac{U_{3}}{U_{1}}\right)\right] \\
& -\mu \frac{U_{4}}{U_{1}} \frac{\partial \Psi_{I}}{\partial x}\left[\frac{\partial}{\partial z}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial x}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& -\mu \frac{U_{2}}{U_{1}} \frac{\partial \Psi_{I}}{\partial y}\left[\frac{\partial}{\partial y}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial x}\left(\frac{U_{3}}{U_{1}}\right)\right] \\
& -\frac{2}{3} \mu \frac{U_{3}}{U_{1}} \frac{\partial \Psi_{I}}{\partial y}\left[2 \frac{\partial}{\partial y}\left(\frac{U_{3}}{U_{1}}\right)-\frac{\partial}{\partial x}\left(\frac{U_{2}}{U_{1}}\right)-\frac{\partial}{\partial z}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& -\mu \frac{U_{4}}{U_{1}} \frac{\partial \Psi_{I}}{\partial y}\left[\frac{\partial}{\partial z}\left(\frac{U_{3}}{U_{1}}\right)+\frac{\partial}{\partial y}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& -\mu \frac{U_{2}}{U_{1}} \frac{\partial \Psi_{I}}{\partial z}\left[\frac{\partial}{\partial z}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial x}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& -\mu \frac{U_{3}}{U_{1}} \frac{\partial \Psi_{I}}{\partial z}\left[\frac{\partial}{\partial z}\left(\frac{U_{3}}{U_{1}}\right)+\frac{\partial}{\partial y}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& -\frac{2}{3} \mu \frac{U_{4}}{U_{1}} \frac{\partial \Psi_{I}}{\partial z}\left[2 \frac{\partial}{\partial z}\left(\frac{U_{4}}{U_{1}}\right)-\frac{\partial}{\partial x}\left(\frac{U_{2}}{U_{1}}\right)-\frac{\partial}{\partial y}\left(\frac{U_{3}}{U_{1}}\right)\right] \\
& \left.-\hat{k}\left[\frac{\partial \Psi_{I}}{\partial x} \frac{\partial Q}{\partial x}+\frac{\partial \Psi_{I}}{\partial y} \frac{\partial Q}{\partial y}+\frac{\partial \Psi_{I}}{\partial z} \frac{\partial Q}{\partial z}\right]\right\} d V \\
U_{y}
\end{array}\right)
$$

where

$$
Q=\frac{1}{U_{1}}\left[U_{5}-\frac{1}{2 U_{1}}\left(U_{2}^{3}+U_{3}^{2}+U_{4}^{2}\right)\right]
$$

For defining the components of $\left\{\mathcal{R}_{s}\right\}$ we write

$$
\begin{aligned}
F_{n} d S & =\vec{F} \cdot \vec{n} d S=\vec{F} \cdot d \vec{S} \\
& =\vec{F} \cdot\left(\frac{\partial(y, z)}{\partial(\xi, \eta)}, \frac{\partial(z, x)}{\partial(\xi, \eta)}, \frac{\partial(x, y)}{\partial(\xi, \eta)}\right) d \xi d \eta
\end{aligned}
$$

as derived in equation (11) of the last report ${ }^{(3)}$, for a typical surface, say $\zeta=1$ of an element.

Denote

$$
\left(V_{1}, V_{2}, V_{3}\right)=\left(\frac{\partial(y, z)}{\partial(\xi, \eta)}, \frac{\partial(z, x)}{\partial(\xi, \eta)}, \frac{\partial(x, y)}{\partial(\xi, \eta)}\right)
$$

Now the components of $\left\{\mathcal{R}_{s}\right\}$ for Ψ_{I} which corresponds to a node I, for a typical surface $\zeta=1$ of an element can be written as

$$
\begin{aligned}
\mathcal{R}_{a}^{1}=\oint_{\partial \Omega} & \left(V_{1} U_{2}+V_{2} U_{3}+V_{3} U_{4}\right) \Psi_{I} d \xi d \eta \\
\mathcal{R}_{s}^{2}=\oint_{\partial \Omega^{2}} & \left\{\left(\frac{U_{2}^{2}}{U_{1}}+p\right) V_{1}+\frac{U_{2} U_{3}}{U_{1}} V_{2}+\frac{U_{2} U_{4}}{U_{1}} V_{3}\right. \\
& +V_{1}\left[\frac{2}{3} \mu\left(-2 \frac{\partial}{\partial x}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial y}\left(\frac{U_{3}}{U_{1}}\right)+\frac{\partial}{\partial z}\left(\frac{U_{4}}{U_{1}}\right)\right)\right] \\
& +V_{2}\left[-\mu\left(\frac{\partial}{\partial x}\left(\frac{U_{3}}{U_{1}}\right)+\frac{\partial}{\partial y}\left(\frac{U_{2}}{U_{1}}\right)\right)\right] \\
& \left.+V_{3}\left[-\mu\left(\frac{\partial}{\partial z}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial x}\left(\frac{U_{4}}{U_{1}}\right)\right)\right]\right\} \Psi_{I} d \xi d \eta
\end{aligned}
$$

where

$$
\begin{aligned}
& \frac{\partial}{\partial x_{i}}\left(\frac{U_{\alpha}}{U_{1}}\right)=\frac{1}{U_{1}}\left(\frac{\partial U_{\alpha}}{\partial x_{i}}-\frac{U_{\alpha}}{U_{1}} \frac{\partial U_{1}}{\partial x_{i}}\right) \\
& \mathcal{R}_{s}^{3}=\oint_{\partial \Omega^{c}}\left\{\frac{U_{2} U_{3}}{U_{1}} V_{1}+\left(\frac{U_{3}^{2}}{U_{1}}+p\right) V_{2}+\frac{U_{3} U_{4}}{U_{1}} V_{3}\right. \\
&+ V_{1}\left[-\mu \frac{\partial}{\partial y}\left(\frac{U_{2}}{U_{1}}\right)-\mu \frac{\partial}{\partial x}\left(\frac{U_{3}}{U_{1}}\right)\right] \\
&+ V_{2}\left[\frac{2}{3} \mu\left(\frac{\partial}{\partial x}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial z}\left(\frac{U_{4}}{U_{1}}\right)-2 \frac{\partial}{\partial y}\left(\frac{U_{3}}{U_{1}}\right)\right)\right] \\
&+\left.+V_{3}\left[-\mu \frac{\partial}{\partial z}\left(\frac{U_{3}}{U_{1}}\right)-\mu \frac{\partial}{\partial y}\left(\frac{U_{4}}{U_{1}}\right)\right]\right\} \Psi_{I} d \xi d \eta \\
& \mathcal{R}_{s}^{4}=\oint_{\partial \Omega^{c}}\left\{\frac{U_{2} U_{4}}{U_{1}} V_{1}+\frac{U_{3} U_{4}}{U_{1}} V_{2}+\left(\frac{U_{4}^{2}}{U_{1}}+p\right) V_{3}\right. \\
&+V_{1}\left[-\mu \frac{\partial}{\partial z}\left(\frac{U_{2}}{U_{1}}\right)-\mu \frac{\partial}{\partial x}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
&+ V_{2}\left[-\mu \frac{\partial}{\partial z}\left(\frac{U_{2}}{U_{1}}\right)-\mu \frac{\partial}{\partial y}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
&+\left.V_{3}\left[\frac{2}{3} \mu\left(\frac{\partial}{\partial x}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial y}\left(\frac{U_{3}}{U_{1}}\right)-2 \frac{\partial}{\partial z}\left(\frac{U_{4}}{U_{1}}\right)\right)\right]\right\} \Psi_{I} d \xi d \eta
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{R}_{s}^{5}=\oint_{\partial \Omega^{\prime}} & \left\{\frac{U_{2}}{U_{1}}\left(U_{5}+p\right) V_{1}+\frac{U_{3}}{U_{1}}\left(U_{5}+p\right) V_{2}+\frac{U_{4}}{U_{1}}\left(U_{5}+p\right) V_{3}\right. \\
& -\frac{2}{3} \mu \frac{U_{2}}{U_{1}} V_{1}\left[2 \frac{\partial}{\partial x}\left(\frac{U_{2}}{U_{1}}\right)-\frac{\partial}{\partial y}\left(\frac{U_{3}}{U_{1}}\right)-\frac{\partial}{\partial z}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& -\mu \frac{U_{3}}{U_{1}} V_{1}\left[\frac{\partial}{\partial y}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial x}\left(\frac{U_{3}}{U_{1}}\right)\right] \\
& -\mu \frac{U_{4}}{U_{1}} V_{1}\left[\frac{\partial}{\partial z}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial x}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& -\mu \frac{U_{2}}{U_{1}} V_{2}\left[\frac{\partial}{\partial y}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial x}\left(\frac{U_{3}}{U_{1}}\right)\right] \\
& -\frac{2}{3} \mu \frac{U_{3}}{U_{1}} V_{2}\left[2 \frac{\partial}{\partial y}\left(\frac{U_{3}}{U_{1}}\right)-\frac{\partial}{\partial x}\left(\frac{U_{2}}{U_{1}}\right)-\frac{\partial}{\partial z}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& -\mu \frac{U_{4}}{U_{1}} V_{2}\left[\frac{\partial}{\partial z}\left(\frac{U_{3}}{U_{1}}\right)+\frac{\partial}{\partial y}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& -\mu \frac{U_{2}}{U_{1}} V_{3}\left[\frac{\partial}{\partial z}\left(\frac{U_{2}}{U_{1}}\right)+\frac{\partial}{\partial x}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& -\mu \frac{U_{3}}{U_{1}} V_{3}\left[\frac{\partial}{\partial z}\left(\frac{U_{3}}{U_{1}}\right)+\frac{\partial}{\partial y}\left(\frac{U_{4}}{U_{1}}\right)\right] \\
& -\frac{2}{3} \mu \frac{U_{4}}{U_{1}} V_{3}\left[2 \frac{\partial}{\partial z}\left(\frac{U_{4}}{U_{1}}\right)-\frac{\partial}{\partial x}\left(\frac{U_{2}}{U_{1}}\right)-\frac{\partial}{\partial y}\left(\frac{U_{3}}{U_{1}}\right)\right] \\
& \left.-\hat{k}\left[\frac{\partial \Psi_{I}}{\partial x} \frac{\partial Q}{\partial x}+\frac{\partial \Psi_{I}}{\partial y} \frac{\partial Q}{\partial y}+\frac{\partial \Psi_{I}}{\partial z} \frac{\partial Q}{\partial z}\right]\right\} \Psi_{I} d \xi d \eta
\end{aligned}
$$

where

$$
Q=\frac{1}{U_{1}}\left[U_{5}-\frac{1}{2 U_{1}}\left(U_{2}^{3}+U_{3}^{2}+U_{4}^{2}\right)\right]
$$

Components of $\left\{\mathcal{R}_{s}\right\}$ for other surfaces of an element can be written similarly.
The coefficient C of equation (3.13) has volume integrals of the derivatives of viscous flux terms. The details of those integrals are given below.

Denote

$$
\int_{\Omega^{e}} \vec{\nabla}_{\Psi_{(N D)}^{e}}^{e} \cdot \frac{\partial \vec{F}^{\alpha} V i s}{\partial U_{\alpha, j}} d V=N_{(N D), j}^{\alpha}
$$

Subscript ($N D$) corresponds to the local index i of the global node $N D$ in element e. These integrals can be written as

$$
\begin{aligned}
& N_{i j}^{1}=0 \\
& N_{i j}^{2}=\mu \int_{\Omega^{e}}\left[\frac{4}{3} \frac{\partial \Psi_{i}}{\partial x} \frac{\partial}{\partial x}\left(\frac{\Psi_{j}}{U_{1}}\right)+\frac{\partial \Psi_{i}}{\partial y} \frac{\partial}{\partial y}\left(\frac{\Psi_{j}}{U_{1}}\right)+\frac{\partial \Psi_{i}}{\partial z} \frac{\partial}{\partial z}\left(\frac{\Psi_{j}}{U_{1}}\right)\right] d V
\end{aligned}
$$

where

$$
\frac{\partial}{\partial x}\left(\frac{\Psi_{j}}{U_{1}}\right)=\frac{1}{U_{1}}\left[\frac{\partial \Psi_{j}}{\partial x}-\Psi_{j} \cdot \frac{\partial U_{1}}{\partial x} \frac{1}{U_{1}}\right], \text { etc. }
$$

$$
\begin{aligned}
& N_{i j}^{3}=\mu \int_{\Omega^{e}}\left[\frac{\partial \Psi_{i}}{\partial x} \frac{\partial}{\partial x}\left(\frac{\Psi_{j}}{U_{1}}\right)+\frac{4}{3} \frac{\partial \Psi_{i}}{\partial y} \frac{\partial}{\partial y}\left(\frac{\Psi_{j}}{U_{1}}\right)+\frac{\partial \Psi_{i}}{\partial z} \frac{\partial}{\partial z}\left(\frac{\Psi_{j}}{U_{1}}\right)\right] d V \\
& N_{i j}^{4}=\mu \int_{\Omega^{e}}\left[\frac{\partial \Psi_{i}}{\partial x} \frac{\partial}{\partial x}\left(\frac{\Psi_{j}}{U_{1}}\right)+\frac{\partial \Psi_{i}}{\partial y} \frac{\partial}{\partial y}\left(\frac{\Psi_{j}}{U_{1}}\right)+\frac{4}{3} \frac{\partial \Psi_{i}}{\partial z} \frac{\partial}{\partial z}\left(\frac{\Psi_{j}}{U_{1}}\right)\right] d V \\
& N_{i j}^{5}=\hat{k} \int_{\Omega^{e}}\left[\frac{\partial \Psi_{i}}{\partial x} \frac{\partial}{\partial x}\left(\frac{\Psi_{j}}{U_{1}}\right)+\frac{\partial \Psi_{i}}{\partial y} \frac{\partial}{\partial y}\left(\frac{\Psi_{j}}{U_{1}}\right)+\frac{\partial \Psi_{i}}{\partial z} \frac{\partial}{\partial z}\left(\frac{\Psi_{j}}{U_{1}}\right)\right] d V
\end{aligned}
$$

APPENDIX III

```
FINITE-ELEMENT ANALYSIS OF FLOWS OF VISCOUS, COMPRESSIBLE
    FLUIDS IN THREE-DIMENSIONAL ENCLOSURES.
```

```
THIS PROGRAM IS DEVELOPED BY PROFESSORS J. N. REDDY OF
VIRGINIA POLYTECHNIC INSTITUTE AND K. C. REDDY OF THE
UNIVERSITY OF TENNESSEE SPACE INSTITUTE. THE PROGRAM IS
UNDER CONTINUOUS DEVELOPMENT DURING APRIL '86 TO PRESENT.
UNAUTHORIZED USE OF THE PROGRAM IS PROHIBITED.
DEVELOPED: APRIL 1986 - PRESENT
```

DESCRIPTION OF THE VARIABLES
CFL. THE COURANT-FRIEDRICHS-LEVY NUMBER
ELXYZ......ARRAY OF ELEMENT COORDINATES OF NODES
IBNDC.....ARRAY OF BOUNDARY NODES FOR DIFFERENT
VARIABLES
IORDER....ORDER OF THE EQUATIONS TO BE SOLVED
ISTART....RESTART INDEX (1=RESTART; 0=NEW START)
KELSUR....A TWO-DIMENSIONAL ARRAY THAT CONTAINS ELEMENT
NUMBER AND LOCAL NUMBER OF ITS SURFACE THAT
REQUIRES FLUX COMPUTATION:
$\operatorname{KELSUR}(I, 1)$ GLOBAL ELEMENT NUMBER OF THE
GLOBAL I-TH SURFACE
$\operatorname{KELSUR}(I, 2)=$ LOCAL SURFACE NUMBER OF THE
GLOBAL I-TH SURFACE
KNDSUR. . . A TWO-DIMENSIONAL (M BY 4) ARRAY WHICH CONTAINS
GLOBAL SURFACE NUMBERS SURROUNDING A NODE THAT
REQUIRES FLUX COMPUTATION. HERE M DENOTES THE
NUMBER OF NODES REQUIRING FLUX COMPUTATION:
$\operatorname{KNDSUR}(I, J)=G L O B A L$ NUMBER OF THE LOCAL J-TH
SURFACE ASSOCIATED WITH THE I-TH
BOUNDARY NODE THAT REQUIRES FLUX
COMPUTATION.
MEN. MAXIMUM NUMBER OF ELEMENTS AT A NODE
MNE.......MAXIMUM NUMBER OF NODES PER ELEMENT
NDF........NO. OF UNKNOWNS AT EACH NODE
NDSURF....ARRAY CONTAINING THE SEQUENTIAL NUMBER OF THE
BOUNDARY NODES WHICH REQUIRE FLUX COMPUTATION
OR CONTAINING ZERO:
NDSURF (I) $=0$, IF NO SURFACES AROUND THE I-TH
NODE REQUIRES FLUX COMPUTATION.
NDSURF (I) =J, IF THE I-TH NODE REQUIRES FLUX
COMPUTATION; HERE J DENOTES THE SEQUENTIAL
NUMBER OF NODE I IN THE LIST OF SURFACES THAT
REQUIRE FLUX COMPUTATION.
NELEM.....CONNECTIVITY MATRIX RELATING GLOBAI NODE TO

IMPLICIT REAL＊8（A－H，O－2）
PARAMETER（ $\mathrm{N} M \mathrm{M}=432, \mathrm{NEM}=240, \mathrm{MXE}=8, \mathrm{NGP}=2, \mathrm{NDIM}=3, \mathrm{NPE}=8, \mathrm{NDF}=5$ ， 1 NBS $=600$ ）
DIMENSION X（NNM），Y（NNM），Z（NNM），TITLE（20），UOLD（NNM，6），U（NNM，6）， NODES（NEM，NPE），NELEM（NNM，MXE），ELXYZ（NPE，NDIM），EO（NNM）， IORDER（NDF），DIS4（NNM，6），DC4（NNM），DELU（NPE，6），AMU（NNM）， GDSF（MXE，NPE，NGP ，NGP ，NGP，NDIM），GNORM（NDIM，NBS，NGP ，NGP）， SF（NPE，NGP，NGP，NGP），CNST（MXE，NGP，NGP，NGP），EMU（NPE）， VOLND（NNM），VOL（MXE），DSURF（NDIM，NPE，6，NGP，NGP）． ELU（NPE ，6），IEL（MXE），IBNDC（NNM，NDF），MINDX（NPE）， KELSUR（NBS ，2），KNDSUR（NBS ，4），NDSURF（NNM）
COMMON／GMT／SN22 $(8,8), \operatorname{SN} 33(8,8), \operatorname{SN} 44(8,8), \operatorname{SN} 55(8,8)$ COMMON／DTA／GAMA，AMUO，TEMPO，S1，R0，GPR，GAM1，CFL DATA IORDER／1，2，3，4，5／ DATA IN，IT／5，6／

$\operatorname{READ}(5,2000)$ TITLE
READ（5，＊）ISTART，NMSH，ITER，NTMSTP，CFL，RLXOUT，RIXIN
READ（5，＊）AMUO，TEMPO，S1，RO，GAMA，PR，AMACH，DNSTO
IF（NMSH．EQ．O）GOTO 5
CALL TADMSH（X，Y，Z，IBNDC，KELSUR，NODES，NSURF，NNM，NBS，NDF，NEM，NPE ）
C
GOTO 10
$5 \operatorname{READ}(5, *)((\operatorname{NODES}(I, J), J=1,8), I=1, \operatorname{NEM})$
$\operatorname{READ}(5, *)((\operatorname{NELEM}(I, J), J=1, M X E), I=1$, NNM $)$
READ（5，＊）（X（I），Y（I），Z（I），I＝1，NNM）
$\operatorname{READ}(5, *) \quad((U(I, J), J=1, N D F), I=1, N N M)$
READ（5，＊）NSURF
IF（NSURF．EQ．0）GOTO 10
$\operatorname{READ}(5, *) \quad((\operatorname{KELSUR}(I, J), J=1,2), I=1, \operatorname{NSURF})$
$\operatorname{READ}(5, \star) \quad((\operatorname{IBNDC}(I, J), J=1,5), I=1, \operatorname{NNM})$
E N D
O \mathbf{F}
THE
$\mathbf{I} \mathbf{N} \quad \mathbf{P} \quad \mathbf{U} \quad \mathbf{T}$
D A T A

OPEN THE OUTPUT FILE IN WHICH THE DATA IS TO BE STORED． THE NAME OF THE FILE IS＇TEST＇AND THE DATA IS STORED IN THE FORM OF BINARY NUMBERS．

10 CONTINUE
IREC $=30000$
OREN（UNIT＝08，FILE＝＇TEST＇，STATUS＝＇NEW＇，ACCESS＝＇DIRECT＇， \＃FORM＝＇UNFORMATTED＇，RECL＝IREC，ACTION＝＇READWRITE＇） IF（ISTART．EQ．1）THEN
OPEN（UNIT＝07，FILE＝＇RSTART＇，STATUS＝＇OID＇，ACCESS＝＇DIRECT＇，
＊FORM＝＇UNFORMATTED＇，RECL＝IREC，ACTION＝＇READWRITE＇）

GENERATE ARRAY 'NELEM' USING ARRAY 'NODES'
DO $40 \mathrm{I}=1$, NNM
DO $15 \mathrm{~L}=1$, MXE
$15 \operatorname{NELEM}(\mathrm{I}, \mathrm{L})=0$
ICNT=0
DO $30 \mathrm{~J}=1$, NEM
DO $20 \mathrm{~K}=1,8$
JK=NODES (J, K)
IF (I.NE.JK) GOTO 20
ICNT=ICNT+1
NELEM (I, ICNT) $=\mathrm{J}$
IF (ICNT.EQ.MXE) GOTO 40
GOTO 30
20 CONTINUE
30 CONTINUE
40 CONTINUE
DEFINE FIXED PARAMETERS
NGPT=NGP *NGP *NGP
GAM1 $=$ GAMA -1.0
GPR=GAMA $/$ PR
INITIALIZE THE FLOW FIELD
NINIT=0
IF (ISTART .EQ. O) THEN
CALL INTIAL (NDF, NNM, AMACH, AMUO, TEMPO,S1, RO, GAMA, PR, U, DNSTO)

CALL BCUPDT (NNM, GAMA, RO, TEMPO,U,DNSTO)
ELSE
$\operatorname{READ}(07, \operatorname{REC}=1)$ NINIT,U
END IF
NTMSTP $=$ NTMSTP + NINIT
NINIT $=$ NINIT +1
DO 50 II=1, 6
DO $50 \mathrm{JJ}=1$, NNM
$50 \mathrm{UOLD}(\mathrm{JJ}, \mathrm{II})=\mathrm{U}(\mathrm{JJ}, \mathrm{II})$
WRITE OUT INPUT DATA
WRITE (IT, 2600)
WRITE (IT, 2500)
WRITE (IT, 2600)
WRITE (IT, 3000) TITLE
WRITE (IT, 2100) AMU0, TEMP0, S1, R0, GAMA, PR, DNST0
WRITE (IT, 2200) ITER, NTMSTP, CFL, RLXOUT, RLXIN
WRITE (IT, 741) AMACH
741 FORMAT (10X,'FREE STREAM MACH NUMBER =', E10.4)
WRITE (IT, 3500)
DO $70 I=1$, NEM
$70 \operatorname{WRITE}(I T, 4000) \quad \mathrm{I},(\operatorname{NODES}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1,8)$
WRITE (IT, 4500)
DO $80 \mathrm{I}=1$, NNM
80 WRITE (IT, 4000) I, (NELEM (I, J), J=1,MXE)
WRITE (IT, 5500)
DO $90 \mathrm{I}=1$, NNM
90 WRITE(IT,5000) I,X(I),Y(I),Z(I)
WRITE (IT, 6100)
DO $100 \mathrm{I}=1, \mathrm{NNM}$

```
    100 WRITE(IT,6500)I,(U(I,J),J=1,5)
        WRITE(IT,6200)
        DO 110 I=1,NNM
    110 WRITE(IT,4000) I,(IBNDC(I,J),J=1,5)
    WRITE(IT,6300)
    WRITE (IT, 4000) ((KELSUR (I,J) , J=1, 2), I=1,NSURF)
    FIND MAX. NO. OF NODES PER EACH ELEMENT, COMPUTE ELEMENTAL
    VOLUMES, SHAPE FUNCTIONS AND THEIR GLOBAL DERIVATIVES, AND
    THE PRODUCT OF THE WEIGHTS AND THE DETERMINANT OF THE JACOBIAN
    MATRIX FOR EACH GAUSS POINT OF EACH ELEMENT.
    DO 155 ND=1,NNM
    COMPUTE THE NUMBER OF ELEMENTS AROUND NODE 'ND'
    DO 115 J=1,MXE
    IF (NELEM(ND,J) .EQ.0) GOTO 120
    115 CONTINUE
    J=MXE+1
    120 NUMEL=J-1
    INITIALIZE THE ARRAYS
    VOLND (ND) =0.0
    DC4 (ND) = 7*NUMEL
    COMPUTE ARRAY 'IEL' WHICH CONTAINS LOCAL NODE CORR TO NODE ND
    DO 150 N=1,NUMEL
    NEL=NELEM (ND,N)
    DO 140 I=1,NPE
    NI=NODES (NEL,I)
    IF (NI.EQ.ND)IEL (N)=I
    ELXYZ (I,1) =X (NI)
    ELXYZ (I,2) =Y (NI)
    140 ELXYZ (I, 3)=Z (NI)
    CALL GMETRY (NNM, NEM, MXE,N,NPE,NGP, ELXYZ, SF, GDSF, CNST,VOL,
        I
                        NDIM,IEL(N))
C
    150 VOLND (ND)=VOLND (ND) +VOL (N)
        WRITE(08, REC=ND) ND, CNST, GDSF, VOL,NUMEL,IEL,SN22,SN33,
        1
                                SN44,SN55
    PRINT*, ND, CNST(1, 1, 1,1), GDSF(1,1,1,1,1,1), VOL(1)
    155 CONTINUE
C* WRITE(IT,8000)(VOL (I),I=1,NEM)
    --------------------------------------------------------------------
    CALL BNDRY (NBS, NEM, NNM, NPE,NSURF, NODES, KELSUR,NDSURF, KNDSUR)
    CALL DSESUR (DSURF,NGP,NPE,NDIM)
    WRITE(IT,1000)
    WRITE (IT, 4000) ((KELSUR (I,J) ,J=1,2),I=1,NSURF)
    WRITE (IT,4000) (NDSURF (I),I=1,16)
    WRITE (IT, 4000) ((KNDSUR (I,J),J=1, 4),I=1,NSURF)
        DO 180 NDS=1,NSURF
        KE=KELSUR (NDS,1)
        K1=KELSUR (NDS, 2)
        DO 160 I=1,NPE
        NI=NODES (KE, I)
        ELXYZ (I, 1) =X (NI)
        ELXYZ (I, 2) =Y (NI)
        160 ELXYZ (I, 3)=Z (NI)
C
    180 CALL SURFGM(K1,NDS,ELXYY,DSURF,GNORM,NBS,NGP,NPE,NDIM)
```

-


```
        GCM=0.0
        GCKVIS=0.0
        GCKINV=0.0
        TCOEF=0.0
        TRES=0.0
        TFLX=0.0
        DO 300 N=1,NUMEL
        WRITE (IT, 4003)NUMEL,N
        NEL=NELEM(ND,N)
    TRANSFER GLOBAL INFORMATION TO ELEMENT 'NEL'
        DO 260 I=1,NPE
        MINDX(I) =0
        NI=NODES (NEL,I)
        EMU (I) =AMU (NI)
        IF (NINC.EQ.1 .AND. NI.GE.ND)MINDX(I)=1
        IF (NINC.EQ.-1 .AND. NI.LE.ND)MINDX(I)=1
        DO 260 II=1,6
        DELU (I,II)=U (NI,II) -UOLD (NI,II)
    260 ELU(I,II)=U(NI,II)
C
C
C
C
    *
        CALL COEFNT (IEL (N) , LEQ,N,NPE,NEM,NGP,ELU,SF,GDSF, CNST,VOL,RES,
                            CM, EMU, DELU,MINDX, CKINV,NDF,NDIM,NGPT, MXE)
        GOTO (271,272,273,274,275), LEQ
    271 GCKVIS=0.0
        GOTO }27
    272 DO 282 J1=1,NPE
    282 GCKVIS=GCKVIS+SN22(N,J1) *MINDX (J1)
        GOTO 276
    273 DO 283 JI=1,NPE
    283 GCKVIS=GCKVIS+SN33 (N,J1) *MINDX (J1)
    GOTO 276
    274 DO 284 J1=1,NPE
    284 GCKVIS=GCKVIS+SN44(N,J1) *MINDX (J1)
    GOTO 276
2 7 5 \text { DO 285 J1=1,NPE}
285 GCKVIS=GCKVIS+SN55 (N,J1) *MINDX (J1)
276 CONTINUE
    GCM=GCM+CM
    GCKINV=GCKINV+CKINV
300 TRES=TRES+RES
    GCKINV=GCKINV*8.0/NUMEL
    GCKVIS=GCKVIS*AMU (ND)/U (ND,1)
    IF (LEQ.EQ.5) GCKVIS=GCKVIS*GPR
    TCOEF=GCM+DABS (GCKINV) +GCKVIS
    TCOEF=TCOEF+DC4 (ND)
    IF (NDSURF (ND) .EQ.0) GOTO 340
    DO 335 J=1,4
    KG1=KNDSUR (NDSURF (ND),J)
    IF (KG1.EQ.0) GOTO 340
    K1=KELSUR (KG1,2)
    KL=KELSUR (KG1,1)
    DO 310 II=1,NPE
    IF (NELEM(ND,II) .EQ.KL) THEN
    NI=II
    GOTO }31
    ENDIF
310 CONTINUE
315 DO 330 I1=1,NPE
    EMU (I1) =AMU (NODES (KL,I1))
    DO }320\textrm{J}1=1,ND
```

```
    320 ELU(I1,J1)=U (NODES (KL,I1),J1)
    330 IF (NODES (KL,I1).EQ.ND) LI=I1
    C
    CALL FLUXES (LI, LEQ,NI,NPE,NGP,ELU,SF,GDSF,GNORM,K1, KG1,FLX,
    1
                EMU,MXE,NBS,NDF,NDIM)
    335 TFLX=TFLX+FLX
    340 CONTINUE
        IF (LEQ.NE.2)GOTO }35
        ERROR0=ERROR
        ERROR=DMAX1 (ERRORO,DABS (TRES+TFLX))
        IF (ERROR.GT.ERRORO)MAXND=ND
    350 CONTINUE
    C DIS4 (ND, LEQ) =0.0
        DU=-(TRES+TFLX-DIS4 (ND,LEQ))/TCOEF
        U(ND,LEQ) =U (ND,LEQ) +DU*RLXIN
        U (ND, 6) =GAM1* (U (ND, 5) -0.5* (U (ND, 2) *U (ND, 2) +U (ND, 3) *U (ND, 3) +
    * U(ND,4)*U(ND,4))/U(ND,1))
        WRITE (IT, 7500) LEQ,ND, TRES, TFLX, TCOEF,U (ND, LEQ)
    400 CONTINUE
        NTEMP=NSTART
        NSTART=NLAST
        NLAST=NTEMP
        INCR=-1* INCR
    500 CONTINUE
    * WRITE (6,9999) ND, (U (ND,LI), LI=1,6)
*9999 FORMAT(I5,6E15.7)
    600 CONTINUE
C
C END OF THE COMPUTATION FOR ALL NODES IN THE SWEEP
        NTEMP=NBEGIN
        NBEGIN=NEND
        NEND=NTEMP
        NINC=-1*NINC
C
C RESET THE VALUES AT INFLOW, OUTELOW AND RADIAL SYMMETRY PLANES
C
    CALL BCUPDT (NNM, GAMA,R0,TEMP0,U,DNSTO)
```



```
    700 CONTINUE
    C
C
    RELAKATION OF THE UPDATED SOLUTION AND COMPUTATION OF PRESSURE
        DO 720 II=1,5
        DO }720\mathrm{ JJ=1,NNM
        U(JJ,II) =UOLD (JJ,II) +RLXOUT* (U (JJ, II) -UOLD (JJ,II))
        720 UOLD (JJ,II) =U (JJ,II)
            DO 730 J1=1,NNM
            U(J1,6)=GAM1* (U (J1,5) -0.5* (U (J1, 2) *U(J1,2) +U(J1, 3) *U (J1, 3) +
        * U(J1,4) *U(J1,4))/U(J1,1))
        730 UOLD (J1,6)=U(J1,6)
C^ WRITE (IT,7000) ERROR,MAXND
        DO }750\textrm{I}=1,\textrm{NNM
    750 WRITE(IT, 6500) Ir (U (I,J), J=1,6)
    800 CONTINUE
        OPEN(UNIT=09,FILE=' ROLD' ,STATUS='NEW', ACCESS='DIRECT',
        * FORM=' UNFORMATTED',RECL=IREC,ACTION=' READWRI'TE')
        WRITE(09, REC=1)NTMSTP,U
C
    STOP
C
```

```
    1000 FORMAT (5X,'ARRAYS: KELSUR, NDSURF AND KNDSUR:',/)
    2000 FORMAT (20A4)
2100 FORMAT (/, 2X,'P R O B L E M D A T A:',/
        /,5X,'REFERENCE VISCOSITY (AMUO).............=', E12.4,
        /,5X,'REFERENCE TEMPERATURE (TEMP0).........=',E12.4,
        /,5X,'SUTHERLANDS CONSTANT (S1)..............=',E12.4,
        /,5X,'GAS CONSTANT (R0).......................=', E12.4,
        /,5X,'RATIO OF SPECIFIC HEATS (GAMA)........=',E12.4,
        /,5X,'PRANDTL NUMBER (PR) . . . . . .............. =', E12.4,
        /,5X,'REFERENCE DENSITY (DNST0).............=',E12.4,/)
        2200 FORMAT (/,2X,'P A R A M E T ER S O F A.MAPM R O X. :',l,
        2 /,5X,'NUMBER OF ITERATIONS PER TIME STEP....=',I3,
        3 /,5X,'NUMBER OF TIME STEPS (NTMSTP)..........=',I3,
        4 /,5X,'THE C F L NUMBER (CFL) ...................',', E12.4,
        5 /.5X,'OUTER RELAXATION PARAMETER (RLXOUT)...=',E12.4,
        6 /,5X,' INNER RELAXATION PARAMETER (RLXIN).....=',E12.4,
    2500 FORMAT (/,15X,'O U T P U T FROM PROOGRAM COMPR3D',/)
    2600 FORMAT (80('-'))
    3000 FORMAT (1H1,20A4)
    3500 FORMAT (/, 2X,'C ONNE C T I V I T Y M A T R I X:',/,
    2X,'(ELEMENT-TO-NODES)',/)
    4000 FORMAT (I5, 2X,11I5)
    4002 FORMAT (5X,'DO-LOOP 200 :',/,9I5)
    4 0 0 3 ~ F O R M A T ~ ( 5 X , ' D O - L O O P ~ 3 0 0 ~ : ' , 1 , 9 I 5 ) ~
    4 0 0 4 ~ F O R M A T ~ ( 5 X , ' D O - L O O P ~ 4 0 0 ~ : ' , / , 9 I 5 ) ~
    4005 FORMAT (5X,'DO-LOOP 500 :',1,9I5)
    4 0 0 6 ~ F O R M A T ~ ( 5 X , ' D O - L O O P ~ 6 0 0 ~ : ' , / . 9 I 5 ) ~
    4 0 0 7 \text { FORMAT (5X,'DO-LOOP 700 :',./,9I5)}
    4008 FORMAT (5X,'DO-LOOP 800 :',/,9I5)
    4500 FORMAT (/,2X,'C ONNECTTIV I T Y AR RAY :',/,
    * 2X,'(NODE-TO-ELEMENTS)'./)
    5000 FORMAT (I5,3(2X,E12.4))
    500 FORMAT (/, 2X,'(X,Y,Z)-C O O R D INNATES OF NODES:',/)
```



```
    6200 FORMAT (/,2X,'SPECIFIED NODAL QUANTITIES (=0, SPECIFIED):',/)
    6300 FORMAT (/,2X,'ELEMENT NUMBERS AND THEIR SURFACES THAT REQUIRE FLUX
    * COMPUTATION:',/)
6500 FORMAT (I5,6E12.4)
7000 FORMAT (/,5X,'MAX. ERROR =',E12.4,/,5X,'NODE NUMBER =',I5,/)
7500 FORMAT (/,5X,'LEQ =',I2,2X,'NODE =', I4,2X,'RESIDUAL=',E12.4,2X,
                            'FLUX=',E12.4,2X,'TCOEF=',E12.4,2X,'SOLN.=',E12.4)
8000 FORMAT (5X,'VOLUME OF EACH ELEMENT:',/,5X,6E12.4)
    END
SUBROUTINE BCUPDT (NNM, GAMA,R0,TEMPO,U,DNSTO)
C
    IMPLICIT REAL*8 (A-H,O-Z)
    COMMON/MSH/ARCANG,NX,NY,NZ,NX1,NX2,NX3
    DIMENSION U(NNM,6)
C
C
    DEFINE FIXED PARAMETERS
    ANX=0.0
    ANY=DSIN (0.5*ARCANG)
    ANZ=DCOS (0.5*ARCANG)
    GAM1=GAMA-1.0
    NXX=NX+1
    NYY=NY+1
    NZZ=NZ+1
C
    SET THE NORMAL VELOCITY TO ZERO AT THE MIDPLANE
    DO 30 IX=1,NXX
```

```
        DO 30 IY=1,NYY
        ND=(IX-1)*NYY*NZZ+NYY+IY
        U(ND, 3) =U (ND, 3) * (1.0-ANY*ANY) -U (ND, 4) *ANY*ANZ
        U(ND,4)=-U (ND, 3)*ANY*ANZ+U (ND, 4)* (1.0-ANZ*ANZ)
        U(ND,5)=U (ND, 6)/GAM1+0.5* (U (ND, 2)*U (ND, 2) +U (ND, 3) *U (ND, 3) +
            U(ND,4)*U(ND, 4))/U (ND, 1)
        C
        C RESET THE VALUES ON PARALLEL PLANES TO THOSE ON THE MIDPLANE
        C
        ND1=ND-NYY
        ND2=ND+NYY
        U(ND1,1) =U (ND,1)
        U(ND1,2) =U (ND,2)
        U (ND1, 3) =U (ND, 3) *ANZ-U (ND, 4) *ANY
        U (ND1,4)=U (ND, 3) *ANY+U (ND, 4) *ANZ
        U(ND1,5) =U (ND,5)
        U(ND1, 6) =U (ND,6)
        U(ND2,1) =U (ND,1)
        U(ND2, 2) =U (ND, 2)
        U(ND2, 3) =U (ND, 3) *ANZ+U (ND, 4) *ANY
        U(ND2,4) =-U (ND, 3) *ANY+U (ND, 4) *ANZ
        U(ND2,5) =U (ND,5)
        U(ND2,6) =U (ND,6)
        30 CONTINUE
    RESET THE VALUES AT OUTELOW BOUNDARY
        DO }40\mathrm{ IZ =1,NZZ
        DO 40 IY=1,NYY
        ND = IY + (IZ-1)*NYY + NX*NYY*NZZ
        U(ND,6) =DNST0*R0*TEMP0*0.98
        U(ND,5) =U (ND, 6)/GAM1+0.5* (U (ND, 2)*U (ND, 2) +U (ND, 3) *U (ND, 3) +
        CONTINUE
        SET CONSTANT TEMPERATURE ON THE WALLS
        DO 60 KD = 1, NX-1
        ND1 = (NYY*NZZ)*KD + 1
        DO 50 JZ = 1, NZZ
        ND = ND1 + (JZ-1)*NYY
        U(ND,6)=U (ND,5) *GAM1
        U(ND,1)=U (ND,6)/(R0*TEMP 0)
    C
        NN = ND + NY
        U(NN, 6) =U (NN, 5) *GAM1
        U(NN,1)=U (NN, 6) / (R0*TEMPO)
        50 CONTINUE
C
    60 CONTINUE
        RETURN
        END
```

 SUBROUTINE BNDRY (NBS, NEM, NNM, NPE,NSURF, NODES, KELSUR, NDSURF, KNDSUR)
 IMPLICIT REAL*8 (A-H, \(\mathrm{O}-\mathrm{Z}\))
 DIMENS ION NODES (NEM, NPE) , KELSUR (NBS, 2) , KNDSUR (NBS, 4), NDSURF (NNM),
 * K(4)
 NCOUNT=0
 DO \(10 \mathrm{I}=1\), NNM
 10 NDSURF (I) \(=0\)
 DO \(20 \mathrm{~L}=1,4\)
 DO \(20 \mathrm{~J}=1\), NSURF
 \(20 \operatorname{KNDSUR}(\mathrm{~J}, \mathrm{~L})=0\)
 C

```
    DO 150 I=1,NSURF
    KEL=KELSUR (I, 1)
    KSRF=KELSUR (I, 2)
    GOTO (30,40,50,60,70,80),KSRF
    30 K(1)=NODES (KEL, 1)
    K(2) =NODES (KEL, 4)
    K(3)=NODES (KEL, 8)
    K(4)=NODES (KEL,5)
    GOTO 90
40 K(1)=NODES (KEL, 2)
    K(2) =NODES (KEL, 3)
    K(3) =NODES (KEL, 7)
    K(4)=NODES (KEL, 6)
    GOTO 90
    50 K(1)=NODES (KEL,1)
    K(2)=NODES (KEL,5)
    K(3)=NODES (KEL, 6)
    K(4)=NODES (KEL, 2)
    GOTO 90
60 K(1)=NODES (KEL, 4)
    K(2)=NODES (KEL, 8)
    K(3)=NODES (KEL, 7)
    K(4)=NODES (KEL, 3)
    GOTO 90
70 K(1)=NODES (KEL, 1)
    K(2)=NODES (KEL, 2)
    K(3) =NODES (KEL, 3)
    K(4)=NODES (KEL, 4)
    GOTO 90
80 K(1)=NODES (KEL,5)
    K(2)=NODES (KEL, 6)
    K(3) =NODES (KEL,7)
    K(4) =NODES (KEL, 8)
90 CONTINUE
    DO 120 J=1,4
    IF (NDSURF (K (J)) .EQ.0) THEN
    NCOUNT=NCOUNT+1
    NDSURF (K (J))=NCOUNT
    KNDSUR (NCOUNT, 1) = I
    ELSE
    NC=NDSURF (K (J))
    DO 100 JJ=2,4
    IF (KNDSUR (NC,JJ) .EQ.0) THEN
    KNDSUR (NC,JJ) = I
    GOTO 110
    ENDIF
    100 CONTINUE
    110 CONTINUE
    ENDIF
    120 CONTINUE
    150 CONTINUE
    RETURN
    END
```

 SUBROUTINE COEFNT (IEL,LEQ,N,NPE,NEM,NGP,ELU, SF, GDSF, CNST, VOL, RES,
 CM, EMU, DELU, MINDX, CKINV, NDF, NDIM, NGPT, MXE)
 *
 THIS IS A VECTORIZED VERSION OF THE SUBROUTINE COEFNT
IMPLICIT REAL* 8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
DIMENSION SF (NPE, NGP, NGP, NGP) , CNST (MXE, NGP, NGP, NGP) , VOL (MXE) ,
2 GDSF (MXE,NPE,NGP,NGP,NGP,NDIM),ELU(NPE, 6), EMU (NPE),
$3 \quad \mathrm{U}(6,8), \operatorname{DU}(7,3,8), \operatorname{DU1}(7,3,8), \mathrm{U}(6,8), \operatorname{DELU}(\mathrm{NPE}, 6)$,
$4 \operatorname{III}(8), \operatorname{JJJ}(8), \operatorname{KKK}(8), F(8,8), \operatorname{DF}(9,9,3), M \operatorname{MDX}(N P E)$,
5 DQ1 (3), C (8), GMU (8)
COMMON/DTA/GAMA, AMU0, TEMPO, S1, R0, GPR, GAM1, CFL
$10 \mathrm{DF}(\mathrm{L}, \mathrm{I}, 3)=\operatorname{GDSF}(\mathrm{N}, \mathrm{I}, \operatorname{III}(\mathrm{L}), \operatorname{JJJ}(\mathrm{L}), \operatorname{KKK}(\mathrm{L}), 3)$
$\operatorname{TSPEED}=\operatorname{SPEED}+(\operatorname{DABS}(\operatorname{ELU}(\operatorname{IEL}, 2))+\operatorname{DABS}(\operatorname{ELU}(\operatorname{IEL}, 3))+\operatorname{DABS}(\operatorname{ELU}(\operatorname{IEL}, 4))) /$
* ELU (IEL, 1)
DT=CFL* (VOL (N) ** (1./3.))/TSPEED

EVALUATE THE SOLUTION AND ITS DERIVATIVES AT THE GAUSS POINT
DO $40 \mathrm{~J}=1, \mathrm{NDF}$
DO $40 \mathrm{~L}=1$, NGPT
SUM1 $=0.0$
SUM2 $=0.0$
SUM3 $=0.0$
SUM4 $=0.0$
DO $30 \quad \mathrm{I}=1$, NPE
$\operatorname{SUM1}=\operatorname{SUM} 1+D F(L, I, 1) \star E L U(I, J)$
$\operatorname{SUM} 2=\operatorname{SUM} 2+D F(L, I, 2) * E L U(I, J)$
SUM3=SUM3+DF (L, I, 3) *ELU (I, J)
$30 \operatorname{SUM} 4=\operatorname{SUM} 4+F(L, I) \star E L U(I, J)$
DU ($\mathrm{J}, 1, \mathrm{~L}$) = SUM1
DU $(J, 2, L)=$ SUM2
DU $(J, 3, L)=$ SUM3
$40 \mathrm{U}(\mathrm{J}, \mathrm{L})=$ SUM4
DO $50 \mathrm{~J}=2,4$
DO $50 \mathrm{~L}=1$, NGPT
$\mathrm{U} 1(\mathrm{~J}, \mathrm{~L})=\mathrm{U}(\mathrm{J}, \mathrm{L}) / \mathrm{U}(1, \mathrm{~L})$
$\operatorname{DU1}(\mathrm{J}, 1, L)=(\operatorname{DU}(J, 1, L)-U 1(J, L) * \operatorname{DU}(1,1, L))$
$\operatorname{DU1}(\mathrm{J}, 2, \mathrm{~L})=(\operatorname{DU}(\mathrm{J}, 2, \mathrm{~L})-\mathrm{U} 1(\mathrm{~J}, \mathrm{~L}) \star \operatorname{DU}(1,2, L))$
$50 \operatorname{DU1}(J, 3, L)=(D U(J, 3, L)-U 1(J, L) \star \operatorname{DU}(1,3, L))$
COMPUTE MASS MATRIX TIMES DELU TERM
DO $70 \mathrm{~J} 1=1$, NPE
DO $60 \mathrm{~L}=1$, NGPT
PROD $=F(L, I E L) * F(L, J 1) * C(L)$
$\mathrm{CM}=\mathrm{CM}+\mathrm{PROD} * \mathrm{MINDX}$ (J1)
60 FMAS $=$ FMAS + PROD *DELU ($\mathrm{J} 1, L E Q$)
70 CONTINUE

```
    C COMPUTE INVISCID COEFFICIENT FOR INNER ITERATION
            DO }90\mathrm{ L=1,NGPT
            CKINV=CKINV+(DABS (DF (L,IEL,1)* (DABS (U1 (2,L)) +SPEED))
            1 + DABS (DF (L,IEL,2)* (DABS (U1 (3,L)) +SPEED))
            2 + + DABS (DF (L,IEL, 3)*(DABS (U1 (4,L)) +SPEED)))*C(L)
        90 CONTINUE
    C
    C
    C
        100 DO 110 L=1,NGPT
            RES=RES-(DF (L,IEL, 1)*U(2,L) +DF (L,IEL, 2) *U (3,L)
            1 +DF (L, IEL, 3)*U(4,L))*C (L)
        110 CONTINUE
            GOTO 600
    C
        200 DO 240 L=1,NGPT
        SUM=0.0
        DO 220 I=1,NPE
    220 SUM=SUM+EMU (I) *F (L,I)
    240 GMU (L) =SUM
        DO 260 L=1,NGPT
        U22=U (2, L) *U (2, L)
        U23=U(2,L) *U(3,L)
        U24=U(2,L)*U(4,L)
        U33=U(3,L)*U(3,L)
        U44=U(4,L)*U(4,L)
        PRES=GAM1 * (U (5,L) -0.5* (U22+U33+U44)/U(1,L))
        AMU23=2.0*GMU (L) /3.0
            AMU43=2.0*AMU23
            RES=RES-C (L) * ( (U22+PRES*U (1, L) +AMU23* (-2.0*DU1 (2,1,L)
                    +DU1 (3,2,L) +DU1 (4,3,L)))*DE (L, IEL,1)
                        +(U23-GMU (L) * (DU1 (3,1,I) +DU1 (2,2,L))) *DF (I, IEL, 2)
                        +(U24-GMU (L) * (DU1 (4,1,L) +DU1 (2, 3,L))) *DF (I_, IEL, 3))/U (1,L)
    CONTINUE
    GOTO 600
C
    300 DO 340 L=1,NGPT
            SUM=0.0
            DO 320 I=1,NPE
    320 SUM=SUM+EMU (I) *F (I,I)
    340 GMU (L) =SUM
        DO 360 L=1,NGPT
        U22=U (2,L)*U (2, L)
        U23=U (2,L) *U (3,L)
        U33=U(3,L)*U(3,L)
        U34=U(3,L) *U(4,L)
        U44=U(4,L)*U(4,L)
        PRES=GAM1* (U (5,L) -0.5* (U22+U33+U44)/U(1,L))
        AMU23=2.0*GMU (L)/3.0
        AMU43=2.0*AMU23
        RES=RES-C (L) * ( (U33+PRES*U (1, L) +AMU23* (-2.0*DU1 (3,2,L)
        1 +DUl (4,3,L) +DUl (2,1,L)))*DF (L,IEL, 2)
        2 +(U34-GMU (L) * (DU1 (4,2,L) +DU1 (3,3,L)))*DF (L, IEL, 3)
    360 CONTINUE
        GOTO 600
C
    400 DO 440 L=1,NGPT
    SUM=0.0
    DO 420 I=1,NPE
    420 SUM=SUM+EMU (I) *F (L,I)
    440 GMU (L)=SUM
```

```
            DO 460 L=1,NGPT
            U22=U (2,L) *U(2,I)
            U24=U (2,L)*U(4,L)
            U33=U(3,L)*U(3,L)
            U34=U(3,L)*U(4,L)
            U44=U (4,L) *U(4,L)
            PRES=GAM1* (U (5,L) -0.5* (U22+U33+U44)/U(1,L))
            AMU23=2.0*GMU (L)/3.0
            AMU43=2.0*AMU23
            RES=RES-C (L) * ( U44 +PRES*U (1,L) +AMU23* (-2.0*DU1 (4, 3,L)
            1
                    +DU1 (2,1, L) +DU1 (3,2, L))) *DF (L, IEL, 3)
                    +(U24-GMU (L) * (DU1 (2,3,L) +DU1 (4,1, L))) *DF (L, IEL, 1)
                    +(U34-GMU (L) * (DU1 (3,3,L) +DU1 (4,2,L))) *DF (L, IEL, 2)) /U (1, L)
                    CONTINUE
                    GOTO }60
C
    500 DO 540 L=1,NGPT
            SUM=0.0
            DO 520 I=1,NPE
    520 SUM=SUM+EMU (I)*F (L,I)
    540 GMU (L) =SUM
            DO 560 L=1,NGPT
            U22=U (2, L) *U (2, L)
            U33=U (3,L)*U (3,L)
            U44=U(4,L)*U(4,L)
            PRES=GAM1* (U (5,L) -0.5* (U22+U33+U44)/U(1,L))
            AKH=GMU (L) *GPR
            AMU23=2.0*GMU (L) /3.0
            AMU43=2.0*AMU23
            DQ1 (1) =DU (5,1,L) -Ul (2, L) *DU (2,1, L) -U1 (3, L) *DU (3, 1, L)
            2 - U1 (4,L) *DU (4,1,L) +DU (1, 1,L)* (-U (5,L)/U (1, L)
            3 +U1 (2,L) *U1 (2,L) +U1 (3,L) *U1 (3,L) +U1 (4, L) *U1 (4, L))
            DQ1 (2) =DU (5, 2, L) -U1 (2,L) *DU (2, 2, L) -U1 (3,L) *DU (3, 2, L)
            2 -Ul (4,L) *DU (4,2,L) +DU(1, 2,L) * (-U (5,L) /U(1,L)
            3 +U1 (2,L) *U1 (2,L) +U1 (3,L) *U1 (3,L) +U1 (4,L) *U1 (4,L))
            DQ1 (3) =DU (5, 3, L) -U1 (2, L) *DU (2, 3,L) -Ul (3,L) *DU (3, 3,L)
            2 -U1(4,L)*DU (4,3,L) +DU (1,3,L) * (-U (5,L)/U (1,I)
            3+U1 (2,L) *U1 (2,L) +U1 (3,L) *U1 (3,L) +U1 (4,L) *U1 (4, L))
C
    RESI = (U (2,L)* (U (5,L) +PRES) -AMU23*U1 (2,L)* (2.0*DU1 (2,1,L)
                        -DU1 (3,2,L) - DU1 (4,3,L)) -GMU (L) * (U1 (3,L) * (DU1 (2, 2, L)
                        +\operatorname{DU1}(3,1,L)) +U1 (4,L)* (DU1 (2, 3,L) +DUl (4,1,L)))
                        -AKH*DQ1 (1))*DF (L,IEL, 1)
                            RES2 = (U (3,L)* (U (5,L) +PRES) -AMU23*U1 (3,L) * (2.0*DU1 (3,2,L)
                -DU1 (4,3,L) -DU1 (2, 1, L)) -GMU (L) * (U1 (4, L) * (DU1 (3, 3, L)
                        +DU1 (4,2,L)) +U1 (2,L) * (DU1 (3,1,L) +DU1 (2, 2,L)))
                        -AKH*DQ1 (2)) *DF (L, IEL, 2)
            RES3 = {U(4,L)* (U (5,L) +PRES) -AMU23*U1 (4,L)* (2.0*DU1 (4, 3,L)
            2-DU1 (2,1,L) -DU1 (3,2,L))-GMU (L) * (U1 (2,L) * (DU1 (4,1,L)
            3+DU1 (2,3,L)) +U1 (3,L) * (DU1 (4,2,L) +DU1 (3, 3, L)))
                        -AKH*DQ1 (3))*DF (L, IEL, 3)
            RES = RES - (RES1+RES2+RES3)*C(L)/U(1,L)
560 CONTINUE
600 CONTINUE
    RES=RES +FMAS/DT
    CM=CM/DT
    RETURN
    END
```

 SUBROUTINE DISPTN (NNM, NEM, MXE, X, Y, Z, U,DC4, NODES, NELEM, DIS4,
 * NPE,EO,VOLND)
 IMPLICIT REAL*8 (A-H,O-2)
    ```
            DIMENSION X(NNM),Y(NNM),Z(NNM),U(NNM, 6),NODES (NEM, 8),EO (NNM),
    C
            DATA KAPA2,KAPA4/0.1,0.01/
            DO 50 IE=1,6
            DO 40 ND=1,NNM
            SUME0=0.0
            DO 20 NE=1,MXE
            IF (NELEM(ND,NE) .EQ.0) GOTO }3
            NEL=NELEM(ND,NE)
            DO 20 NP=1,NPE
            NI=NODES (NEL,NP)
        20 SUME0=SUME 0+U (NI,IE) -U (ND,IE)
        NE=MXE+1
    30 CONTINUE
            DC4(ND)=7* (NE-1)
    40 DIS4 (ND,IE) =SUME0
    50 CONTINUE
        DO 60 ND=1,NNM
        DIS4 (ND,5) =DIS4 (ND, 5) +DIS4 (ND,6)
        60 DIS4 (ND, 6) =ABS (DIS4 (ND, 6))/U (ND, 6) *KAPA2
    COMPUTE THE FOURTH-ORDER DISSIPATION
    DO 150 IE=1,5
        DO 140 ND=1,NNM
        SUMDC=0.0
        E0 (ND) =0.0
        SUMD0=0.0
        ISW=1
        IF (DIS4(ND, 6).GT.KAPA4) ISW=0
        DO 120 NE=1,MXE
        NEL=NELEM (ND,NE)
        IF (NEL.EQ.0) GOTO }13
        DO }100\textrm{NP}=1,\textrm{NPE
        NI=NODES (NEL,NP)
        IF (NI.EQ.ND)GOTO }10
        XL=X(NI) -X (ND)
        YL=Y(NI)-Y(ND)
        ZL=Z (NI) - Z (ND)
        EDGE =DSQRT (XI*XI+YL*YL+ZL*ZL)
        EPSLN=(VOLND (ND) +VOLND (NI))*0.5/EDGE
        IF (IE.EQ.5) SUMDC=SUMDC+EPSLN* ((DC4 (ND) -1.0) *KAPA4*ISW+DIS4 (ND,6))
        SUMD 0=SUMD0-(DIS4 (NI,IE) -DIS4 (ND,IE))*EPSLN*KAPA4*ISW
100 CONTINUE
120 CONTINUE
130 CONTINUE
        IF (IE.EQ.5)DC4 (ND) =SUMDC
140 E0 (ND) =SUMD0
        DO 150 ND = 1,NNM
150 DIS4 (ND, IE) =EO (ND) +DIS4 (ND,IE) *DIS4 (ND, 6)
    RETURN
    END
SUBROUTINE DSFSUR（DSURF，NGP，NPE，NDIM）
    THIS SUBROUTINE EVALUATES THE DERIVATIVES OF THE SHAPE FUNCTIONS
    AT THE GAUSS POINTS OF THE SURFACES OF AN ELEMENT
    IMPLICIT REAL*8 (A-H,O-Z)
    DIMENSION XNODE (8, 3),XYZ (3),DSURF (NDIM,NPE, 6,NGP,NGP), GAUSS (2)
    DATA XNODE/-1.ODO, 2*1.0D0, 2*-1.0DO, 2*1.0DO, -1.ODO, 2*-1.ODO, 2*1.ODO
```

```
    1,2*-1.ODO,2*1.ODO,4*-1.0DO, 4*1.ODO/
```

 \(\operatorname{FCK}(A, B, C)=0.125 * A * B * C\)
 SQRT3=DSQRT (3.0D0)
 \(\operatorname{GAUSS}(1)=-1.0 D 0 / S Q R T 3\)
 \(\operatorname{GAUSS}(2)=-\operatorname{GAUSS}(1)\)
 DO \(80 \mathrm{Kl}=1,6\)
 DO 60 NGPI \(=1\), NGP
 DO 60 NGPK=1,NGP
 \(\operatorname{GOTO}(10,10,20,20,30,30), \mathrm{K} 1\)
 \(10 \mathrm{XYZ}(1)=(-1) \star \star \mathrm{K} 1\)
 \(\mathrm{XYZ}(2)=\) GAUSS (NGPI)
 XYZ (3) =GAUSS (NGPK)
 GOTO 40
 $20 \mathrm{XYZ}(2)=(-1) \star \star \mathrm{K} 1$
XYZ (3) = GAUSS (NGPI)
XYZ (1) =GAUSS (NGPK)
GOTO 40
$30 \mathrm{XYZ}(3)=(-1) \star \star \mathrm{KI}$
XYZ (1) =GAUSS (NGPI)
XYZ (2) =GAUSS (NGPK)
40 DO $50 \mathrm{I}=1$, NPE
$\operatorname{XNP} 1=\mathrm{XYZ}(1) * \operatorname{XNODE}(1,1)+1.0$
YNP $1=X Y Z(2) \star X N O D E(I, 2)+1.0$
2NP $1=\mathrm{XYZ}(3) \star \mathrm{XNODE}(\mathrm{I}, 3)+1.0$
$\operatorname{DSURF}(1, I, K 1, N G P I, N G P K)=F C K(X N O D E(I, 1), Y N P 1,2 N P 1)$
DSURF (2,I, K1, NGPI, NGPK) $=$ FCK (XNP 1, XNODE ($I, 2$), ZNP 1)
$50 \operatorname{DSURF}(3, I, K 1, N G P I, N G P K)=F C K(X N P 1, Y N P 1, X N O D E(I, 3))$
60 CONTINUE
80 CONTINUE
RETURN
END

SUBROUTINE FLUXES (IEL, LEQ, N, NPE, NGP, ELU, SF, GDSF, GNORM, K1, KG1, FLX, 1

ELU (I, J)ELEMENT SOLUTION VECTOR (J-TH COMPO. AT I-TH NODE)
SF (I,...).....SHAPE FUNCTION ASSOCIATED WITH THE I-TH NODE
GDSF ($\mathrm{N}, \mathrm{J}, \ldots \mathrm{I}$) . GLOBAL DERIVATIVE OF J-TH SHAPE FUNCTION WITH RESPECT TO X(I) COORDINATE OF THE N-TH ELEMENT GDINT (I,J) . . . INTERPOLATED GDSF ON SURFACE OF AN ELEMENT
SFINT (I)......INTERPOLATED SF ON SURFACE OF AN ELEMENT
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION SF (NPE,NGP, NGP, NGP) , GDSF (MXE, NPE, NGP, NGP, NGP, NDIM),
2
3
COMMON/DTA/GAMA, AMUO, TEMP0 $\operatorname{ELU}(\operatorname{NPE}, 6), \operatorname{UU}(6), \operatorname{U1}(6), \operatorname{DU1}(6,3), \operatorname{DQ1}(3), \operatorname{VECTR}(3)$
C
$K 0=(K 1+1) / 2$
$F L X=0.0$
SQRT3=DSQRT (3.ODO)
C
C
C
DO-LOOP ON GAUSS INTEGRATION BEGINS HERE
DO 200 JJ=1,NGP
DO $200 \mathrm{KK}=1$, NGP
$\mathrm{AMU}=0.0$
C
C
C
EVALUATE THE COMPONENTS OF THE SURFACE NORMAL AT THE GAUSS POINTS

IF (KO-2) 30, 40, 50
$30 \mathrm{NI}=1$
$\mathrm{NII}=2$
$\mathrm{NJ}=\mathrm{JJ}$
$\mathrm{NJI}=\mathrm{NJ}$
NK=KK
$\mathrm{NK} 1=\mathrm{NK}$
GOTO 60
$40 \mathrm{NJ}=1$
$\mathrm{NJ} 1=2$
$\mathrm{NK}=\mathrm{JJ}$
NKI=NK
$\mathrm{NI}=\mathrm{KK}$
$\mathrm{NI} 1=\mathrm{NI}$
GOTO 60
$50 \mathrm{NK}=1$
NK1 $=2$
$\mathrm{NI}=\mathrm{JJ}$
NII=NI
$\mathrm{NJ}=\mathrm{KK}$
$\mathrm{NJ} 1=\mathrm{NJ}$
C
60 DO $70 \mathrm{I}=1$, NPE
$\mathrm{F} 1=\mathrm{SF}(\mathrm{I}, \mathrm{NI}, \mathrm{NJ}, \mathrm{NK})$
F2 $=$ SF (I, NI1, NJ1, NK1)
$\operatorname{SFINT}(\mathrm{I})=((-1) \star * \mathrm{~K} 1 * \operatorname{SQRT} 3 *(\mathrm{~F} 2-\mathrm{F} 1)+\mathrm{F} 2+\mathrm{F} 1) / 2.0$
F3=GDSF (N, I, NI, NJ, NK, 1)
F4 =GDSF ($\mathrm{N}, \mathrm{I}, \mathrm{NI} 1, \mathrm{NJ} 1$, NK1, 1)
$\operatorname{GDINT}(\mathrm{I}, 1)=((-1) \star * \mathrm{~K} 1 * \operatorname{SQRT} 3 *(\mathrm{~F} 4-\mathrm{F} 3)+\mathrm{F} 4+\mathrm{F} 3) / 2.0$
F3=GDSE (N, I, NI, NJ, NK, 2)
$F 4=G D S F(N, I, N I 1, N J 1, N K 1,2)$
$\operatorname{GDINT}(I, 2)=((-1) * * K 1 * S Q R T 3 *(F 4-F 3)+F 4+F 3) / 2.0$
F3=GDSF (N, I, NI, NJ, NK, 3)
F4 $=$ GDSF ($\mathrm{N}, \mathrm{I}, \mathrm{NI} 1, \mathrm{NJ} 1, \mathrm{NK} 1,3$)
GDINT $(I, 3)=((-1) \star \star$ K1 *SQRT3* $(F 4-F 3)+F 4+F 3) / 2.0$
70 AMU=AMU + SFINT (I) *EMU (I)
DO $100 \mathrm{~J}=1$, NDF
SUM1 $=0.0$
SUM2 $=0.0$
SUM3 $=0.0$
SUM4 $=0.0$
DO $80 \mathrm{I}=1$, NPE
SUM1 $=$ SUM1 + GDINT $(I, 1) \star E L U(I, J)$
$\operatorname{SUM} 2=\operatorname{SUM} 2+\operatorname{GDINT}(I, 2) \star \operatorname{ELU}(I, J)$
$\operatorname{SUM} 3=\operatorname{SUM} 3+G D I N T(I, 3) * \operatorname{ELU}(I, J)$
80 SUM4=SUM4+SFINT (I) *ELU (I, J)
$\operatorname{DU}(J, 1)=$ SUM1
$\operatorname{DU}(J, 2)=$ SUM2
DU ($J, 3$) =SUM3
$100 \mathrm{U}(\mathrm{J})=$ SUM4
$\mathrm{Ul}(2)=\mathrm{U}(2) / \mathrm{U}(1)$
$\mathrm{U} 1(3)=\mathrm{U}(3) / \mathrm{U}(1)$
$\mathrm{U} 1(4)=\mathrm{U}(4) / \mathrm{U}(1)$
DO $110 \mathrm{~J}=2,4$
$\operatorname{DU1}(\mathrm{J}, 1)=(\operatorname{DU}(\mathrm{J}, 1)-\mathrm{U} 1(\mathrm{~J}) * \operatorname{DU}(1,1))$
$\operatorname{DU1}(J, 2)=(\operatorname{DU}(J, 2)-U 1(J) \star \operatorname{DU}(1,2))$
$110 \operatorname{DU1}(J, 3)=\operatorname{DUU}(J, 3)-\operatorname{Ul}(J) \star \operatorname{DU}(1,3))$
$\operatorname{VECTR}(1)=\operatorname{GNORM}(1, \mathrm{KG} 1, \mathrm{JJ}, \mathrm{KK})$
$\operatorname{VECTR}(2)=\operatorname{GNORM}(2, K G 1, J J, K K)$
$\operatorname{VECTR}(3)=\operatorname{GNORM}(3, K G 1, J J, K K)$
COMPUTE PRESSURE, TEMPERATURE, VISCOSITY USING THE SUTHERLAND'S LAW, AND THE DIFFUSION CONSTANT AT THE GAUSS POINTS
$\mathrm{U} 22=\mathrm{U}(2) \star \mathrm{U}(2)$
$\mathrm{U} 23=\mathrm{U}(2) \star \mathrm{U}(3)$

```
            U24=U(2)*U(4)
            U33=U(3)*U(3)
            U34=U(3)*U(4)
            U44=U (4)*U(4)
            PRES=GAM1* (U(5) -0.5* (U22+U33+U44)/U(1))
            AKH=AMUJ*GPR
            AMU23=2.0*AMU/3.0
            AMU43=2.0* AMU23
    C
    C
                    COMPUTE THE FLUX FOR EACH CONSERVATION EQUATION AT THE NODE
                            GOTO (140,150,160,170,180), LEQ
        140 FLX=FLX+(U (2)*VECTR (1) +U (3)*VECTR (2) +U (4)*VECTR (3))*SFINT (IEL)
            GOTO 200
        150 FLX=FLX+((U22+PRES*U(1) +AMU23* (-2.0*DU1 (2,1) +DU1 (3,2) +DU1 (4, 3))
            1 *VECTR(1) + (U23-AMU* (DU1 (3,1) +DU1 (2,2))) *VECTR (2)
                        * (U2 4-AMU* (DU1 (4,1) (DU1 (3,1) +DU1 (2,2))) *VECTRR (2)
            GOTO 200
        160 FLX=FLX+((U33+PRES*U(1) +AMU23* (-2.0*DU1 (3,2) +DU1 (4,3) +DU1 (2,1))
        1 *VECTR (2) +(U34-AMU* (DU1 (4,2) +DU1 (3,3)))*VECTR (3)
            GOTO 200
        170 FLX=FLX+((U44+PRES*U (1) +AMU23* (-2.0*DU1 (4,3) +DU1 (2,1) +DU1 (3,2)))
        1 *VECTR (3)+(U24-AMU* (DU1 (2,3) +DU1 (4,1))) *VECTR(1)
        GOTO 200(U34-AMU*(DU1 (3,3) +DU1 (4,2))) *VECTR (2)) *SFINT (IEL) /U (1)
        180 DQ1 (1) =DU (5,1) -U1 (2) *DU (2,1) -U1 (3) *DU (3,1) -U1 (4)*DU (4, 1)
        2 +DU(1,1)* (-U(5)/U(1) +U1 (2)*U1 (2) +U1 (3)*U1 (3) +U1 (4)*U1 (4)
            DQ1 (2) = DU (5,2) -U1 (2) *DU (2,2) -U1 (3) *DU (3,2) -U1 (4) *DU (4,2)
        2 +DU (1,2)* (-U (5)/U(1) +U1 (2)*U1 (2) +Ul (3) *U1 (3) +U1 (4) *U1 (4))
            DQ1 (3) =DU (5,3) -U1 (2) *DU (2,3) -U1 (3) *DU (3,3) -U1 (4) *DU (4,3)
            2+DU(1,3)*(-U(5)/U(1)+U1 (2)*U1 (2) +U1 (3)*U1 (3) +U1 (4)*U1 (4))
            FLX=FLX+((U)(2)* (U(5) +PRES) -AMU23*U1 (2)* (2.0*DU1 (2,1) -DU1 (3,2)
                -DU1 (4,3)) -AMU* (U1 (3) * (DU1 (2,2) +DU1 (3,1)) +U1 (4) * (DU1 (2, 3)
                        +DU1 (4,1))) -AKH*DQ1 (1))*VECTR (1)
                        +(U(3)* (U (5) +PRES) -AMU23*U1 (3)* (2.0*DU1 (3,2) -DU1 (4,3)
                        -DU1 (2,1)) -AMU* (U1 (4) * (DU1 (3,3) +DU1 (4,2)) +U1 (2) * (DU1 (3,1)
                        +DU1 (2, 2))) -AKH*DQ1 (2))*VECTR (2)
                        +(U(4)* (U (5) +PRES) - AMU23*U1 (4)* (2.0*DU1 (4,3) -DU1 (2,1)
                        -DU1 (3,2)) -AMU* (U1 (2) * (DU1 (4,1) +DU1 (2,3)) +U1 (3) * (DU1 (4,2)
    200 CONTINUE
C* WRITE (6,300) LEQ,FLX
C 300 FORMAT (5X,'LEQ =',I2,5X,'FLUX =',E12.4)
            RETURN
            END
```

SUBROUTINE GCSURF (GC, DSURF, ELXYZ,NGPI,NGPK,NGP, K1, NDIM, NPE)
GC(I,J)......DERIVATIVE OF X(I) W.R.T. XI(J)
DSURF (I, J, K. .DERIVATIVE OF PSI (J) W.R.T. XI (I), J=1, ...,NPE,
ON K-TH SURFACE OF MASTER ELEMENT
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION ELXYZ (NPE, NDIM) , DSURF (NDIM, NPE, 6, NGP, NGP) , GC (NDIM, NDIM)
DO $200 \mathrm{I}=1$, NDIM
DO $200 \mathrm{~K}=1$,NDIM
SUM=0.0
DO $100 \mathrm{~J}=1$, NPE
$100 \operatorname{SUM}=\operatorname{SUM}+\mathrm{DSURF}(\mathrm{K}, \mathrm{J}, \mathrm{KI}, \mathrm{NGPI}, \mathrm{NGPK}) \star \operatorname{ELXYZ}(\mathrm{J}, \mathrm{I})$
$200 \mathrm{GC}(\mathrm{I}, \mathrm{K})=$ SUM
RETURN
END

```
            SUBROUTINE GMETRY (NNM, NEM,MXE,N,NPE,NGP, ELXYZ,SF,GDSF, CNST,VOL,
                    1
                        NDIM, IEL)
    SF(I,II,JJ,KK)........I-TH SHAPE FUNCTION AT THE (II,JJ,KK)-TH
                                    GAUSS POINT
        GDSF (N,I,II,JJ,KK,J) ..GLOBAL DERIVATIVE OF I-TH SHAPE FUNCTION
                        WITH RESPECT TO THE X(J) COORDINATE
                        FOR ELEMENT N
    DSF (I,J) ...............LOCAL DERIVATIVE OF I-TH SHAPE FUNCTION
                            WITH RESPECT TO J-TH LOCAL COORDINATE
    ELXYZ (I,J) . ...........J-TH GLOBAL COORDINATE OF I-TH NODE
    XYZ(II)................II-TH GAUSSIAN POINT
    IMPLICIT REAL*8 (A-H,O-Z)
    DIMENSION SF (NPE,NGP,NGP,NGP), CNST (MXE,NGP,NGP,NGP),VOL (MXE),
                        GDSF (MXE,NPE,NGP,NGP,NGP,NDIM) , ELXYZ (NPE,NDIM) ,WT (2),
                        GAUSS (2),GJ (3, 3),XYZ (3),GJINV (3,3),\operatorname{DSF}(3,8),\operatorname{GDSFL}(3,8),
                        SFL (8)
                            COMMON/GMT/SN22 (8,8),\operatorname{SN33}(8,8),\operatorname{SN44}(8,8),\operatorname{SN55}(8,8)
    DATA NCOUNT/O/
    SQRT3=DSQRT (3.0D0)
    GAUSS (1)=-1.0D0/SQRT3
    GAUSS (2)=-GAUSS (1)
    WT (1)=1.ODO
    WT (2) =1. ODO
    DO-LOOP ON GAUSS INTEGRATION BEGINS HERE
    VOL (N) =0.0
    DO 50 J=1,NPE
    SN22 (N,J) =0.0
    SN33 (N,J) =0.0
    SN44 (N,J) =0.0
        SN55 (N,J) =0.0
    DO 200 II=1,NGP
    DO 200 JJJ=1,NGP
    DO 200 KK=1,NGP
    XYZ (1)=GAUSS (II)
    XYZ (2)=GAUSS (JJ)
    XYZ (3)=GAUSS (KK)
    CALL SHAPEL (XYZ,SFL,DSF,NDIM,NPE)
    CALL MATMUL (DSF,ELXYZ,GJ,NDIM,NPE,NDIM)
    CALL INVDET (GJ,GJINV,DET)
    CALL MATMUL (GJINV,DSF,GDSFL,NDIM,NDIM,NPE)
    CNST (N,II, JJ, KK) =DET*WT (II) *WT (JJ) *WT (KK)
    DO 150 I=1,NPE
    SN22 (N,I) =SN22 (N,I) + (4.0/3.0*GDSFL (1,IEL)*GDSFL (1, I) +
    1 Grgmen (2,IEL) *GDS
    SN33 (N,I) =SN33 (N,I) + (4.0/3.0*GDSFL (2,IEL) *GDSFL (2,I) +
    1 GDSFL (3,IEL)*GDSFL (3,I) +GDSFL (1,IEL)*GDSFL (1,I))*
    2 CNST (N,II,JJ,KK)
    SN44 (N,I) =SN44 (N,I) + (4.0/3.0*GDSFL (3,IEL) *GDSFL (3,I) +
    1 GDSFL (1,IEL) *GDSFL (1,I) +GDSFL (2,IEL) *GDSFL (2,I)) *
    SN55 (N I) CNST (N, II, JJ, KK)
    SN55 (N,I) =SN55 (N,I) + (GDSFL (1,IEL) *GDSFL (1,I) +
        GDSFL (2,IEL) * GDSFL}(2,I)+\operatorname{GDSFL}(3,IEL)*\operatorname{GDSFL}(3,I))*
    CNST (N,II, JJ, KK)
```

 IF (NCOUNT.GT.0) GOTO 100
 \(\mathrm{SF}(\mathrm{I}, \mathrm{II}, \mathrm{JJ}, \mathrm{KK})=\mathrm{SFL}(\mathrm{I})\)
 \(100 \operatorname{GDSF}(\mathrm{~N}, \mathrm{I}, \mathrm{II}, \mathrm{JJ}, \operatorname{KK}, 1)=\operatorname{GDSFL}(1, I)\)
 \(\operatorname{GDSF}(N, I, I I, J J, K K, 2)=\operatorname{GDSFL}(2, I)\)
 \(150 \operatorname{GDSF}(\mathrm{~N}, \mathrm{I}, \mathrm{II}, \mathrm{JJ}, \mathrm{KK}, 3)=\operatorname{GDSFL}(3, I)\)
 \(\operatorname{VOL}(\mathrm{N})=\mathrm{VOL}(\mathrm{N})+\mathrm{CNST}(\mathrm{N}, \mathrm{II}, \mathrm{JJ}, \mathrm{KK})\)
 200 CONTINUE
 NCOUNT \(=1\)
 RETURN
 END
 SUBROUTINE INTIAL (NDF, NNM, AMACH, AMUO, TEMP0, S1, R0, GAMA, PR, U, DNSTO)
 \(C\)
 C
C
C
C
C
C
C
C
C
C
C
$10 \mathrm{U}(\mathrm{I}, \mathrm{J})=0.0$
DO 20 IZ $=1, N Z Z$
DO $20 \quad I Y=2, N Y$
$N D=I Y+(I Z-1) \star N Y Y$
$\mathrm{U}(\mathrm{ND}, 2)=-\mathrm{DSQRT}($ GAMA *RO*TEMPO) *AMACH
IF (IY.EQ.2.OR.IY.EQ.B)U(ND, 2) $=\mathrm{U}(\mathrm{ND}, 2) * 0.1885$
IF (IY.EQ.3.OR.IY.EQ.7) U(ND, 2) $=U(N D, 2) * 0.5066$
$\operatorname{IF}(I Y . E Q .4 . O R$. IY.EQ.6) $U(N D, 2)=U(N D, 2) * 0.8393$
20 CONTINUE
INITIALIZE THE MID PIANE
DO 30 IX $=2, N X 1+1$
DO $30 \mathrm{IY}=2, \mathrm{NY}$
$\mathrm{ND}=(I X-1) \star N Y Y \star N Z Z+N Y Y+I Y$
NDI $=N Y Y+I Y$
$30 \mathrm{U}(\mathrm{ND}, 2)=\mathrm{U}(\mathrm{NDI}, 2)$
$P I=\operatorname{ATAN}(1.0) * 4.0$
DO 40 IX $=\mathrm{NX} 1+2, \mathrm{NX} 1+\mathrm{NX} 2$
DO 40 IY $=2, N Y$
$\mathrm{ND}=(I X-1) \star \mathrm{NYY}^{*} * \mathrm{NZZ}+\mathrm{NYY}+\mathrm{IY}$
$\mathrm{NDI}=\mathrm{NYY}+\mathrm{IY}$
$U(N D, 2)=U(N D I, 2) * \operatorname{COS}((I X-N X 1-1) \star P I / N X 2)$
$40 \mathrm{U}(\mathrm{ND}, 3)=-\mathrm{U}(\mathrm{NDI}, 2) \star \operatorname{SIN}((\mathrm{IX}-\mathrm{NX} 1-1) \star \mathrm{PI} / \mathrm{NX} 2)$
DO 45 IX $=\mathrm{NX} 1+\mathrm{NX} 2+1, \mathrm{NX}+1$
DO 45 IY $=2, N Y$
$N D=(I X-1) \star N Y Y * N Z Z+N Y Y+I Y$
$N D I=N Y Y+I Y$
$\mathrm{U}(\mathrm{ND}, 2)=-\mathrm{U}(N D I, 2)$
45 CONTINUE
○○の

50

```
    DO 50 ND=1,NNM
    U(ND,1) =DNST0
    U(ND,2) =U (ND,2) *U (ND,1)
    U(ND,6) =U (ND,1) *RO *TEMP O
    U(ND,5)=U (ND,6)/GAM1+0.5*U (ND, 2) *U (ND, 2) /U (ND,1)
        50 CONTINUE
            RETURN
            END
```

 SUBROUTINE INVDET (A, B,DET)
 IMPLICIT REAL*8 (\(\mathrm{A}-\mathrm{H}, \mathrm{O}-2\))
 DIMENSION \(A(3,3), B(3,3)\)
 C
 \(\mathrm{G}(\mathrm{Z} 1, \mathrm{z2}, \mathrm{z3}, \mathrm{Z4})=\mathrm{Z} 1 * 22-\mathrm{Z} 3 * \mathrm{Z} 4\)
 \(\mathrm{F}(\mathrm{Z} 1,22,23, \mathrm{Z} 4)=\mathrm{G}(\mathrm{Z} 1,22,23,24) / \mathrm{DET}\)
 \(C 1=G(A(2,2), A(3,3), A(2,3), A(3,2))\)
 \(C 2=G(A(2,3), A(3,1), A(2,1), A(3,3))\)
 \(C 3=G(A(2,1), A(3,2), A(2,2), A(3,1))\)
 \(\mathrm{DET}=\mathrm{A}(1,1) * \mathrm{C} 1+\mathrm{A}(1,2) * \mathrm{C} 2+\mathrm{A}(1,3) * \mathrm{C} 3\)
 \(B(1,1)=F(A(2,2), A(3,3), A(3,2), A(2,3))\)
 \(B(1,2)=-F(A(1,2), A(3,3), A(1,3), A(3,2))\)
 \(B(1,3)=F(A(1,2), A(2,3), A(1,3), A(2,2))\)
 \(B(2,1)=-F(A(2,1), A(3,3), A(2,3), A(3,1))\)
 \(B(2,2)=F(A(1,1), A(3,3), A(3,1), A(1,3))\)
 \(B(2,3)=-F(A(1,1), A(2,3), A(1,3), A(2,1))\)
 \(B(3,1)=F(A(2,1), A(3,2), A(3,1), A(2,2))\)
 \(B(3,2)=-F(A(1,1), A(3,2), A(1,2), A(3,1))\)
 \(B(3,3)=F(A(1,1), A(2,2), A(2,1), A(1,2))\)
 RETURN
 END
 SUBROUTINE MATMUL (A, B, C, M, N, L)
 IMPLICIT REAL*8 (\(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}\))
 DIMENSION \(A(M, N), B(N, L), C(M, L)\)
 DO \(20 \mathrm{I}=1, \mathrm{M}\)
 DO \(20 \mathrm{~J}=1, \mathrm{~L}\)
 SUM \(=0.0\)
 DO \(10 \mathrm{~K}=1, \mathrm{~N}\)
 \(\operatorname{SUM}=\operatorname{SUM}+\mathrm{A}(I, K) * B(K, J)\)
 $20 C(I, J)=S U M$
RETURN
END
$\begin{array}{cc}- & \\ & c \\ - & C \\ & C \\ & C \\ - & C\end{array}$
SUBROUTINE SHAPEL (XYZ, SF, DF, NDIM, NPE)
SHAPE FUNCTIONS FOR LINEAR, ISORARAMETRIC 3-DIMENSIONAL ELEMENT
THIS SUBROUTINE EVALUATES THE SHAPE FUNCTIONS AND THEIR FIRST
DERIVATIVES AT THE GAUSSIAN POINT XYZ
IMPLICIT REAL* 8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
DIMENSION XNODE (8,3), XYZ (NDIM), SF (NPE) , DF (NDIM, NPE)
DATA XNODE/-1.ODO, $2 \star 1.0 \mathrm{DO}, 2 \star-1.0 \mathrm{DO}, 2 \star 1$.ODO, -1 .ODO, $2 \star-1$. ODO, $2 \star 1$. ODO
1,2*-1.0D0, 2*1.0D0, 4*-1.0DO, 4*1.0DO/
C
$\operatorname{FCK}(A, B, C)=0.125 * A * B * C$
DO $20 \mathrm{I}=1$, NPE
$\mathrm{XNP} 1=\mathrm{XYZ}(1) \star \mathrm{XNODE}(1,1)+1.0$
YNP $1=X Y Z(2) * X N O D E(I, 2)+1.0$
$\mathrm{ZNP} 1=\mathrm{XYZ}(3) \star \mathrm{XNODE}(\mathrm{I}, 3)+1.0$
$-$
-
$\mathrm{SF}(\mathrm{I})=\mathrm{FCK}$ (XNP1, YNP1, 2NP1)
$\operatorname{DE}(1, I)=\operatorname{FCK}(X N O D E(I, 1), Y N P 1,2 N P 1)$
$\operatorname{DF}(2, I)=F C K(X N P 1, X N O D E(I, 2), 2 N P 1)$
$20 \mathrm{DF}(3, I)=\mathrm{FCK}(\mathrm{XNP} 1, \mathrm{YNP} 1, \mathrm{XNODE}(\mathrm{I}, 3))$
RETURN
END

```
C SUBM
C GNORM(I,J,K,L) ...II-TH COMPONENT OF 'NORMAI*DS' ON J-TH BOUNDARY
                                    SURFACE AT (K,L) GAUSS POINT
        IMPLICIT REAL*8(A-H,O-Z)
        * DIMENSION ELXYZ (NPE,NDIM),DSURF(NDIM,NPE,6,NGP,NGP),GC (3,3),
        * GNORM (NDIM,NBS,NGP,NGP)
    C
        K0=(KI+1)/2
        K2=K0+1
        IF (K2.EQ 4 4)K2=1
        K3=K2+1
        IF (K2.EQ.3) K3=1
        DO 200 NGPI=1,NGP
        DO 200 NGPK=1,NGP
    C
        CALL GCSURF (GC,DSURF,ELXYZ,NGPI,NGPK,NGP, K1,NDIM,NPE)
        DO 100 I=1,NDIM
        I1=I+1
        IF(I1.EQ.4)II=1
        I2=I1+1
        IF(I1.EQ.3) I2=1
        100 GNORM (I,KG1,NGPI,NGPK) = (GC (I1,K2) *GC (I2,K3) -GC (I1, K3)*GC (I2,K2))
        1 *(-1)**K1
    200 CONTINUE
        RETURN
        END
        * SUBROUTINE TADMSH(X,Y,Z, IBNDC, KELSUR,NOD,NSURF,NNM, NBS,NDF,NEM,
*
*********************************************************************************
MESH GENERATOR FOR TURN AROUND DUCT.
    PURPOSE : TO GENERATE A THREE DIMENSIONAL MESH FOR A TURN AROUND
        DUCT. THE ELEMENT LIBRARY HAS THREE TYPES OF ELEMENTS
        VIZ. 8-NODED, }20\mathrm{ NODED, AND 27 NODED ERICK ELEMENTS. DUCT. THE ELEMENT LIBRARY HAS THREE TYPES OF ELEMENTS VIZ. 8-NODED, 20 NODED, AND 27 NODED ERICK ELEMENTS.
```

 FACE 5 (BACK)

FACE 3 --

FACE 5 (BACK)


```
LIST OF VARIABLES :
```

| NX1 | $=$ NUMBER OF DIVISIONS IN FLOW DIRN. IN PART 1 (INLET) |
| :---: | :---: |
| NX2 | $=$ NUMBER OF DIVISIONS IN FLOW DIRN. IN PART 2 (CURVE) |
| NX3 | $=$ NUMBER OF DIVISIONS IN FLOW DIRN. IN PART 3 (OUTLET) |
| NY | = NUMBER OF DIVISIONS IN RADIAL DIRECTION: |
| N2 | $=$ NUMBER OF DIVISIONS IN Z-DIRECTION: |
| NPE | $=$ NODES PER ELEMENT. (8 OR. 20 OR 27) |
| NOD (NNM, NPE) | = CONNECTIVITY MATRIX |
| IEL | $=$ ELEMENT TYPE ($1 * \operatorname{LINEAR}(8 \mathrm{NODED})$; $2=$ QUADRATIC) |
| R1 | $=$ INNER RADIUS OF THE CURVE. |
| R2 | = OUTER RADIUS OF THE CURVE. |
| X 0 | $=\mathrm{X}-\mathrm{COORDINARE}$ OF FIRST NODE IN $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ PLANE. |
| Y0 | $=Y-C O O R D I N A R E$ OF FIRST NODE IN $X-Y-Z$ PLANE. |
| Z0 | $=2$ - COORDINATE OF FIRST NODE IN X-Y-Z PLANE |
| X (NNM) | $=$ ARRAY CONTAINING X-COORDINATES OF NODES. |
| Y (NNM) | $=$ ARRAY CONTAINING Y-COORDINATES OF NODES. |
| Z (NNM) | $=$ ARRAY CONTAINING Z-COORDINATES OF NODES. |

IMPLICIT REAL*8 (A-H, O-Z)
COMMON/MSH/ARCANG,NX,NY,NZ,NX1,NX2,NX3
DIMENSION DX1 (10), DX3(10), DY(20),DZ (5), X(NNM), Y(NNM), Z (NNM),
\# IBNDC (NNM, NDF), KELSUR (NBS , 2), NOD (NEM, NPE)
READ (5, *) NX1, NX2, NX3, NY, N2, IEL, NPE, R1, R2, X0, Y0, Z0, ARCANG

COMPUTE THE NUMBER OF ELEMENTS AND NODES IN THE MESH:
$P I=3.141592654$
NELM $=(N X 1+N X 2+N X 3) * N Y * N Z$
NXX1 $=$ IEL*NX1
NXX3 $=$ IEL*NX3
NYY $=$ IEL*NY
$\mathrm{NZZ}=\mathrm{IEL} * N Z$
IF (ZO . LE . 1.OE-10) THEN
$\mathrm{PHI}=0.0 \mathrm{DO}$
ELSE
PHI $=\operatorname{ATAN}(Z 0 / X 0)$
END IF
ARCANG $=$ ARCANG*PI/180
ANGINC $=$ ARCANG/NZZ

* $\quad \mathrm{RZ}=\operatorname{DSQRT}(Y 0 * Y 0+Z 0 * Z 0)$
$\mathrm{RZ}=\mathrm{YO}$
$\operatorname{READ}(5, *) \quad(\operatorname{DX1}(I), I=1, \operatorname{NXX} 1)$
$\operatorname{READ}(5, *)$ (DX3 (I), $I=1, N X X 3)$
$\operatorname{READ}(5, *)(D Y(I), I=1, N Y Y)$
NXX1 $=I E L \star N X 1+1$
NXX2 $=$ IEL*NX2
NXX3 $=$ IEL*NX3
$N Y Y=I E L \star N Y+1$
$N Z Z=I E L \star N Z+1$
IF (NPE .EQ. 20) THEN
END IE

```
```

```
                            NDS = NYY* ((NX1 + NX2 + NX3 + 1)*(NZ+1)) +
```

```
                            NDS = NYY* ((NX1 + NX2 + NX3 + 1)*(NZ+1)) +
                        (NY+1)* ((NX1+NX2+NX3+1) + (NZ+1)*(NX1+NX2+NX3))
                        (NY+1)* ((NX1+NX2+NX3+1) + (NZ+1)*(NX1+NX2+NX3))
                            NDS = NYY* (NXX1 + NXX2 + NXX3) *NZZ
                            NDS = NYY* (NXX1 + NXX2 + NXX3) *NZZ
```

ELSE

```
ELSE
IF (NDS.NE.NNM .OR. NEM.NE.NELM) THEN
WRITE (6,999) NNM, NDS,NEM, NELM
STOP
ENDIF
NTX = IEL*NX1 + 1
NTXX = IEL*NX2
NTXXX = IEL*NX3
NTXT = NTX + NTXX
NTXTT = NTXT + NTXXX
COMPUTE THE NODAL COORDINATES IN SECTION 1 (STRAIGHT INLET)
NTY = IEL*NY + 1
NTZ = IEL*NZ + 1
NY1 = (IEL-1)*NY + 1
IIX = 0
L = 0
DO 1050 IX = 1, NTX
        IF (NPE .EQ. 20) THEN
            MODY = MOD (IX, 2)
        ELSE
            MODY = 1
        END IF
        ZC=20
        ANGLE = PHI
        IF (MODY .EQ. 1) THEN
        IF (NPE .EQ. 20) THEN
            I = (NYY* (NZ+1) + (NY+1)* (NZZ))*IIX
        ELSE
            I = NYY* (IX - 1)*NZZ
        END IF
        DO 1020 IZ = 1, NTZ
                IF(NPE .EQ. 20) THEN
                    MODZ = MOD (IZ,2)
                ELSE
                    MODZ = 1
                END IF
                IF(MODZ .EQ. 1) THEN
                I = I + 1
                X(I) = X0
                Y(I) = RZ*COS (ANGLE)
                Z(I) = RZ*SIN(ANGLE)
                    DO 1000 IY = 1, NTY-1
                    I = I + 1
                    X(I) = X0
                    Y(I) = (Y(I-1) + DY(IY))*COS (ANGLE)
                    Z(I) = (Y(I-1) + DY(IY))*SIN(ANGLE)
                    CONTINUE
                ELSE
                        I = I + 1
                        X(I) = X0
                        Y(I) = YO*COS(ANGLE)
```

```
                                    Z(I) = ZC*SIN(ANGLE)
                                    DO 1010 IY = 1, (NTY-NY1)
                                    I = I + 1
                                    K=2*IY - 1
                                    X(I) = XO
                                    Y(I) = (RZ + DY (K) + DY (K+1))*COS (ANGLE)
                                    Z(I) = (RZ + DY(K) + DY (K+1))*SIN(ANGLE)
                                    CONTINUE
                            END IF
                            IF(IZ .LT. NTZ) ANGLE = ANGLE + ANGINC
        CONTINUE
        IIX = IIX + 1
            ELSE
        DO 1040 IZ = 1, (NZ+1)
            I = I + I
            M=2*IZ - 1
            X(I) = X0
            Y(I) = RZ*COS (ANGLE)
            Z(I) = RZ*SIN(ANGLE)
            DO 1030 IY = 1, (NTY-NY1)
                    I=I + I
                K=2*IX - 1
                X(I) = X0
                Y(I) = (RZ + DY(K) + DY(K+1))*COS (ANGLE)
                Z(I)=(RZ + DY(K) + DY(K+1))*SIN(ANGLE)
            CONTINUE
            ANGLE = ANGLE + ANGINC
                            CONTINUE
                            END IF
                            IF (IX .LT. NTX) X0 = X0 - DX1 (IX)
                                    COMPUTE THE NODAL COORDINATES IN THE CURVED SECTION:
    NXPT1 = NTX + 1
    THINC = PI/NXX2
    THETA = PI + THINC
    YC = Y0 + R2
    DO 1110 IX = NXPT1, NTXT
    IF (NPE .EQ. 20) THEN
            MODY = MOD (IX,2)
            ELSE
            MODY = 1
    END IF
    ZC=20
    ANGLE = PHI
    IF (MODY .EQ. 1) THEN
        DO 1080 IZ = 1, NTZ
                IF(NPE .EQ. 20) THEN
                    MODZ = MOD (IZ,2)
                ELSE
                    MODZ = 1
                END IF
                IF(MODZ .EQ. 1) THEN
                    I = I + 1
```

```
X(I) = X0 + R2*SIN(THETA)
Y(I) = (YC + R2*COS (THETA))*COS (ANGLE)
Z(I) = (YC + R2*COS (THETA))*SIN(ANGLE)
DYY = 0.0DO
DO 1060 IY = 1, NTY-1
        I = I + I
        DYY = DYY + DY(IY)
        X(I) = XO + (R2 - DYY)*SIN (THETA)
        Y(I) = (YC+(R2-DYY)*COS (THETA))*COS (ANGLE)
        Z(I) = (YC+ (R2-DYY)*COS (THETA))*SIN (ANGLE)
```

CONTINUE
ELSE

```
I = I + 1
X(I) = X0 + R2*SIN(THETA)
Y(I) = (YC + R2*COS (THETA))*COS (ANGLE)
Z(I) = (YC + R2*COS (THETA))*SIN (ANGLE)
DYY = 0.ODO
DO 1070 IY = 1, (NTY-NY1)
            I = I + 1
            K=2*IY-1
            DYY = DYY + DY(K) + DY(K+1)
            X(I) = XO + (R2 - DYY)*SIN(THETA)
            Y(I) = (YC+ (R2-DYY)*COS (THETA))*COS (ANGLE)
            Z(I) = (YC+(R2-DYY)*COS (THETA))*COS (ANGLE)
                CONTINUE
```

 END IF
 IF (IZ .LT. NTZ \()\) ANGLE \(=\) ANGLE + ANGINC
 CONTINUE
 \(\operatorname{IIX}=I I X+1\)
 ELSE
DO $1100 \mathrm{IZ}=1,(\mathrm{NZ}+1)$
$I=I+1$
$M=2 * I Z-1$
$X(I)=X 0+R 2 * S I N(T H E T A)$
$Y(I)=(Y C+R 2 * \operatorname{COS}(T H E T A)) * \operatorname{COS}($ ANGLE $)$
$Z(I)=(Y C+R 2 * \operatorname{COS}(T H E T A)) * S I N(A N G L E)$
DYY $=0.0 \mathrm{DO}$
DO 1090 IY $=1$, (NTY-NY1)
$I=I+I$
$K=2 * I Y-1$
$D Y Y=D Y Y+D Y(K)+D Y(K+1)$
$X(I)=X 0+(R 2-D Y Y) * S I N(T H E T A)$
$Y(I)=(Y C+(R 2-D Y Y) * \operatorname{COS}(T H E T A)) * \operatorname{COS}($ ANGLE $)$
$Z(I)=(Y C+(R 2-D Y Y) * \operatorname{COS}(T H E T A)) \star S I N(A N G L E)$
CONTINUE
ANGLE $=$ ANGLE $+2.0 *$ ANGINC
CONTINUE
END IF
THETA $=$ THETA + THINC
1110 CONTINUE
*
\star

* COMPUTE THE NODAL COORDINATES IN SECTION 3 (STRAIGHT OUTLET)
NTXP11 $=$ NTXT +1
$\mathrm{YO}=\mathrm{YO}+2.0 * \mathrm{R} 2 * \operatorname{COS}(\mathrm{PHI})$
$J=0$
DO 1170 IX = NTXP11, NTXTT

```
IF(NPE .EQ. 20) THEN
    MODY = MOD (IX, 2)
ELSE
    MODY = 1
    END IF
J = J + 1
X0 = X0 + DX3(J)
ZC}=20+2.0*R2*SIN(PHI
ANGLE = PHI
IF (MODY .EQ. 1) THEN
    DO 1140 IZ = 1, NTZ
        IF(NPE .EQ. 20) THEN
                MODZ = MOD (IZ,2)
            ELSE
                MODZ = 1
            END IF
            IF(MODZ .EQ. 1) THEN
                I=I+1
                X(I) = X0
                Y(I) = Y0*COS (ANGLE)
                Z(I) = YO*SIN(ANGLE)
                DYY = 0.0D0
                DO 1120 IY = 1, NTY-1
                    DYY = DYY + DY(IY)
                I = I + 1
                X(I) = XO
                Y(I) = (RZ + 2*R2 -DYY)*COS (ANGLE)
                Z(I) = (RZ + 2*R2 - DYY)*SIN(ANGLE)
                CONTINUE
            ELSE
                I = I + 1
                    X(I) = X0
                Y(I) = YO*COS (ANGLE)
                Z(I) = YO*SIN(ANGLE)
                    DO 1130 IY = 1, (NTY-NY1)
                I=I + 1
                K=2*IY - 1
                X(I) = X0
                Y(I) = (RZ +2*R2-DY (K)-DY (K+1))*COS (ANGLE)
                Z(I) = (RZ+2*R2-DY(K)-DY(K+1))*SIN (ANGLE)
                CONTINUE
            END IF
        IF(IZ .LT. NTZ) ANGLE = ANGLE + ANGINC
        CONTINUE
    IIX = IIX + 1
ELSE
    DO 1160 IZ = 1, (NZ+1)
    I = I + 1
        M = 2*IZ - 1
        X(I) = X 0*COS (ANGLE)
        Y(I) = YO
        Z(I) = XO*SIN(ANGLE)
        DO 1150 IY = 1, (NTY-NY1)
                I = I + 1
```

```
                                    = 2*IY - I
                                    X(I) = X0
                                    Y(I) = (RZ+2*R2-DY(K)-DY(K+1))*COS (ANGLE)
                    Z(I) = (RZ+2*R2-DY(K)-DY(K+1))*SIN(ANGLE)
                            CONTINUE
                            ANGLE = ANGLE + 2.*ANGINC
        CONTINUE
                END IF
CONTINUE
    DO 1175 I=1,NNM
    X(I) =0.0254*X(I)
    Y(I)=0.0254*Y(I)
Z(I) =-0.0254*Z(I)
DETERMINE THE CONNECTIVITY MATRIX:
NX = NX1 + NX2 + NX3
IF(NPE .EQ. 20) NTY = 3*NY + 2
DO 1200 IX = 1, NX
        DO 1190 IZ = 1, NZ
            DO 1180 IY = 1, NY
                I = IY + (IX-1)*NY*NZ + (IZ-1)*NY
                    IF(NPE .EQ. 20) THEN
                            NOD(I,1) = IEL*IY - (IEL-1) + (NYY* (NZ+1) +
                                    (NY+1)*NZZ)* (IX-1) +(IZ-1)* (NYY+NY)
                            NOD (I, 2) = NYY* (NZ+1) +(NY+1)*NZZ + NOD (I,1)
ELSE
                            NOD (I,1) = IEL*IY - (IEL-1) + (IX-1)*
                                (NYY*NZZ)*IEL+(IZ-1)*IEL*NYY
                        NOD (I, 2) = NYY*NZZ*IEL + NOD (I, 1)
                    END IF
NOD (I, 3)=NOD(I,2) + IEL
NOD(I,4)=NOD(I,1) + IEL
IF(NPE .EQ. 20) THEN
        NOD (I,5) = NTY + NOD (I, 1)
        NOD (I,6) = NYY* (NZ+1) + (NY+1)*NZZ + NOD (I,5)
ELSE
        NOD (I,5) = NYY + NOD (I, 1)
        NOD(I,6) = NYY*NZ2*IEL + NOD (I,5)
END IF
NOD (I,7) =NOD (I, 6) + IEL
NOD (I,8) = NOD (I,5) + IEL
IF(NPE .EQ. 20) THEN
        NOD (I,9) = NOD (I,1) + NYY* (NZ+1) + (NY+1)*NZ
                        + (1-IY)
        NOD (I,10) = NOD(I, 2) + 1
        NOD (I,11) = NOD(I,9) + I
        NOD (I,12) = NOD (I, 1) + 1
        NOD (I,13)=NYY + NOD (I,1)
        NOD (I,14) = NYY + NOD (I, 2)
        NOD (I,15) = NOD (I,14) +1
        NOD (I,16) = NOD (I,13) +1
        NOD (I,17) = NOD (I,5) + (NYY + NY + 1)*NZ +
                                    (1-IY)
        NOD (I,18) = NOD (I, 6) + 1
        NOD (I,19) = NOD (I, 17) +1
        NOD (I,20) = NOD (I,5) + 1
```

```
C
1180
1190
1200
* *
*
* 
*
*
*
*
1220
**
                    ELSE IF(NPE .EQ. 27) THEN
                        NOD (I,9) = NOD (I,5) + NYY
                        NOD(I,10) = NOD (I,9) + NYY*NZZ*IEL
                        NOD (I,11) = NOD (I,10) + IEL
                        NOD (I,12) = NOD (I, 9) + IEL
                        NOD (I,13) = NOD (I,1) + NYY*NZZ
                        NOD (I,14) = NOD (I, 2) +1
                        NOD (I,15) = NOD (I,13) +2
                        NOD (I,16) = NOD (I,1) +1
                        NOD (I,17) = NOD (I,5) +NYY*NZZ
                        NOD (I,18)=NOD (I,6)+1
                        NOD (I,19) = NOD (I,17) +2
                        NOD (I,20)=NOD (I, 5) +1
                        NOD (I,21)=NOD (I,9) +NYY*NZZ
                        NOD (I,22)=NOD (I,10) + 1
                        NOD (I,23)=NOD (I,21)+2
                        NOD (I, 24) =NOD (I,9) + 1
                        NOD(I,25)=NOD(I,13)+1
        NOD (I,26) = NOD (I,17) +1
            NOD(I,27)=NOD(I,21)+1
                END IF
            CONTINUE
        CONTINUE
    CONTINUE
    COMPUTE THE NUMBER OF BOUNDARY SURFACES AND DETERMINE SURFACE
INDICES
NSURF = 2*NX* (NY+NZ) +2*NY*NZ
ELEMENT FLUX SURFACES AT THE INLET OF THE DUCT:
I = 0
NYZ = NY*NZ
DO 1210 IYZ = 1, NYZ
    I=I + 1
    KELSUR(I, 1) = IYZ
    KELSUR (I,2) = I
CONTINUE
ELEMENT FLUX SURFACES AT THE SOLID SURFACE OF THE DUCT (OUTER):
DO 1220 IX = 1, NX
    DO 1220 IZ = 1, NZ
    I = I + I
    ILL = (IX-1)*NY*NZ + (IZ-1)*NY + 1
    KELSUR (I, 1) = ILL
    KELSUR(I,2)=3
CONTINUE
ELEMENT FLUX SURFACES AT THE SOLID SURFACE OF THE DUCT (INNER):
DO 1230 IX = 1, NX
    DO 1230 IZ = 1, NZ
    I=I+1
    ILL = (IX-1)*NY*NZ + IZ*NY
    KELSUR(I,1)= ILLL
    KELSUR (I, 2) = 4
CONTINUE
ELEMENT FLUX SURFACES AT SYMMETRY SURFACE OF THE DUCT (IZ =1):
DO 1240 IX \(=1, N X\)
    DO 1240 IY = 1, NY
    I = I + 1
```

```
        ILL = IY + (IX-1)*NY*NZ
        KELSUR(I,1) = ILL
        KELSUR(I,2) = 5
    CONTINUE
    ELEMENT FLUX SURFACES AT SYMMETRY SURFACE OF THE DUCT (IZ = NZ):
    DO 1250 IX = 1, NX
        DO 1250 IY = 1, NY
        I = I + I
        ILL = IY + (IX-1) *NY*NZ + NY*(NZ-1)
        KELSUR(I,1) = ILL
        KELSUR (I,2)=6
    CONTINUE
    ELEMENT FLUX SURFACES AT THE INLET OF THE DUCT:
    J = 0
    DO 1260 IZ = 1, NZ
        DO 1260 IY = 1, NY
        J = J + 1
        I=I + I
        ILL = (NX-1)*NY*NZ +J
        KELSUR(I,1) = ILL
        KELSUR(I, 2) = 2
    CONTINUE
    DETERMINE THE BOUNDARY CONDITIONS:
    NBNDC = 0
    ND = 0
    NXX = NX + 1
    NYY = NY + 1
    NZZ = NZ + 1
    DO 1212 I = 1, NDS
        DO 1212 J = 1, 5
        IBNDC(I,J) = 1
CONTINUE
SPECIFY THE I N L E T BOUNDARY DEGREES OF FREEDOM
DO 1280 ID = 1, NYY
        DO 1270 JD = 1, NZZ
            ND = ND + 1
            NBNDC = NBNDC + 1
            IBNDC (ND,2) = 0
            IBNDC (ND,3) =0
            IBNDC (ND,4) = 0
            IBNDC (ND,5) = 0
        CONTINUE
```

```
1240
    +
*
*
*
*
*
*
1212
*
    SPECIFY THE S O L I D - W A L L BOUNDARY DEGREES OF FREEDOM
DO 1300 KD = 1, NX
    ND1 = (NYY*NZZ)*KD + 1
        DO 1290 JZ = 1, NZZ
            ND = ND1 + (JZ-1)*NYY
            NBNDC = NBNDC + 1
            IBNDC (ND, 2) = 0
            IBNDC (ND,3) = 0
            IBNDC (ND,4) = 0
            IBNDC (ND,5) = 0
```

```
                NBNDC = NBNDC + 1
                IBNDC (ND+NY, 2) = 0
                IBNDC (ND+NY, 3) = 0
                IBNDC (ND+NY,4) = 0
                IBNDC (ND+NY,5) = 0
CC
                                CONTINUE
1290
*
CONTINUE
*
* SPECIFY THE E X I T BOUNDARY DEGREES OF FREEDOM
    NBD1 = NYY*NZZ*NX
    DO 1320 I = 1, NZZ
        NBD = NBD1 + (I-1)*NYY
        DO 1310 J = 1, NYY
            NBD = NBD + 1
            NBNDC = NBNDC + 1
            IBNDC (NBD,5) = 0
            IBNDC (NBD,3) = 0
            IBNDC (NBD, 4) = 0
        CONTINUE
    CONTINUE
    RETURN
    999 FORMAT (/,5X,'****** THE PARAMETERS NNM AND NEM SENT FROM THE MAIN
        # DO NOT COINCIDE WITH THOSE GENERATED IN TADMSH ******',/,5X,'******
        # THE PROGRAM IS TERMINATED ******',/,5X,'NNM,NDS,NEM,NELM =',4I5)
        END
    FLOW IN A TURN-AROUND-DUCT (15X8X2 MESH)
    1 1 02 100 05. 1.0 0.8
    1.79E-03 293.0 110.0 287.0 1.402 0.72 0.11 1.205
    3}8
    20.0 8.0 2.0
    0.5 1.5 8.0 20.0
    0.1
```

