

User's Manual for FEMOM3DR

Version 1.0

C. J. Reddy
Hampton University, Hampton, Virginia

National Aeronautics and
Space Administration

Available from the following:

NASA Center for AeroSpace Information (CASI) 7121 Standard Drive Hanover, MD 21076-1320 (301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161-2171
(703) 487-4650

CONTENTS

1. Introduction 2
2. Installation of the code 2
3. Operation of the code 4
4. Sample runs 8
5. Concluding Remarks 24
Acknowledgements 24
Appendix 1 Theory for FEMOM3DR 25
Appendix 2 Listing of the distribution disk 32
Appendix 3 Sample *.SES file of COSMOS/M 35
Appendix 4 Generic input file format for PRE_FEMOM3DR 41
References 43

1. INTRODUCTION

FEMOM3DR is a computer code written in FORTRAN 77 to compute electromagnetic(EM) radiation characteristics of antennas on a three dimensional object with complex materials (fig. 1) using combined Finite Element Method (FEM)/Method of Moments (MoM) technique[1]. This code uses the tetrahedral elements, with vector edge basis functions for FEM in the volume of the cavity and the triangular elements with the basis functions similar to that described in [2], for MoM at the outer boundary. By virtue of FEM, this code can handle any arbitrarily shaped three-dimensional bodies filled with inhomogeneous lossy materials. The basic theory implemented in the code is given in Appendix 1.

The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computers on which the code is intended to run. The organization of the manual is as follows. Section 1 is the introduction. Section 2 explains the installation requirements. The operation of the code is given in detail in Section 3. Three example runs, the first EM radiation characteristics of an open coaxial line in a 3D PEC body, the second radiation characteristics of an open rectangular waveguide in a 3D PEC body, and the third EM radiation characteristics of an open circular waveguide in a three dimensional cavity are demonstrated in Section 4. Users are encouraged to try these cases to get themselves acquainted with the code.

2. INSTALLATION OF THE CODE

The distribution disk of FEMOM3DR is $3.5^{\prime \prime}$ floppy disk formatted for IBM compatible PCs. It contains a file named femom3dr.tar.gz. This file has to be transferred to any UNIX machine via ftp using binary mode. On the UNIX machine, use the following commands to get all the files.

```
gunzip femom3dr.tar.gz
tar -xvf femom3dr.tar
```

This creates a directory FEMOM3DR-1.0, which in turn contains the

Fictitious outer boundary S_{o}

Figure 1 Illustration of cavity-backed radiating aperture in a 3D PEC body.
The cavity is fed by a coaxial line or a rectangular waveguide or a circular waveguide at the input plane $S_{i n p}$. The fictitious outer surface S_{o} is used to terminate the FEM computational domain.
subdirectories, FEMOM3DR (source files for the main code), PRE_FEMOM3DR (source files for preprocessing code), Example1, Example2 and Example3 As the code is written in FORTRAN 77, with no particular computer in mind, the source code in these directories should compile on any computer architecture without any problem. The code was successfully complied on a SGI machine, and the compilation can be done by using a makefile file for the different machines such as SUN, DEC or CONVEX etc. The complete listing of the directories in the distribution disk is given in Appendix 2.

3. OPERATION OF THE CODE

The computation of EM radiation characteristics from a specific geometry with FEMOM3DR is a multi-stage process as illustrated in figure 2. The geometry of the problem has to be constructed with the help of any commercial Computer Aided Design (CAD) package. In our case, we used COSMOS/M[3] as our geometry modeler and meshing tool. As FEMOM3DR uses edge based basis functions, the nodal information supplied by most of the meshing routines cannot be readily used. Hence, a preprocessor PRE_FEMOM3DR is written to convert the nodal based data into edge based data and then is given as input to FEMOM3DR. For the convenience of the users, who use different CAD/meshing packages other than COSMOS/M, PRE_FEMOM3DR accepts the nodal based data in a generic format also. The procedures involved for using COSMOS/M input data file or generic input data file are explained below.

With the help of COSMOS/M, the geometry is constructed and meshed with tetrahedral elements. The user is assumed to be familiar with COSMOS/M package and its features. Once the mesh is generated, one needs to identify the following to impose proper boundary conditions:
(a) tetrahedral elements with different material parameters ${ }^{1}$,
(b) elements on PEC surfaces
(c) elements on the outer boundary
(d) elements on the input plane

1. COSMOS/M has a feature by which it can group tetrahedral elements with different material properties into different groups. For a generic file input, the user has to specify the material property index for each tetrahedral element to indicate its material property group(see Appendix 4).

Figure 2 Flow chart showing the various steps involved in using FEMOM3DR

This is done using the available features in COSMOS/M. Sample *.SES files of COSMOS/M which illustrate these features are given in Appendix 3. Finally the $*$.MOD file is generated with the required mesh information. PRE_FEMOM3DR accepts the *.MOD file as input and generates the required edge based data.

For users, who can do geometry modelling and meshing of the model with any other CAD package, the nodal based information is required to be placed in a file problem.PIN, where problem is the name of the problem under consideration. The format required for *. PIN file is given in Appendix 4. Note that all the dimensions of the geometry are assumed to be in centimeters.

The PRE_FEMOM3DR code gives the following prompts:
pre_femom3dr
Give the problem name:
The problem name is the user defined name for the particular problem under consideration.

```
COSMOS file (1) or GENERIC (2) file?
```

If you are using *.MOD file from COSMOS/M, give 1 or using the generic input data file explained above, give 2.

PRE_FEMOM3DR generates the following files with required edge based information.
(a) problem_nodal. DAT - Node coordinates and the node numbers for each element (b)problem_edges. DAT - Information on edges, such as nodes connecting each edge, etc.
(c) problem_surfed. DAT - Information on edges on outer surfaces.
(d) problem_surfel. DAT - Information on edges on input surface.
(e) problem.POUT - General information on the mesh.

The files (a) to (d) are used as input for FEMOM3DR. Users need not interact or modify the above files.

After PRE_FEMOM3DR is run, all but one input data file required for FEMOM3DR are ready. FEMOM3DR expects to find problem.MAT file which contains the material constants information required for the volume elements. The format of the problem.MAT is as given below:
N_{g}, Maximum number of material groups
$\varepsilon_{r 1}, \mu_{r 1} \quad$ Complex relative permittivity, complex relative permeability respectively
$\varepsilon_{r 2}, \mu_{r 2} \quad$ for material groups $1,2,3, \ldots \ldots ., N_{g}$

$$
\varepsilon_{r N_{g}}, \mu_{r N_{g}}
$$

In the PRE_FEMOM3DR, all the terahedral elements are given the material group index. The material parameters given in problem.MAT are read into FEMOM3DR and the proper material parameters are assigned to each tetrahedral element according to its material property index. Once the problem.MAT is ready, FEMOM3DR code can be run. The FEMOM3DR code gives the following prompts:

```
femom3dr
Give the problem name :
```

This name should be the same as given for PRE_FEMOM3DR

```
Frequency (GHz) :
```

This is the frequency of operation. If the dimensions of the problem are in wavelengths, frequency should be specified as 30 GHz as FEMOM3DR assumes that all dimensions are in centimeters.

```
Give the type of feed line :
coax(1), rect wg(2), cir wg(3)
```

This is to specify the type of feed line to be used. User should give 1 if coaxial feed is used, or 2 if rectangular waveguide is used as feed, or 3 if circular waveguide is used as feed. Depending on the feed line to be used, FEMOM3DR gives different prompts to input the feed line parameters.

For coax(1)
Coaxial feed line
Give Inner rad, r1(cm), Outer rad, r2(cm):
Specify the inner radius and outer radius of the coaxial line.

```
Dielectric const for the coaxial line, er1
```

Specify the dielectric constant used for the coaxial line.

For rect $\mathrm{wg}(2)$

```
Rectangular waveguide feed
Give waveguide dimensions : a(cm), b(cm)
```

Specify the waveguide dimensions, broad wall dimension $\mathrm{a}(\mathrm{cm})$, narrow wall dimension $b(c m)$

For cir wg(3)

```
Circular waveguide feed
Give the radius of circular waveguide aa(cm):
```

Specify the radius of the circular waveguide in cms .

```
For computing radiation pattern, give Theta(degs) -
    start angle, stop angle and increment
```

Specify the start and stop angles of θ in degrees. Radiation patterns will be computed in both $\phi=0^{\circ}$ and $\phi=90^{\circ}$ planes.

FEMOM3DR generates the file problem.OUT, which contains information on CPU times for matrix generation, matrix fill, the input characteristics and the radiation pattern data. FEMOM3DR also generates another file problem_bicgd.DAT which contains
information on convergence history of diagonally preconditioned biconjugate gradient algorithm used to solve the matrix equations.

4. SAMPLE RUNS

Three example runs are illustrated in this section. They are selected to illustrate some of the features of FEMOM3DR.

Example 1: Radiation from an open coaxial line in a 3D PEC body

OUTER BOUNDARY FOR FEM-MoM : $4.5 \mathrm{cmX} 4.5 \mathrm{cmX1} 1.5 \mathrm{~cm}$

Figure 3 Open coaxial line in a 3D PEC box. The analysis is carrired out at 5.73 GHz . Inner radius of the coaxial line is 1.0 cm and outer radius is 1.57 cm .

An open coaxial line in a 3D PEC box is considered. Assuming the dominant TEM mode propagation in the coaxial line the radiation pattern and input characteristics ($\mathrm{z}=0$ as reference plane) are calculated.

First the PRE_FEMOM3DR

```
cjr@caph:{53} pre_femom3dr
    Give the problem name :
coax
    COSMOS file(1) or GENERIC(2) file ? :
1
    Opening file :coax.MOD
Read the following data
Nodes= 403
Elements= 1201
Elements on surface 1= 468
Elements on surface 2= 44
    Max number of material groups=
```

Forming the edges !!! Be patient !!!

```
Number of nodes= 403
Number of elements= 1201
Number of total edges= 2001
Number of elements on Surface 1= 468
Number of elements on Surface 2= 44
Number of edges on surface 0(pec)= 447
Number of edges on surface 1= 702
Number of edges on surface 2= 84
Max number of material groups=
1
Order of FEM matrix= 1554
Order of MoM matrix(electric cuurent)= 702
Unknown for the magnetic current= 702
Number of unknowns on Input plane=}4
Order of Hybrid FEM/MoM matrix=
2256
```

The coax. MAT file for this problem is given below:
1
$(1.0,0.0)(1.0,0.0)$

And then FEMOM3DR :

cjr@caph:\{55\} femom3dr

```
    Give the problem name :
```

coax
Reading the input !!
Finished reading the data
Give frequency of operation : GHz
5.73
Give the type of feed line :
coax(1), rect wg(2), cir wg(3)
1
Coaxial feed line
Give Inner rad, r1(cm), Outer rad, r2(cm):
1.01 .57
Dielectric const for the coaxial line, erl
1.0
For Computing the radiation pattern, give Theta(degs)-
Give start angle, stop angle and increment
-18018010


```
RADIATION CHARACTERISTICS OF AN ANTENNA ON
```

 A 3D BODY USING FEM/MOM HYBRID METHOD
    ```
Frequency (GHz) = 5.730000
Order of the FEM-MOM matrix= 2256
Order of the MoM matrix = 702
```

Coax feed is used
with characteristic impedance(ohms) $=27.06454$
Radius of inner conductor $(\mathrm{cm})=1.000000$
Radius of outer conductor $(\mathrm{cm})=1.570000$
Dielectric constant $=1.000000$


```
    Generating FEM matrix
    Number of non zeros in amat(zmatrices)=
    Time to fill FEM matrix(secs)= 0.2383671
    net= 1554
    Time to fill zmatrixeh= 5.1747322E-02
        Generating Zmatrices
    Entering zmatrixej
Time to fill zmatrixej(secs)= 155.7325
    Entering zmatrixem
    Time to fill zmatrixem(secs)= 221.0665
    Time to fill zmatrices (secs)= 377.7292
    Total no of non zeros after adding zmatrices= 900366
        Calling selmts_coax
    Entered selmts.f
    beta10= 1.200088 r2= 1.570000
    r1= 1.000000 zC= 27.06454
    Out of selmts
    Total nonzeros in amat after smat= 902502
    Solving the system of equations Ax=B by BiCGDNS
    CONVERGENCE ACHIEVED in }1833\mathrm{ iterations
    Residual Norm= 6.8373792E-04
    Time to solve by BiCGDNS(secs)= 1133.188
    Input parameters for the coaxial feed
    Reflection Coefficient S11= (0.2084835,-0.6935343)
Return Loss (db) = -2.802917
Normalized Input Admittance,Yin/Yo= (0.2449467,0.7144601)
Normalized Input Impedance,Zin/Zo= (0.4293905,-1.252445)
*-------------------------------------------
    RADIATION PATTERN (phi=0 deg plane)
Theta(deg) 10log|Eth|^2 10log|Eph|^2
    -180 -54.19743 -48.60585
    -170 -10.79702 -46.29274
    -160 -5.749784 -45.47018
    -150 -3.863171 -46.03180
    -140 -3.623751 -48.02142
    -130 -4.477120 -51.30671
    -120 -5.877765 -52.62412
    -110 -6.739963 -49.10905
    -100 -5.970154 -45.52240
    -90 -4.136563 -42.71252
```


RADIATION PATTERN (phi=90 deg plane)

| Theta (deg) | $10 \log \mid$ Eth\|^2 | 10log\|Eph|^2 |
| ---: | :--- | :--- |
| -180 | -48.60547 | -54.19707 |
| -170 | -10.82473 | -48.70198 |
| -160 | -5.750631 | -46.34335 |
| -150 | -3.852743 | -46.03323 |
| -140 | -3.605450 | -47.45369 |
| -130 | -4.451667 | -49.95887 |
| -120 | -5.845438 | -50.09461 |
| -110 | -6.704795 | -46.91512 |
| -100 | -5.939765 | -43.87301 |
| -90 | -4.112114 | -41.47113 |
| -80 | -2.229023 | -39.44118 |

Example 2 : Radiation from an open rectangular waveguide in a 3D PEC body

OUTER BOUNDARY FOR FEM-MoM : $1.0 \lambda \times 0.6 \lambda X 0.5 \lambda$

Figure 4 Open Rectangular waveguide in a 3D PEC box

An open rectangular waveguide in a 3D PEC box is considered. Assuming the dominant TE_{10} mode propagation in the waveguide the radiation pattern and input characteristics ($\mathrm{z}=0$ as reference plane) are calculated.

First the PRE_FEMOM3DR

```
cjr@caph:{11} pre_femom3dr
    Give the problem name :
rwg
    COSMOS file(1) or GENERIC(2) file ? :
1
    Opening file :rwg.MOD
    Read the following data
Nodes= 565
```

```
    Elements= 1743
    Elements on surface 1= 560
    Elements on surface 2= 56
    Max number of material groups= 1
    Forming the edges !!! Be patient !!!
    Order of the FEM matrix- nptrx= 2159
    Number of nodes= 565
    Number of elements= 1743
    Number of total edges= 2836
    Number of elements on Surface 1= 560
    Number of elements on Surface 2= 56
    Number of edges on surface 0(pec)= 677
    Number of edges on surface 1= 840
    Number of edges on surface 2= 95
    Max number of material groups= 1
    Order of FEM matrix= 2159
    Order of MoM matrix(electric cuurent)= 840
    Unknown for the magnetic current= 840
Number of unknowns on Input plane=
        73
Order of Hybrid FEM/MoM matrix=
cjr@caph:{12}
```

The rwg. MAT file for this problem is given below:
1
$(1.0,0.0)(1.0,0.0)$

And then FEMOM3DR :

cjr@caph: \{18\} femom3dr Give the problem name :
rwg
Reading the input !!
Finished reading the data
Give frequency of operation : GHz
30.0

Give the type of feed line :

```
    coax(1), rect wg(2), cir wg(3)
2
    Rectangular waveguide feed
    Give waveguide dimensions : a(cm), b(cm)
0.7 0.31
    For Computing the radiation pattern, give Theta(degs)-
                                    Give start angle, stop angle and increment
-180 180 10
\begin{tabular}{|c|c|c|}
\hline * & & \\
\hline * & & \\
\hline * & FEMOM3DR(Version 1.0) & * \\
\hline * & Problem : rwg (BiCGDNS Solver) & * \\
\hline * & & * \\
\hline * & & * \\
\hline
\end{tabular}
RADIATION CHARACTERISTICS OF AN ANTENNA ON
            A 3D BODY USING FEM/MOM HYBRID METHOD
Frequency (GHz) = 30.00000
Order of the FEM-MoM matrix= 2999
Order of the MoM matrix = 840
Rect w/g feed is used
a(cm)=0.7000000 b b(cm)=0.3100000
*-----------------------------------------*
    Generating FEM matrix
    Number of non zeros in amat(zmatrices)=
                                    25494
Time to fill FEM matrix(secs)= 0.3556371
    net= 2159
Time to fill zmatrixeh(secs)= 6.2365055E-02
    Generating Zmatrices
Entering zmatrixej
Time to fill zmatrixej(secs)= 219.9152
Entering zmatrixem
Time to fill zmatrixem(secs)= 316.8897
Time to fill zmatrices (secs)= 537.7435
Total no of non zeros after adding zmatrices=
1393424
    calling selmts_rwg
Entered selmts.f
Total nonzeros in amat after smat= 1398430
```

Solving the system of equations $A x=B$ by BiCGDNS CONVERGENCE ACHIEVED in 1172 iterations
Residual Norm= 8.4834168E-04
Time to solve by BiCGDNS= 1134.912
Input parameters for the Rect W/G feed
Reflection Coefficient S11= (-9.9301338E-05,-0.2776211)
Return Loss $(\mathrm{db})=-11.13095$
Normalized Input Admittance, Yin/Yo $=(0.8570415,0.5156051)$
Normalized Input Impedance,Zin/Zo $=(0.8567256,-0.5154150)$

RADIATION PATTERN (phi=0 deg plane)
Theta(deg)

| -180 | -61.92020 | -15.32931 |
| ---: | :--- | :--- |
| -170 | -61.31005 | -15.91580 |
| -160 | -63.44328 | -17.62041 |
| -150 | -68.74234 | -20.02731 |
| -140 | -70.03734 | -21.95038 |
| -130 | -66.70441 | -22.52033 |
| -120 | -66.59460 | -22.63553 |
| -110 | -69.86186 | -22.92205 |
| -100 | -80.20856 | -22.88857 |
| -90 | -75.01617 | -21.71360 |
| -80 | -66.67963 | -19.52076 |
| -70 | -61.93605 | -17.02657 |
| -60 | -58.61893 | -14.62941 |
| -50 | -56.34359 | -12.44571 |
| -40 | -54.92506 | -10.51392 |
| -30 | -54.19392 | -8.882670 |
| -20 | -54.09115 | -7.628004 |
| -10 | -54.73644 | -6.834783 |
| 0 | -56.31515 | -6.567938 |
| 10 | -58.89853 | -6.851701 |
| 20 | -62.37308 | -7.662488 |
| 30 | -66.48820 | -8.935760 |
| 40 | -68.71347 | -10.58671 |
| 50 | -65.26954 | -12.53923 |
| 60 | -61.62342 | -14.74527 |
| 70 | -59.33685 | -17.16811 |
| 80 | -58.21431 | -19.69254 |
| 90 | -58.07228 | -21.91248 |
| 100 | -58.69095 | -23.08877 |

The complete session of this run on a SGI machine along with all the files is kept in the directory ./FEMOM3DR-1.0/Example2.

Example 3: Radiation from an open circular waveguide in a 3D PEC box

OUTER BOUNDARY FOR FEM-MoM : $10 \mathrm{cmX1} 10 \mathrm{cmX} 4 \mathrm{~cm}$

Figure 5 An open circular waveguide in a 3D PEC box

An open circular waveguide in a 3D PEC box is considered. Assuming the dominant TE_{11} mode propagation in the waveguide the radiation pattern and input characteristics ($\mathrm{z}=0$ as reference plane) are calculated at 2.8 GHz .

First the PRE_FEMOM3DR

```
cjr@caph:{60} pre_femom3dr
    Give the problem name :
cwg
    COSMOS file(1) or GENERIC(2) file ? :
1
    Opening file :cwg.MOD
    Read the following data
Nodes= 601
Elements= 1915
Elements on surface 1= 564
Elements on surface 2= 64
    Max number of material groups= 1
Forming the edges !!! Be patient !!!
    Order of the FEM matrix- nptrx= 2332
Number of nodes= 601
Number of elements= 1915
Number of total edges= 3071
Number of elements on Surface 1= 564
Number of elements on Surface 2= 64
Number of edges on surface 0(pec)= 739
Number of edges on surface 1= 846
Number of edges on surface 2= 106
Max number of material groups= 1
Order of FEM matrix= 2332
Order of MoM matrix(electric cuurent)= 846
Unknown for the magnetic current= 846
Number of unknowns on Input plane= 86
Order of Hybrid FEM/MoM matrix=

The cwg. MAT file for this problem is given below:
1
\((1.0,0.0)(1.0,0.0)\)
```

cjr@caph:{65} femom3dr
Give the problem name :
cwg
Reading the input !!
Finished reading the data
Give frequency of operation : GHz
2.8
Give the type of feed line :
coax(1), rect wg(2), cir wg(3)
3
Circular waveguide feed
Give the radius of circular waveguide aa(cm):
3.75
For Computing the radiation pattern, give Theta(degs)-
Give start angle, stop angle and increment
-180 180 10

```

```

RADIATION CHARACTERISTICS OF AN ANTENNA ON
A 3D BODY USING FEM/MOM HYBRID METHOD
Frequency (GHz) = 2.800000
Order of the FEM-MOM matrix= 3178
Order of the MoM matrix = 846
Circular w/g feed is used
Radius of the w/g(cm)= 3.750000

Generating FEM matrix
Number of non zeros in amat(zmatrices)= 27988
Time to fill FEM matrix(secs)= 0.3919129
net= 2332
Time to fill zmatrixeh= 6.6025734E-02
Generating Zmatrices
Entering zmatrixej

```

CONVERGENCE ACHIEVED in
Residual Norm= \(8.8973634 E-04\)
Time to solve by BiCGDNS (secs) \(=2174.860\)

Input parameters for the cir waveguide feed

Reflection Coefficient \(\operatorname{S11}=(-0.1300059,3.4798384 \mathrm{E}-02)\)
Return Loss (db) \(=-17.42023\)
Normalized Input Admittance, Yin/Yo \(=(1.295194,-9.1804117 \mathrm{E}-02)\)
Normalized Input Impedance, Zin/Zo \(=(0.7682255,5.4452278 \mathrm{E}-02)\)

\begin{tabular}{|c|c|c|}
\hline Theta(deg) & 10log|Eth|^2 & \(10 \log \mid\) Eph \(\left.\right|^{\wedge} 2\) \\
\hline -180 & -22.75692 & -63.35085 \\
\hline -170 & -24.54149 & -60.63559 \\
\hline -160 & -30.61100 & -59.22809 \\
\hline -150 & -27.98133 & -58.73494 \\
\hline -140 & -21.97158 & -58.88988 \\
\hline -130 & -19.15922 & -59.52450 \\
\hline -120 & \(-17.95044\) & -60.42453 \\
\hline -110 & -17.54107 & -61.02032 \\
\hline -100 & -17.34824 & -60.33348 \\
\hline -90 & -16.88481 & -58.21341 \\
\hline -80 & -15.86516 & -55.56404 \\
\hline -70 & -14.29549 & -53.00042 \\
\hline -60 & -12.37232 & -50.69931 \\
\hline -50 & -10.33036 & -48.69147 \\
\hline -40 & -8.376839 & -46.99461 \\
\hline -30 & -6.681361 & -45.64932 \\
\hline -20 & -5.375779 & -44.71483 \\
\hline -10 & -4.553909 & -44.25065 \\
\hline 0 & -4.271783 & -44.29565 \\
\hline 10 & -4.548341 & -44.85369 \\
\hline 20 & -5.365640 & \(-45.88722\) \\
\hline 30 & -6.668044 & -47.32177 \\
\hline 40 & -8.360756 & -49.06322 \\
\hline 50 & -10.30902 & -51.02592 \\
\hline 60 & \(-12.33875\) & -53.16288 \\
\hline 70 & -14.23919 & -55.49183 \\
\hline 80 & -15.77886 & -58.11651 \\
\hline 90 & -16.77509 & -61.16561 \\
\hline 100 & -17.23692 & -64.18618 \\
\hline 110 & -17.45133 & -64.79224 \\
\hline
\end{tabular}
\begin{tabular}{rrr}
120 & -17.89702 & -62.96498 \\
130 & -19.15180 & -61.55912 \\
140 & -22.02265 & -61.53593 \\
150 & -28.06933 & -63.19190 \\
160 & -30.24335 & -66.42630 \\
170 & -24.41655 & -67.00469 \\
180 & -22.75692 & -63.35098
\end{tabular}

RADIATION PATTERN (phi=90 deg plane)
Theta (deg) \begin{tabular}{rll} 
& lolog|Eth \(\mid \wedge 2\) & 10log|Eph \(\wedge^{\wedge} 2\) \\
-180 & -63.35092 & -22.75693 \\
-170 & -61.79300 & -23.50035 \\
-160 & -62.38220 & -25.78485 \\
-150 & -65.55884 & -29.34372 \\
-140 & -64.24979 & -32.63723 \\
-130 & -58.26767 & -33.54564 \\
-120 & -54.45654 & -31.86797 \\
-110 & -52.24393 & -27.87085 \\
-100 & -51.02455 & -23.65279 \\
-90 & -50.39310 & -20.07571 \\
-80 & -50.00290 & -17.06390 \\
-70 & -49.51344 & -14.43425 \\
-60 & -48.66899 & -12.06949 \\
-50 & -47.46519 & -9.930590 \\
-40 & -46.14532 & -8.040731 \\
-30 & -45.00156 & -6.461413 \\
-20 & -44.24279 & -5.266761 \\
-10 & -43.98824 & -4.522365 \\
0 & -44.29570 & -4.271783 \\
10 & -45.18002 & -4.530254 \\
20 & -46.61389 & -5.283057 \\
30 & -48.51177 & -6.487364 \\
40 & -50.69865 & -8.078716 \\
50 & -52.88061 & -9.984387 \\
60 & -54.68048 & -12.14472 \\
70 & -55.80803 & -14.53915 \\
80 & -56.25292 & -17.21146 \\
90 & -56.26787 & -20.28884 \\
100 & -56.18223 & -23.97681 \\
110 & -56.26547 & -28.39919 \\
120 & -56.69032 & -32.71435
\end{tabular}
\begin{tabular}{lll}
130 & -57.53803 & -34.63153 \\
140 & -58.86083 & -33.68311 \\
150 & -60.81037 & -29.88833 \\
160 & -63.46891 & -26.00092 \\
170 & -65.06511 & -23.57710 \\
180 & -63.35083 & -22.75694
\end{tabular}

The complete session of this run on a SGI machine along with all the files is kept in the directory ./FEMOM3DR-1.0/Example3.

\section*{5. CONCLUDING REMARKS}

The usage of FEMOM3DR code is demonstrated so that the user can get acquainted with the details of using the code with minimum possible effort. As no software can be bug free, FEMOM3DR is expected to have hidden bugs which can only be detected by the repeated use of the code for a variety of geometries. Any comments or bug reports should be sent to the author. As the reported bugs are fixed and more features added to the code, future versions will be released. Information on future versions of the code can be obtained from

Electromagnetics Research Branch (MS 490)
Flight Electronics and Technology Division
NASA-Langley Research Center
HAMPTON VA 23681

\section*{ACKNOWLEDGEMENTS}

The author would like to thank Mr. Fred B. Beck and Dr. C.R. Cockrell of NASA Langley Research Center for the useful discussions and constant support during the development of this code.

\section*{Appendix 1}

\section*{Theory for FEMOM3DR}

This appendix is intended to give a brief description of the theory behind the code. The geometry of the structure to be analyzed is shown in figure 1. \(S_{o}\) represents the area of the fictitious outer boundary to be used for terminating the FEM computational domain and \(S_{i n p}\) represents the area of the input plane. The electric field inside the compuational domain satisfies the vector wave equation[4]
\[
\begin{equation*}
\nabla \times\left(\frac{1}{\mu_{r}} \nabla \times \mathbf{E}\right)-k_{o}^{2} \varepsilon_{r} \mathbf{E}=0 \tag{1}
\end{equation*}
\]
where \(\varepsilon_{r}\) and \(\mu_{r}\) are the relative permittivity and relative permeability of the medium. The time dependency of \(\exp (j \omega t)\) is assumed through out this report. To facilitate the suitable solution of the partial differential equation in (1) via FEM, multiply equation (1) with a vector testing function \(\mathbf{T}\) and integrate over the volume of the computational domain. By applying suitable vector identities, equation(1) can be written in its weak form as,
\[
\begin{equation*}
\iiint_{V} \frac{1}{\mu_{r}}(\nabla \times \mathbf{T}) \bullet\left(\frac{1}{\mu_{r}} \nabla \times \mathbf{E}\right) d v-k_{o}^{2} \varepsilon_{r} \iiint_{V} \mathbf{T} \bullet \mathbf{E} d v=\iiint_{V} \nabla \bullet\left(\mathbf{T} \times \frac{1}{\mu_{r}} \nabla \times \mathbf{E}\right) d v \tag{2}
\end{equation*}
\]

Applying the divergence theorem to the right hand side of equation(2), the volume integral is written as sum of the surface integral over the surface \(S_{o}\) terminating the FEM computational domain and the surface integral over \(S_{i n p}\) at the input plane.
\[
\begin{align*}
& \iiint_{V} \frac{1}{\mu_{r}}(\nabla \times \mathbf{T}) \bullet(\nabla \times \mathbf{E}) d v-k_{o}^{2} \varepsilon_{r} \iiint_{V} \mathbf{T} \bullet \mathbf{E} d v=-\iint_{S_{o}} \mathbf{T} \bullet\left(\hat{n}_{o} \times \frac{1}{\mu_{r}} \nabla \times \mathbf{E}\right) d s \\
&-\iint_{S_{i n p}} \mathbf{T} \bullet\left(\hat{n}_{i} \times \frac{1}{\mu_{r}} \nabla \times \mathbf{E}\right) d s \tag{3}
\end{align*}
\]
where \(\hat{n}_{o}\) is the unit outward normal to the surface \(S_{o}\) and \(\hat{n}_{i}\) is the unit outward normal to the surface \(S_{i n p}\).

To discretize the above volume and surface integrals, the FEM computational domain is subdivided into small volume tetrahedral elements. The electric field is expressed in terms
of vector edge basis functions[2] which enforce the divergenceless condition of the electric field implicitly
\[
\begin{equation*}
\mathbf{E}=\sum_{i=1}^{6} e_{i} \mathbf{W}_{i} \tag{4}
\end{equation*}
\]
where \(e_{i}\) 's are the unknown coefficients associated with each edge of the tetrahedral element and \(\mathbf{W}_{i}\) 's are the basis functions and are given in detail in [5]. The testing function \(\mathbf{T}\) is taken to be the same set of basis functions as given in equation (4), i.e.,
\[
\begin{equation*}
\mathbf{T}=\mathbf{W}_{j} \quad j=1,2,3,4,5,6 \tag{5}
\end{equation*}
\]

The discretization of the FEM computational volume automatically results in discretization of surfaces \(S_{o}\) and \(S_{i n p}\) in triangular elements. The evaluation of the surface integral over the outer boundary is carried out either by using Method of Moments(MoM) and the evaluation of the surface integral over the input plane is carried out using mode matching method.

\section*{Evaluation of surface integral over \(S_{o}\) - MoM formulation:}

At the fictitious outer boundary the electric field is subjected to the condition that the fields are continuous across the boundary, i.e.,
\[
\begin{equation*}
\left.\mathbf{E}\right|_{a t S_{o}^{+}}=\left.\mathbf{E}\right|_{a t S_{o}^{*}} \tag{6}
\end{equation*}
\]
where \(S_{o}^{+}\)denotes the outer side of \(S_{o}\) and \(S_{o}^{-}\)denotes the inner side of \(S_{o}\). The electric field \(\left.\mathbf{E}\right|_{a t S_{o}}\) is the field quantity being evaluated in the computational volume through FEM. The electric field ouside \(S_{o}\) is evaluated explicitly using the following equation[4, eq.3-83]:
\[
\begin{equation*}
\left.\mathbf{E}\right|_{a t S_{o}^{+}}=-\nabla \times \mathbf{F}-j \omega \mu_{o} \mathbf{A}+\frac{1}{j \omega \mu_{o}} \nabla \nabla \cdot \mathbf{A} \tag{7}
\end{equation*}
\]
where
and
\[
\begin{equation*}
\mathbf{A}=\text { Magnetic Vector Potential }=\frac{1}{4 \pi} \iint_{S_{o}} \frac{\mathrm{Jexp}\left(-j k_{o}\left|\mathbf{r}-\mathbf{r}_{o}\right|\right)}{\left|\mathbf{r}-\mathbf{r}_{o}\right|} d s \tag{8}
\end{equation*}
\]
\[
\begin{equation*}
\mathbf{F}=\text { Electric Vector Potential }=\frac{1}{4 \pi} \iint_{S_{o}} \frac{\mathbf{M e x p}\left(-j k_{o}\left|\mathbf{r}-\mathbf{r}_{o}\right|\right)}{\left|\mathbf{r}-\mathbf{r}_{o}\right|} d s \tag{9}
\end{equation*}
\]
\(\mathbf{J}\) and \(\mathbf{M}\) are assumed to be equivalent electric and magnetic currents respectively at the outer surface \(S_{o}\). The equivalent currents radiating in free space are used in the equation (7) to compute the electric field outside V (figure 6).

Substituting equation (7) into equation (6) and multiplying by a testing function \(\hat{n}_{o} \times \mathbf{T}\) on both sides and integrate over the surface \(S_{o}\), results in:
\[
\begin{align*}
\iint_{S_{o}}\left(\hat{n}_{o} \times \mathbf{T}\right) \bullet \mathbf{E} d s=-\iint_{S_{o}}\left(\hat{n}_{o} \times \mathbf{T}\right) \bullet(\nabla \times \mathbf{F}) d s & -j \omega \mu_{o} \iint_{S_{o}}\left(\hat{n}_{o} \times \mathbf{T}\right) \bullet \mathbf{A} d s \\
& +\frac{1}{j \omega \varepsilon_{o}} \iint_{S_{o}}\left(\hat{n}_{o} \times \mathbf{T}\right) \bullet(\nabla \nabla \bullet \mathbf{A}) d s \tag{10}
\end{align*}
\]

After some mathematical manipulations [6, pp.42], [7, pp.135], and substituting equations (8) and (9) in the above equation, it can be rewritten as:
\[
\begin{align*}
& \frac{1}{2} \iint_{S_{o}}\left(\hat{n}_{o} \times \mathbf{T}\right) \bullet \mathbf{E} d s+\frac{1}{4 \pi} \iint_{S_{o}}\left(\hat{n}_{o} \times \mathbf{T}\right) \bullet\left(\iint_{S_{o}} \mathbf{M} \times \nabla^{\prime} G d s^{\prime}\right) d s \\
& +\frac{j \omega \mu_{o}}{4 \pi} \iint_{S_{o}}\left(\hat{n}_{o} \times \mathbf{T}\right) \bullet\left(\iint_{S_{o}} \mathbf{J} G d s^{\prime}\right) d s \\
& \quad+\frac{1}{j \omega \varepsilon_{o}(4 \pi)}\left(\iint_{S_{o}}\left\{\nabla \bullet\left(\hat{n}_{o} \times \mathbf{T}\right)\right\}\left\{\iint_{S_{o}}(\nabla \bullet \mathbf{J}) G d s^{\prime}\right\} d s\right)=0 \tag{11}
\end{align*}
\]
where \(f\) indicates that the singular point has been removed and
\[
\begin{equation*}
G=\frac{\exp \left(-j k_{o}\left|\mathbf{r}-\mathbf{r}_{o}\right|\right)}{\left|\mathbf{r}-\mathbf{r}_{o}\right|} \tag{12}
\end{equation*}
\]

Equation (11) is written in a matrix form by choosing the proper basis functions for \(\mathbf{M}\) and \(\mathbf{J}\) and accordingly using the testing function \(\hat{n}_{o} \times \mathbf{T}\). Within each surface triangle, the surface currents can be expressed as


Fictitious outer boundary \(S_{o}\)

Figure 6 Equivalent current representation of the outer surface \(S_{o}\)
\[
\begin{gather*}
\mathbf{M}=\mathbf{E} \times \hat{n}_{o}=-\sum_{i=1}^{3} e_{i}\left(\hat{n}_{o} \times \mathbf{W}_{i}\right)  \tag{13}\\
\mathbf{J}=\sum_{i=1}^{3} I_{i}\left(\hat{n}_{o} \times \mathbf{W}_{i}\right) \tag{14}
\end{gather*}
\]
and the testing function as
\[
\begin{equation*}
\hat{n}_{o} \times \mathbf{T}=\hat{n}_{o} \times \mathbf{W}_{j} \quad j=1,2,3 \tag{15}
\end{equation*}
\]

In equation (13), \(e_{i}\) represents the same unknown coefficient as in equation (4) and in equation(14) \(I_{i}\) represents the unknown coefficient for the surface electric current densisty. In equations (13) and (14), it is interesting to note that, the vector edge basis functions \(\mathbf{W}_{i}\), which are initially used for electric field are used to represent the surface current densities in the form of \(\hat{n}_{o} \times \mathbf{W}_{i}\). The expansion functions \(\mathbf{W}_{i}\) are used to build tangential continuity into the field representation. In contrast, the cross product of \(\hat{n}_{o}\) with these functions results in another set of basis functions which guarantee normal continuity with zero curl and nonzero divergence and hence are ideally suited for representing surface current densities[2]. During the current investigation, it has been observed that the roof top basis functions for triangular patches used by Rao[6] and the basis functions used here proved to be numerically identical to each other confirming the above point of view.

Equations (13-14) are substituted in equation (11) and integrated over all the triangular patch elements on surface \(S_{o}\) to obtain the following matrix equation:
where
\[
\begin{equation*}
\left[M_{1}\right]\{e\}+\left[M_{2}\right]\{I\}=\{0\} \tag{16}
\end{equation*}
\]
\[
\begin{align*}
& {\left[M_{1}\right]=\frac{1}{2} \iint_{S_{o}}\left(\hat{n}_{o} \times \mathbf{T}\right) \bullet \mathbf{E} d s+\frac{1}{4 \pi} \iint_{S_{o}}\left(\hat{n}_{o} \times \mathbf{T}\right) \bullet\left(\int_{S_{o}} \mathbf{M} \times \nabla^{\prime} G d s^{\prime}\right) d s}  \tag{17}\\
& {\left[M_{2}\right]=\frac{j \omega \mu_{o}}{4 \pi} \iint_{S_{o}}\left(\hat{n}_{o} \times \mathbf{T}\right) \bullet\left(\iint_{S_{o}} \mathbf{J} G d s^{\prime}\right) d s} \\
& \quad+\frac{1}{j \omega \varepsilon_{o}(4 \pi)} \iint_{S_{o}}\left\{\nabla \bullet\left(\hat{n}_{o} \times \mathbf{T}\right)\right\}\left\{\iint_{S_{o}}(\nabla \bullet \mathbf{J}) \dot{G} d s^{\prime}\right\} d s \tag{18}
\end{align*}
\]
and \(\{0\}\) is the null vector. The singularities in evaluating the integrals in equation (18) are handled analytically by using the closed form expressions given in [8].

Using Maxwell's equation \(\nabla \times \mathbf{E}=-j \omega \mu_{o} \mu_{r} \mathbf{H}\), the surface integral on the right hand side of the equation (3) can be written as
\[
\begin{align*}
&-\iint_{S_{o}} \mathbf{T} \bullet\left(\hat{n}_{o} \times \frac{1}{\mu_{r}} \nabla \times \mathbf{E}\right) d s-\iint_{S_{i n p}} \mathbf{T} \bullet\left(\hat{n}_{i} \times \frac{1}{\mu_{r}} \nabla \times \mathbf{E}\right) d s=\iint_{S_{o}} \mathbf{T} \bullet\left(\hat{n}_{o} \times \mathbf{H}\right) d s \\
&+\iint_{S_{i n p}} \mathbf{T} \bullet\left(\hat{n}_{i} \times \mathbf{H}_{i n p}\right) d s \tag{19}
\end{align*}
\]
where \(\mathbf{H}_{\text {inp }}\) is the magnetic field over the input plane obtained from matching the modal expansion of waveguide fields with the unknowns fields at the input plane[9]. By equivalence principle, it can be noted that \(\mathbf{J}=\hat{n}_{o} \times \mathbf{H}\) on the surface \(S_{o}\). Substituting this into equation (19), equation (3) can be rewritten as:
\[
\begin{equation*}
\iiint_{V} \frac{1}{\mu_{r}}(\nabla \times \mathbf{T}) \bullet(\nabla \times \mathbf{E}) d v-k_{o}^{2} \varepsilon_{r} \iiint_{V} \mathbf{T} \bullet \mathbf{E} d v=\iint_{S_{o}} \mathbf{T} \bullet \mathbf{J} d s+\iint_{S_{i n p}} \mathbf{T} \bullet\left(\hat{n}_{i} \times \mathbf{H}_{i n p}\right) d s \tag{20}
\end{equation*}
\]

Substituting equations (4), (5) and \(\mathbf{H}_{\text {inp }}\) in the above equation and integrating over all the tetrahedral elements to evaluate the volume integrals on the left hand side and integrating over all the surface triangular elements to evaluate the surface integrals on the right hand side, it can be written in a matrix form as
\[
\begin{equation*}
\left[F_{1}\right]\{e\}+\left[F_{2}\right]\{I\}=\left\{b_{1}\right\} \tag{21}
\end{equation*}
\]
where \(\left[F_{l}\right]\) includes the volume integration and the surface integration over the input place due to mode matching,
\[
\begin{equation*}
\left[F_{2}\right]=\iint_{S_{o}} \mathbf{T} \bullet \mathbf{J} d s \tag{22}
\end{equation*}
\]
and \(\left\{b_{I}\right\}\) is the excitation vector due to the dominant mode incident in the waveguide. The evaluation of the volume integrals over a tetrahedral element is given in detail in [5].

Equations (21) and (16) are combined to form a system matrix equation:
\[
\left[\begin{array}{ll}
F_{1} & F_{2}  \tag{23}\\
M_{1} & M_{2}
\end{array}\right]\left[\begin{array}{l}
e \\
I
\end{array}\right]=\left[\begin{array}{c}
0 \\
b_{1}
\end{array}\right]
\]

In the above system matrix \(F_{1}\) and \(F_{2}\) are sparse matrices and \(M_{1}\) and \(M_{2}\) are dense matrices and also the total matrix is complex and non-symmetric in nature. This matrix equation is solved using a diagonally preconditioned biconjugate gradient algorithm, where it is necessary to store only the non zero entries of the matrix.

The solution of equation (23), enables the computation of the electric field in the computational volume and the equivalent magentic and electric current densities on the surface terminating the computational domain. Using the equivalent electric and magnetic current densities on the surface terminating the computational domain, the radiated electric far field is computed as [4]
\[
\begin{align*}
\left.\mathbf{E}_{f r a d}(\mathbf{r})\right|_{r \rightarrow \infty}= & -j k_{o} \eta_{o} \frac{\exp \left(-j k_{o} r\right)}{4 \pi r} \iint(\hat{\theta} \hat{\theta}+\hat{\phi} \hat{\phi}) \\
& \bullet \mathbf{J}\left(x^{\prime}, y^{\prime}\right) \exp \left(j k_{o} \sin \left(\theta\left(x^{\prime} \cos \phi+^{\prime} y \sin \phi\right)+z^{\prime} \cos \theta\right)\right) d x^{\prime} d y^{\prime} \\
+ & j k_{o} \frac{\exp \left(-j k_{o} r\right)}{4 \pi r} \iint(-\hat{\theta} \hat{\phi}+\hat{\phi} \hat{\theta}) \\
& \bullet \mathbf{M}\left(x^{\prime}, y^{\prime}\right) \exp \left(j k_{o} \sin \left(\theta\left(x^{\prime} \cos \phi+^{\prime} y \sin \phi\right)+z^{\prime} \cos \theta\right)\right) d x^{\prime} d y^{\prime} \tag{24}
\end{align*}
\]
where \((r, \theta, \phi)\) are the spherical coordinates of the observation point. The solution of equation (23) will also enables the calculation of electric field at the input plane, which can be used to calculte the reflection coefficient \(\Gamma\) at the input plane [9]. The input admittance is then calculated as
\[
\begin{equation*}
Y_{i n}=\frac{(1-\Gamma)}{(1+\Gamma)} Y_{o} \tag{25}
\end{equation*}
\]
where \(Y_{o}\) is the characteristic admittance of the feed transmission line.

\section*{Appendix 2}

\title{
Listing of the Distribution Disk
}

\section*{/FEMOM3DR-1.0}
total 10
\begin{tabular}{llrllll} 
drwxr-xr-x & 2 & cjr & 1024 & Jul & 2 & \(09: 47\) \\
drwxr-xr-x & 2 & cjr & 512 & Jul & 2 & \(09: 48\) \\
Example1/ \\
drwxr-xr-x & 2 & cjr & 1024 & Jul & 2 & \(09: 49\) \\
Example3/ \\
drwxr-xr-x & 2 & cjr & 2048 & Jul & 2 & \(09: 50\) \\
FEMOM3DR/ \\
drwxr-xr-x & 2 & cjr & 512 & Jul & 2 & \(09: 51\) \\
& & & & PRE_FEMOM3DR/
\end{tabular}
/FEMOM3DR-1.0/PRE_FEMOM3DR
total 63
\begin{tabular}{|c|c|c|c|c|c|}
\hline -rw-r--r-- & 1 cjr & 202 Jul & 2 & 09:52 & README \\
\hline -rW-r--r-- & 1 cjr & 6741 Oct & 31 & 1997 & cosmos 2 fem.f \\
\hline -rw-r--r-- & 1 cjr & 5295 Oct & 31 & 1997 & edge.f \\
\hline -rw-r--r-- & 1 cjr & 307 Oct & 31 & 1997 & makefile \\
\hline -rW-r--r-- & 1 cjr & 1075 Oct & 31 & 1997 & meshin.f \\
\hline -rW-r--r-- & 1 cjr & 1723 Oct & 31 & 1997 & param0 \\
\hline -rw-r--r-- & 1 cjr & 1289 Oct & 31 & 1997 & pmax.f \\
\hline -rW-r--r-- & 1 cjr & 9090 May & 20 & 14:02 & pre_femom3dr.f \\
\hline -rw-r--r-- & 1 cjr & 3854 Oct & 31 & 1997 & surfel.f \\
\hline
\end{tabular}
/FEMOM3DR-1.0/FEMOM3DR
total 380

\begin{tabular}{|c|c|}
\hline -rw-r--r-- & 1 cjr \\
\hline -rw-r--r-- & 1 cju \\
\hline -rW-r--r-- & 1 cju \\
\hline -rW-r--r-- & 1 cjr \\
\hline -rW-rー-r-- & 1 cjr \\
\hline -rW-r--r-- & 1 cjr \\
\hline -rW-r--rー- & 1 cjr \\
\hline -rW-r--r-- & 1 cjr \\
\hline
\end{tabular}
/FEMOM3DR-1.0/Example1
\begin{tabular}{rlrrl}
882 & Oct 30 & 1997 & pleq.f \\
4933 & Oct 30 & 1997 & quadpts.f \\
3102 & May & 20 & \(14: 07\) & radpattn.f \\
2983 & Jun & 2 & \(09: 55\) & scatter_coax.f \\
4240 & May & 27 & \(16: 29\) & scatter_cwg.f \\
4384 & Jul & 1 & \(10: 32\) & scatter_rwg.f \\
307 & Oct & 30 & 1997 & second.f \\
4338 & Jun & 15 & \(09: 45\) & selmts_coax.f \\
5312 & Oct & 30 & 1997 & selmts_cwg.f \\
9097 & Oct 30 & 1997 & selmts_rwg.f \\
2219 & Oct 30 & 1997 & triang1_rwg.f \\
2682 & Oct 30 & 1997 & triang_coax.f \\
2611 & Oct 30 & 1997 & triang_cwg.f \\
819 & Oct 30 & 1997 & triang_rwg.f \\
1438 & Oct 30 & 1997 & triangeh.f \\
2905 & Oct 30 & 1997 & triangej.f \\
3089 & Oct 30 & 1997 & triangej0.f \\
2449 & Oct 30 & 1997 & triangej01.f \\
3105 & Oct 30 & 1997 & triangem.f \\
1693 & Oct 30 & 1997 & triangem0.f \\
1238 & May & 8 & \(10: 08\) & unorm.f \\
469 & Oct 30 & 1997 & vcross.f \\
382 & Oct 30 & 1997 & vat.f \\
5148 & May 19 & \(08: 37\) & zmatrixeh.f \\
9146 & Jul & 1 & \(10: 12\) & zmatrixej.f \\
7738 & Jul & 1 & \(10: 12\) & zmatrixem.f
\end{tabular}

882 Oct 301997 pleq. f 4933 Oct 301997 quadpts.f 3102 May 20 14:07 radpattn.f 2983 Jun 2 09:55 scatter_coax.f 4240 May 27 16:29 scatter_cwg.f 4384 Jul 1 10:32 scatter_rwg.f
307 Oct 301997 second.f
4338 Jun 15 09:45 selmts_coax.f
5312 Oct \(30 \quad 1997\) selmts_cwg.f
9097 Oct \(30 \quad 1997\) selmts_rwg.f
2219 Oct 301997 triang1_rwg.f
2682 Oct 301997 triang_coax.f
2611 Oct 301997 triang_cwg.f
819 Oct 301997 triang_rwg.f
1438 Oct \(30 \quad 1997\) triangeh.f
2905 Oct 301997 triangej.f
3089 Oct 301997 triangej0.f
2449 Oct 301997 triangej01.f
3105 Oct 301997 triangem.f
1693 Oct 301997 triangem0.f
1238 May 8 10:08 unorm.f
469 Oct 301997 vcross.f
382 Oct 301997 vdot.f
5148 May 19 08:37 zmatrixeh.f
9146 Jul 1 10:12 zmatrixej.f
7738 Jul 1 10:12 zmatrixem.f

\section*{／FEMOM3DR－1．0／Example2}
total 2302
\begin{tabular}{|c|c|}
\hline －rw－r－－r－－ & 1 cjr \\
\hline －rW－rー－r－－ & 1 cjr \\
\hline －rW－r－－r－－ & 1 cjr \\
\hline －rW－r－－r－－ & 1 cjr \\
\hline －rW－r－－r－－ & 1 cju \\
\hline －rw－r－－r－－ & 1 cjr \\
\hline
\end{tabular}
\begin{tabular}{rlrll}
32 & May & 21 & \(09: 42\) & input \\
22 & May & 12 & \(15: 24\) & rwg．MAT \\
106939 & May & 12 & \(15: 23\) & rwg．MOD \\
4895 & Jul & 1 & \(10: 30\) & rwg．OUT \\
187701 & Jul & 1 & \(09: 50\) & rwg．PIN \\
751 & Jul & 1 & \(09: 50\) & rwg．POUT \\
80 & Jul & 1 & \(10: 30\) & rwg＿bicgd．DAT \\
460142 & Jul & 1 & \(09: 50\) & rwg＿edges．DAT \\
134680 & Jul & 1 & \(09: 50\) & rwg＿nodal．DAT \\
263284 & Jul & 1 & \(09: 50\) & rwg＿surfed．DAT \\
16644 Jul & 1 & \(09: 50\) & rwg＿surfel．DAT
\end{tabular}
／FEMOM3DR－1．0／Example3
\[
\begin{aligned}
& \text { total } 2475 \\
& \text {-rw-r--r-- } 1 \text { cjr } \\
& \text {-rw-r-ーr-- } 1 \text { cjr } \\
& \text {-rW-r--r-- } \quad 1 \text { cjr } \\
& \text {-rw-r--r-- } \quad 1 \text { cjr } \\
& \text {-rw-r--r-- } 1 \text { cjr } \\
& \text {-rw-rw---- } 1 \text { cjr } \\
& \text {-rw-r--r-- } 1 \text { cjr } \\
& \text {-rw-r--r-- } 1 \text { cjr } \\
& \text {-rw-r--r-- } 1 \text { cjr } \\
& \text {-rw-r--r-- } 1 \text { cjr } \\
& \text {-rw-r--r-- } \quad 1 \text { cjr } \\
& \text {-rw-r--r-- } 1 \text { cjr }
\end{aligned}
\]
\begin{tabular}{rlrll}
22 & May & 21 & \(09: 15\) & cwg．MAT \\
115058 & May & 27 & \(14: 46\) & cwg．MOD \\
4934 & Jul & 1 & \(14: 50\) & cwg．OUT \\
202757 & Jul & 1 & \(14: 01\) & cwg．PIN \\
751 & Jul & 1 & \(14: 01\) & cwg．POUT \\
1611 & May & 27 & \(14: 45\) & cwg．SES \\
80 & Jul & 1 & \(14: 50\) & cwg＿bicgd．DAT \\
506778 & Jul & 1 & \(14: 01\) & cwg＿edges．DAT \\
147036 & Jul & 1 & \(14: 01\) & cwg＿nodal．DAT \\
265164 & Jul & 1 & \(14: 01\) & cwg＿surfed．DAT \\
19282 & Jul & 1 & \(14: 01\) & cwg＿surfel．DAT \\
32 & May & 27 & \(15: 37\) & input
\end{tabular}

\section*{Appendix 3}

\section*{Sample *.SES files of COSMOS/M}

The geometry modeling and meshing can be accomplished by using COSMOS/M. A variety of commands are available to define geometries. The constructed geometry is meshed and the mesh data can be written to a file with the Modinput command. Dielectric materials are identified by using material property command before meshing the corresponding part of the dielectric material. These are used as indices to tetrahedral elements, which will correspond to an entry in the problem.MAT file. Specification of the surfaces which are perfectly conducting, surfaces forming the radiating aperture and the input plane is accomplished by enforcing pressure boundary conditions on respective surfaces. Before the pressure condition is specified, a load condition has to be defined to indicate what type of surface is being specified. Load conditions of 1,2 , and 3 corresponds to perfectly conducting surface, surface at the fictitious outer boundary and surface at the input plane respectively.

The *.SES files for the sample runs presented in section 4 are given below.

\section*{Example 1:}
```

C*
C* COSMOS/M Geostar v1.75
C* Problem : /usr0/cjr/COSMOS/3d/FEMOM3DR/coax/coax
Date :
C*
PLANE Z 0 1
VIEW 0 0 1 0
PT 1 0 0 0
PT 2 1 0 0
SCALE 0
CRPCIRCLE 1 1 2 1 3604
SCALE 0
PT 6 1.57 0 0
SCALE 0
CRPCIRCLE 5 1 6 1.57 360 4
SCALE 0
CT 1 0 0.5 1 1 0
CT 2 0 0.5 1 5 0
RG 1 2 2 1 0

```
\[
\begin{aligned}
& -2.25 \quad 0.25 \\
& \left.\begin{array}{lllllllll}
\text { SFGEN } & 1 & 5 & 5 & 1 & 0 & 0 & 0 & -1.0 \\
\text { SFEXTR } & 21 & 24 & 1 & Z & -1.0
\end{array}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \text { SFGEN }
\end{aligned}
\]

CLS 1
ACTSET LC 3
PRG \(14 \begin{array}{llll}3 & 1 & 3 & 4\end{array}\)

\section*{Example 2:}
```

 C*
 C* COSMOS/M Geostar V1.75
 C* Problem : /usr0/cjr/COSMOS/3d/FEMOM3DR/rwg Date :
 C*
 C* FILE rwg.in 1 1 1 1
 SF4CORD 1 -0.35 -0.155 0 0. 35 -0.155 0 0.35 0.155 0-0.35 0.155
 0
SCALE 0
SFEXTR 1 4 1 Z -0.25
SCALE 0
CLS 1
SF4CR 6 5 12 8 11 0
PH 1 SF 1 0.1 0.001 1
PT 9 -0.45 -0.25 0
PT 10 0.45 -0.25 0
PT 11 0.45 0.25 0
PT 12 -0.45 0.25 0
SCALE 0
CRLINE 13 9 10
CRLINE 14 10 11
CRLINE 15 11 12
CRLINE 16 12 9
CT 1
CT 2 0 0.1 4
RG 1 2 2 1 0
SFEXTR 13 16 1 z -0.3
CLS 1
SF4CR 11 17 20 22 24 0
SF4CORD 12 -0.5 -0.3 0.1 0.5 -0.3 0.1 0.5 0.3 0.1 - - 0.5 0.3 0.1
SCALE 0
SFEXTR 25 28 I Z -0.5
CLS 1
SF4CR 17 29 36 32 35 0
CLS 1
PHPLOT 1 1 1
SELINP SF 1 1 1 1
SELINP SE 7 11 1 1
SELINP RG 1 1 1 1
CLS 1

```
```

 PH 2 SF 7 0.1 0.001 1
 CLS 1
 UNSELINP SF 1 1 1 1
 UNSELINP SF
 UNSELINP RG 1 1 1 1
SELINP SF 12 17 1 1
PH 3 SF 12 0.1 0.001 1
PART 1 1 1
PART 2 2 3
CLS 1
PARTPLOT 2 2 1
PARTPLOT 1 2 1
MPROP 1 PERMIT 1
MA_PART 1 1 1 1 0 0 4
MA_PART 2 2 1 0 0 4
NMERGE 1 605 1 0.0001 0 0 0
NCOMPRESS 1 605
CLS 1
INITSEL,SF,1,1
INITSEL,RG,1,1
CLS 1
ACTSET LC 1
PSF 2
PSF 7lllllllll
PRG 1 1 1 1 1 1 1 4
ACTSET LC 2
PSF 12 2 17 17 2 2 4
ACTSET LC 3
PSF }

```

\section*{Example 3:}

C*
```

C* COSMOS/M Geostar V1.75
C* Problem : cwg Date : 5-27-98 Time : 15: 3:49
C*
C* FILE Cwg.in 1 1 1 1
PLANE Z 0 1
VIEW 0 0 1 0
PT 1 0 0 0
PT 2 3.75 0 0
CRPCIRCLE 1 1 2 3.75 360 4
SCALE 0
CT 1 0 1.2 1 1 0
RG 1 1 1 0
PT 6 -4.5 -4.5 0
PT 7 4.5 -4.5 0

```
```

 PT 8 4.5 4.5 0
 PT 9 -4.5 4.5 0
 SCALE 0
 CRLINE 5 6 7
 CRLINE 6 7 8
 CRLINE
 CRLINE 8 9 6
 CT 2 0 0 1.2 2 1 5 0
 RG 2 2 2 2 1 0
 SFEXTR 1 4 1 Z -3.0
 VIEW 1 1 1 0
 RGGEN 1 1 1 1 1 0 0 0 0 -3.0
 PT 14 -4.5 -4.5 -3.25
 PT 15 4.5 -4.5 -3.25
 PT 16 4.5 4.5 -3.25
 PT 17 -4.5 4.5 -3.25
 CLS 1
 CLS 1
 SCALE 0
 SCALE 0
CRLINE 17 14 15
CRLINE 18 15 16
CRLINE 19}10161
CRLINE 20 17 14
CT 4 0 1.2 1 20 0
RG 4 1 4 0
SFEXTR 5 8 1 Z - 3.25
CLS 1
SELINP SF 1 4 1 1 1
SELINP RG I 1 1 1 1
SELINP RG
CLS 1
PH 1 SF 1 1.2 0.0001 1
PART 1 1 1
INITSEL SF 1 1
INITSEL RG 1 1
PT 18 -5 -5 0.5
PT 19 5
SCALE 0
PT 20 5 5 0.5
PT 21 -5 5 0.5
CRLINE 25}1881
CRLINE 26 19 20
CRIINE 27 20 21
CRIINE 28 21 18
CT 5 0 1.2 1 28 0

```
```

 RG 5 1 5 5 0
 RGGEN 1
 SFEXTR 25 28 1 Z -4.0
 CLS 1
 SELINP SF 5
 CLS 1
SELINP RG 1 2 1 1
SELINP RG 4 6 1 1
CLS 1
PH 2 RG 1 1.2 0.0001 1
PH 3 RG 5 1.2 0.0001 1
PART 2 2 3
CLS 1
INITSEL SF 1 1
INITSEL RG 1 1
PARTPLOT 1 2 1
CLS 1
PARTPLOT 1 1 1
MA_PART 1}11%110000
CLS 1
PARTPLOT 2 2 1
MA_PART 2 2 2 1 0 0 0 4
PARTPLOT 1 2 1
NMERGE 1 644 1 0.0001 0 0 0
NCOMPRESS 1 644
ACTSET LC 1
PSF}
PRG 2 1 1 2 2 1 1 1 4

```

```

ACTSET LC 2
PRG }

```

```

ACTSET LC 3
PRG}3

```

\section*{Appendix 4}

\section*{Generic Input file format for PRE_FEMOM3DR}

The following is the format of the generic input file (problem.PIN) to be supplied to PRE_FEMOM3DR with required nodal data.
\[
\begin{aligned}
& N_{n} \\
& N_{e} \\
& N_{p} \\
& N_{a 1} \\
& N_{a 2} \\
& N_{g} \\
& x_{1}, y_{1}, z_{1} \\
& x_{2}, y_{2}, z_{2} \\
& \cdot \\
& \cdot \\
& \cdot \\
& \cdot \\
& \dot{x}_{N_{p}}, y_{N_{p}}, z_{N_{p}}
\end{aligned}
\]
\[
n_{11}, n_{21}, n_{31}, n_{41}, m g(1)
\]
\[
n_{12}, n_{22}, n_{32}, n_{42}, m g(2)
\]
\[
n_{1 N_{e}}, n_{2 N_{e}}, n_{3 N_{e}}, n_{4 N_{e}}, m g\left(N_{e}\right)
\]
- \(N_{n}\) : Number of nodes
- \(N_{e}\) : Number of trahedral elements
- \(N_{p}\) : Number of triangular elemets on PEC surfaces
- \(N_{a 1}\) : Number of triangular elements on surface at the outer boundary
- \(N_{a 2}\) : Number of triangular elements on surface at the input plane
- \(N_{g}\) : Maximum number of material groups

Coordinates of the nodes \(1,2,3 \ldots, N_{n}\)

Node numbers connecting each tetrahedral element \(1,2,3, \ldots ., N_{e}\), and material group index number for each element
\[
\begin{aligned}
& N_{e 1}, n_{11}, n_{21}, n_{31} \\
& N_{e 2}, n_{12}, n_{22}, n_{32} \\
& \cdot \\
& \cdot \\
& \dot{N}_{e N_{p}}, n_{1 N_{p}}, n_{2 N_{p}}, n_{3 N_{p}} \\
& N_{e 1}, n_{11}, n_{21}, n_{31} \\
& N_{e 2,}, n_{12}, n_{22}, n_{32} \\
& \cdot \\
& \cdot \\
& \cdot \\
& N_{e N_{a 1}}, n_{1 N_{a 1}}, n_{2 N_{a 1}}, n_{3 N_{a 1}} \\
& N_{e 1}, n_{11}, n_{21}, n_{31} \\
& N_{e 2}, n_{12}, n_{22}, n_{32} \\
& \cdot \\
& N_{e N_{a 2},}, n_{1 N_{a 2}}, n_{2 N_{a 2}}, n_{3 N_{a 2}}
\end{aligned}
\]

Global number of the terahedral element with a triangular face on PEC surface
( \(N_{e 1}, N_{e 2}, \ldots \ldots . ., N_{e N_{p}}\) )
and three nodes connecting the triangular element

Global number of the terahedral element with a triangular face on the outer boudary surface ( \(N_{e 1}, N_{e 2}, \ldots \ldots . ., N_{e N_{a 1}}\) )
and three nodes connecting the triangular element

Global number of the terahedral element with a triangular face on input plane surface
\(\left(N_{e 1}, N_{e 2}, \ldots \ldots . ., N_{e N_{a 2}}\right)\)
and three nodes connecting the triangular element

\section*{REFERENCES}
[1] X.Yuan, "Three dimensional electromagnetic scattering from inhomogeneous objects by the hybrid moment and finite element method," IEEE Trans. Mocrowave Theory and Techniques, Vol.MTT-38, pp.1053-1058, August 1990.
[2] J.M.Jin, The Finite Element Method in Electromagnetics, John Wiley \& Sons, Inc., New York, 1993.
[3] COSMOS/M User Guide, Version 1.75, Structural Research and Analysis Corporation, Santa Monica CA, 1996
[4] R.F.Harrington, Time Harmonic Electromagnetic Fields, McGraw Hill Inc, 1961.
[5] C.J.Reddy, M.D.Deshpande, C.R.Cockrell and F.B.Beck, "Finite element method for eigenvalue problems in electromagnetics," NASA Technical Paper-3485, December 1994.
[6] S.M.Rao, "Electromagnetic scattering and radiation of arbitrarily shaped surfaces by triangular patch modelling," Ph.D. Thesis, The University of Mississippi, August 1980.
[7] R.E.Collins, Field theory of guided waves, Second Edition, IEEE Press, New York, 1991.
[8] D.R.Wilton, S.M.Rao, D.H.Shaubert, O.M. Al-Bunduck and C.M.Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. on Antennas and Propagation, Vol.AP-32, pp.276-281, March 1984.
[9] C.J.Reddy, M.D.Deshpande, C.R.Cockrell and F.B.Beck, "Analysis of three-dimensional-cavity-backed aperture antennas using a combined finite element method/ method of moments/geometrical theory of diffraction technique," NASA Technical Paper 3548, November 1995.
```

