# Finite Element Solver for <br> 3-D Compressible Viscous Flows 

K. C. Reddy and J. N. Reddy

The University of Tennessee Space Institute Tullahoma, Tennessee 37388

Interim Report of Contract No. NAS8-36555
For Period: April 1986 - October 1986

Submitted to

NASA/MSFC
Marshall Space Flight Center, AL 35812
by
The University of Tennessee Space Institute
Tullahoma, Tennessee 37388
December 1986
:NASA-CR-179182) FINITE ELEMENT SOLVER FOR N87-29763
3-D COMPfessible VISCOUS FLOWS Interim keport, Apr. - oct. 1986 'Tennessee Uaiv. Space Inst. 135 p Avail: NTIS HC AO3/MF Unclas Au1 CSCL 20D G3/34 0063976

## Table of Contents

1. Introduction ..... 1
2. Technical Approach ..... 4
2.1 Governing Equations ..... 4
2.2 Finite Element Model ..... 6
2.3 Locally Implicit Approximations ..... 11
3. References ..... 12
Appendix I Finite Element Equations for Navier-Stokes Equations ..... 13
Appendix II 3-D Finite Element Navier-Stokes Code ..... 18

## 1. INTRODUCTION

The space shuttle main engine (SSME) has extremely complex internal flow structure. The geometry of the flow domain is three-dimensional with complicated topology. The flow is compressible, viscous and turbulent with large gradients in flow quantities and regions of recirculations. In recent years computer codes are being developed ${ }^{(1-4)}$ to solve the flow equations in different regions of the SSME such as the hot gas manifold (HGM) region. The analysis of the flow field in SSME involves several tedious steps. One is the geometrical modelling of the particular zone of the SSME being studied. It is usually available in the form of engineering drawings, in terms of algebraic equations for different pieces of the surfaces or in a CAD (computer aided design) system. Accessing the geometry definition, digitizing it and developing surface interpolations suitable for an interior grid generator requires considerable amount of manual effort. There are several types of grid generators available with some general-purpose finite element programs, such as NASTRAN, ADINA, ABQUS, etc. However, these programs require considerable amount of effort on the part of the user to input the geometry to the grid generators; also, the grid generated by those programs are not always the most appropriate grids for the flows being modelled. Next, an efficient and robust computational scheme for solving 3D Navier-Strokes equations has to be implemented for this class of problems. Post processing software has to be adapted to visualize and analyze the computed 3D flow field. Different elements of the above process have been studied in the past and other parts are yet to be developed. The current report discusses the progress made in a project to develop software for the analysis of the flow in the space shuttle main engine and similar complex internal flows.

A CFD code for practical applications should have the following features. It should be reasonably accurate for the class of problems it is designed to solve, with grids that can be accommodated on the present day computers. It should be robust in the sense that it is numerically stable for a broad range of initial and boundary conditions and geometrical parameters, and tolerate some variations in the grid resolution and structure. It should be computationally efficient for obtaining accurate solutions with reasonable computational and human resources. Standard of efficiency, however, is relative and it can only be measured against the current CFD software or which can be foreseen in the immediate future. Another important aspect of a CFD code is its usability, as to how much effort a user has to expend to solve practical problems with it.

For computing the viscous compressible flow inside the main engine where the flow undergoes complex turns through various chambers and ducts, it is necessary to discretize the physical space with several competing requirements. The geometry of the internal surfaces is typically represented in a CAD system or in some equivalent form by the designer. The surface data representation should be interfaced with suitable interpolation software. The refined spline surface representation of the flow boundaries will be the input for the grid generation routines. The topology of the grid structure depends on the flow solver algorithm to be used. Finite difference codes usually impose constraints on the grid structure such as the separability of the indices for efficient computational procedures, while the finite element method can be implemented with less stringent requirements on the grid structure. The grid should provide reasonable resolution of the flow field within the limits of the grid selected by the user. This requires providing more grid points and/or special methods in regions of large gradients of flow quantities, such as the viscous zones near solid boundaries. The gird should meet certain smoothness requirements so that the metrics of the curvilinear grid can be computed numerically and the computed metrics .are nonsingular. Unreasonably skewed grid cells or elements, and singular points in the grid where the local transformation of the physical space to computational space has very small or very large Jacobians, should be avoided if at all possible. Otherwise such grids will require special handling by the flow solver algorithm and also may give rise to numerical inaccuracies and instabilities.

There are several grid generation techniques and special purpose codes which can generate reasonable grids for simple two-dimensional and three-dimensional geometries, for both internal and external flows. These techniques fall under two classes: algebraic generators and elliptic generators. Algebraic generators use various interpolation and stretching functions while elliptic generators solve a set of elliptic partial differential equations. While both techniques are effective for simple geometric regions, it is usually difficult to use them to develop a composite grid over a complex internal flow domain. Finite element community have developed extensive amount of software for generating algebraic grid suitable for finite element solvers. For example, NASTRAN (a general purpose finite element program primarily developed for structural analysis) contains grid generators for 2D and 3D structures. Also, the program PATRAN (developed by PDA Engineering) contains 2D and 3D grid generators and pre- and post processing capabilities. In the current project some parts of the software such as PATRAN will be adapted and developed to generate body conforming, curvilinear finite element meshes of the flow domains inside the SSME.

Computation of the flow field inside the space shuttle main engine requires the application of the state-of-the-art CFD technology. Several computer codes ${ }^{(1-4)}$ are under development to solve three dimensional Navier-Stokes equations with different turbulence models for analyzing the SSME internal flow, such as the flow through the how gas manifold (HGM). The computational methods ${ }^{(5-6)}$ used in the Navier-Stokes codes fall into two major categories: finite difference and finite element methods. Some of the algorithms are designed to solve the unsteady compressible Navier-Stokes equations, either by explicit or by implicit factorization methods, using several hundred or thousands of time steps to reach a steady-state solution asymptotically. Other algorithms attempt to solve the steady-state equations by relaxation methods. All of them require body-fitting curvilinear grids with sufficient resolution. Grid requirements, however, differ greatly with the region being modelled and the algorithm used. Implicit factorization based on finite differences typically use global numerical transformations whereby the transformed grid in the computational space is uniform and rectilinear. This requires the grid to have indices which are separable in the three directions for three dimensional problems, and also be reasonably smooth. However, such requirements may introduce grid singularities when complicated domains are discretized. Flow solver algorithm will have to deal with such grid singularities. Explicit schemes and finite element algorithms have less stringent requirements on the grid structure. However, explicit schemes are slow to converge because of the stability limitations on time step, particularly for large scale viscous problems.

The finite element method is characterized by three basic features which are credited for the enormous success, the method has enjoyed in the solution of practical engineering problems ${ }^{(6)}$. The first feature is that every computational domain is viewed as a collection of simple subdomains, called finite elements. This feature allows us to represent complicated geometries as assemblages of simple parts. It is a desirable feature in the solution of flow problems in complex configurations, not only to describe the complex geometry but also to choose the most suitable computational grid for a particular flow. This feature also allows us to place or remove any obstructions routinely into the flow field. The second feature is that over each element the solution is represented by polynomials of desired degree. This allows us to compute the solution as a continuous function of position instead of at selected few points. Desired degree of approximation (e.g., linear, quadratic, etc.) can be easily and routinely specified without rewriting the whole or parts of the program. The third feature is that the relationship (i.e., the algebraic equations) between the solution and its dual variables (i.e., velocities and forces) is developed using a variational method, such as the Galerkin method. The boundary conditions are then applied on the algebraic
equations directly before solving. The three features of the finite element method also allow the easy development and interfacing of pre- and post-processors, and user-defined subroutines for equations for state and turbulence models.

The Galerkin finite element method (i.e., the weight functions are the same as the approximation functions) applied to flow problems always results in implicit schemes. The weighted-residual (or Petrov-Galerkin) method, in which the weight functions are different from the approximation functions, can be used in conjunction with explicit schemes to obtain explicit final equations. For example, by selecting the weight functions to be orthogonal to the approximation functions, the mass matrix can be diagonalized. However, such considerations are entirely in the interest of obtaining explicit schemes and not necessarily in the interest of accuracy or even computational efficiency. In the current project implicit finite element scheme with suitable dissipation terms for stability is being developed. A relaxation procedure, known as the locally implicit scheme is being developed to solve the coupled set of algebraic equations efficiently.

In the following sections we discuss the technical approach to the development of the finite element scheme and the relaxation procedure. Appendix I contains the details of the - equations derived and Appendix II has a listing of the three dimensional finite element code for the compressible Navier-Stokes equations. Future reports will discuss the numerical results for specific problems.

## 2. TECHNICAL APPROACH

### 2.1 GOVERNING EQUATIONS

In an Eulerian description, used most extensively in fluid dynamics, the coordinate system is fixed in space rather than in the body, and measurements of density, velocity, pressure, etc. are made for the material particle that happens to be in a given location at that particular time. The basic equations of a continuous medium in the Eulerian description are:

Continuity Equation. - The law of conservation of mass leads to

$$
\begin{equation*}
\frac{\partial}{\partial t}(\rho)+\underline{\nabla} \cdot(\rho \underline{v})=0 \tag{1}
\end{equation*}
$$

where $\rho$ is the density of the medium, $\underline{v}$ is the velocity vector and $\underline{x}=\left(x_{1}, x_{2}, x_{3}\right)$ the spatial coordinates.

Equations of Motion. - The law of balance of linear momentum leads to the celebrated Eulerian equation of motion,

$$
\begin{equation*}
\frac{\partial}{\partial t}(\rho \underline{v})+\underline{\nabla} \cdot(\rho \underline{v})=\underline{\nabla} \cdot \underline{\sigma}+\underline{F} \tag{2}
\end{equation*}
$$

Here $\underline{F}$ the body force vector (measured per unit volume) and $\underline{\sigma}$ the total stress tensor, which can be divided into hydrostatic and viscous parts:

$$
\begin{equation*}
\underline{\sigma}=-p \underline{I}+\underline{\tau} \tag{3}
\end{equation*}
$$

Here $p$ denotes the hydrostatic pressure, $\underline{\tau}$ the viscous (or shear) stress tensor, and $\underline{I}$ denotes the unit tensor.

An application of the law of balance of angular momentum and neglect of microstructural effects such as couple stresses lead to the symmetry of stress tensor,

$$
\begin{equation*}
\sigma_{i j}=\sigma_{j i}, \tau_{i j}=\tau_{j i} \quad\left(\underline{\sigma}=\underline{\sigma}^{T}\right) \tag{4}
\end{equation*}
$$

Energy Equation. - The law of conservation of energy (the first law of thermodynamics) leads to

$$
\begin{equation*}
\frac{\partial}{\partial t}(\rho e)+\underline{\nabla} \cdot(\rho e \underline{v})=\underline{\nabla} \cdot(\underline{\sigma} \cdot \underline{v})+\underline{F} \cdot \underline{v}+\rho S-\underline{\nabla} \cdot \underline{q} \tag{5}
\end{equation*}
$$

where $e$ is the total energy per unit mass,

$$
e=\varepsilon+\frac{1}{2} \underline{v} \cdot \underline{v}
$$

$\varepsilon$ being the specific internal energy, $S$ is the rate of internal heat generation per unit mass, and $\underline{q}$ is the heat flux vector or the rate of heat flow per unit area across the surface in the direction of its unit outward normal.

Constitutive Equations. - The thermodynamic pressure $p$ is related to the specific internal energy $\varepsilon$ and the density $\rho$ through an equation of state,

$$
\begin{equation*}
p=p(\varepsilon, \rho) \tag{6}
\end{equation*}
$$

and the viscous stress is related to the deformation rate tensor $\underline{d}$ through a constitutive equation of the form

$$
\begin{equation*}
\underline{\tau}=\underline{\tau}(\underline{d}, \underline{c}) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{d}=\frac{1}{2}\left[\underline{\nabla v}+(\underline{\nabla v})^{T}\right] \tag{8}
\end{equation*}
$$

and $\underline{c}$ is the tensor of viscosities.
For isotropic fluids obeying linear stress-strain relations (i.e. Newtonian fluids) we have

$$
\begin{equation*}
\tau_{i j}=2 \mu d_{i j} \tag{9}
\end{equation*}
$$

where $\mu$ is the viscosity.
Initial Conditions. - At time $t=0$, values of all the dependent variables ( $\rho, \underline{v}, e, p$ ) must be specified in the entire domain. It is not essential to specify all of these quantities at the same set of points.

Boundary Conditions. - Depending on the type of the boundary (e.g., rigid boundary, free surface, interface, plane of symmetry, etc.), there are different kinds of boundary conditions in a problem. At a rigid.boundary, the normal component of the particle velocity must coincide with the normal component of the velocity of the rigid boundary. For a fixed (in time) boundary, the normal component of the particle velocity must be zero at that boundary. A plane of symmetry can be interpreted as a fixed boundary. On a free surface, the pressure must vanish. At an interface (and at a contact discontinuity) the pressure and the normal component of particle velocity must be continuous, and the density, internal energy and the tangential component of particle velocity may be discontinuous (i.e. jumps may occur). Across moving shock fronts, the Rankine-Hugoniot relations must be satisfied.

### 2.2 FINITE ELEMENT MODEL

Writing the governing equations in terms of the velocities, pressure, density and internal energy, we obtain

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}-\underline{\nabla} \cdot(\rho \underline{v})=0 \\
\frac{\partial}{\partial t}(\rho \underline{v})+\underline{\nabla} \cdot(\rho \underline{v v})+\underline{\nabla} p=\mu \underline{\nabla} \cdot \underline{d}+\underline{F} \\
\frac{\partial}{\partial t}(\rho e)+\underline{\nabla} \cdot(\rho e \underline{v})+\underline{\nabla} \cdot(p \underline{v})=\mu \underline{\nabla} \cdot(\underline{d} \cdot \underline{v})+\underline{F} \cdot \underline{v}-\underline{\nabla} \cdot \underline{q} \tag{10}
\end{gather*}
$$

and $F$ is given by the equation of state. If we assume that the body force, heat flux, and the internal heat generation are zero. the last two terms in the energy equation dropout.

For simplicity and computational convenience, we denote

$$
\rho \underline{v}=\underline{V}, \quad \rho e=E
$$

so that (10) become

$$
\begin{gather*}
\frac{\partial}{\partial t}(p)+\underline{\nabla} \cdot \underline{V}=0 \\
\frac{\partial}{\partial t}(\underline{V})+\underline{\nabla} \cdot(\underline{v V})+\underline{v} P=\mu \underline{\nabla} \cdot \underline{d} \\
\frac{\partial}{\partial t}(E)+\underline{\nabla} \cdot(E \underline{v})+\underline{\nabla} \cdot(P \underline{v})=\mu \underline{\nabla} \cdot(\underline{d} \cdot \underline{v}) \tag{11}
\end{gather*}
$$

We seek approximate solutions to Eq. (11) using the finite element method.
Spatial Approximation. - Finite element approximations to Eq. (11) are sought over a typical element $\Omega^{e}$ :

$$
\begin{align*}
\rho & =\sum_{j=1}^{N} \rho_{j} \psi_{j}(\underline{x}) \\
V_{i} & =\sum_{j=1}^{N} V_{i}^{j}(t) \psi_{j}(\underline{x}) \\
E & =\sum_{j=1}^{N} E_{j}(t) \psi_{j}(\underline{x}) \tag{12}
\end{align*}
$$

where $\dot{\psi}_{j}(\underline{x})$ are the interpolation functions in space, $\rho_{j}, V_{i}^{j}$, and $E_{j}$ are the unknown, time-dependent, nodal values to be determined. In Eq. (12) we have assumed for simplicity the same type (linear or quadratic) of interpolation functions for all the variables. The Galerkin approximation amounts to seeking solutions to Eq. (11) in the form (12) by making the errors in Eq. (11) orthogonal to the trial functions. This leads to the following local set of nonlinear ordinary differential equations in time.

$$
\begin{align*}
{[A]\{\dot{\rho}\}+[B]\{V\} } & =0 \\
{[A]\{\dot{V}\}+[N]\{V\} } & =\{Q\} \\
{[A]\{\dot{E}\}+[M]\{E\} } & =\{R\} \tag{13}
\end{align*}
$$

Here the superposed dot denote total differentiation with respect to time, and

$$
A_{i j}=\int_{\Omega^{-}} \psi_{\alpha} \psi_{\beta} d \underline{x}, \quad B_{i j}=\int_{\Omega^{*}} \psi_{i} \frac{\partial \psi_{j}}{\partial x_{k}} d \underline{x}
$$

$$
\begin{gather*}
N_{i j}=\int_{\Omega^{e}} \psi_{i} \sum_{k=1}^{3} \frac{\partial}{\partial x_{k}}\left(v_{k} \psi_{j}\right) d \underline{x}+\int_{\Omega^{e}} \mu \underline{\nabla} \psi_{i} \cdot \underline{\nabla} \psi_{j} d \underline{x} \\
M_{i j}=\int_{\Omega^{e}} \psi_{i} \sum_{k=1}^{3} \frac{\partial}{\partial x_{k}}\left(v_{k} \psi_{j}\right) d \underline{x} \\
Q_{i k}=-\int_{\Omega^{e}} \psi_{i} \frac{\partial p}{\partial x_{k}} d \underline{x}, R_{i}=-\int_{\Omega^{e}} \psi_{i} \sum_{k=1}^{3} \frac{\partial}{\partial x_{k}}\left(p v_{k}\right) d \underline{x}+\int_{\Omega^{e}} \mu \underline{\nabla} \psi_{i} \underline{d} d \underline{x} \tag{14}
\end{gather*}
$$

where $\int_{\Omega^{e}}$ denotes integration over the element volume.
Equations (13) are to be further approximated (or numerically integrated with respect to time) to obtain a set of simultaneous algebraic equations.

Temporal Approximations. - Equations (13) are of the general form

$$
\begin{equation*}
[A \mid\{\dot{U}\}+[B]\{U\}=\{Q\} \tag{15}
\end{equation*}
$$

We approximate $U(t)$ by

$$
\begin{equation*}
U(t)=\sum_{j=1}^{\bar{n}} U_{j} \phi_{j}(t), \quad m=1,2, \ldots, M \tag{16}
\end{equation*}
$$

where $\phi_{j}(t)$ are approximation functions in time. Here we assume that $\phi_{j}$ are linear in $t$ (i.e., $n=2$ ):

$$
\phi_{1}(t)=\left(1-\frac{t}{\Delta t}\right), \quad \phi_{2}(t)=\frac{t}{\Delta t}, \quad 0 \leq t \leq \Delta t
$$

where $\Delta t$ denotes the time increment. Then the time derivative of $U$ is given by

$$
\begin{equation*}
\dot{U}=\left(U_{2}-U_{1}\right) / \Delta t \tag{17}
\end{equation*}
$$

It can be readily interpreted that $U_{1}$ is the value of $U$ at time $t=n(\Delta t)$, and $U_{2}$ is the value of $U$ at $t=(n+1) \Delta t$. Substituting Eq. (16) and (17) into Eq. (15), multiplying with $\phi_{2}(t)$ and integrating over 0 to $\Delta t$, we obtain

$$
\begin{equation*}
\left[A+\frac{2}{3} \Delta t B\right]\left\{U_{n+1}\right\}=\Delta t\{Q\}+\left[A-\frac{\Delta t}{3} B\right]\left\{U_{n}\right\} \tag{18}
\end{equation*}
$$

Thus the unknown vector $\left\{U_{n+1}\right\}$ can be solved in terms of the known vector $\left\{U_{n}\right\}$. It should be noted that the temporal approximations (18) can be applied to the local set (13). There are other methods of time integration which can be incorporated into the code.

Equations (18) can be assembled in the usual manner to obtain the global equations, which must be solved iteratively (after imposing the initial and boundary conditions of the problemi) for the nodal values, as the resulting algebraic equations are nonlinear. A flow chart of the computer program based on the formulation presented above is shown in Fig. 1.


Fig. 1. Flow Chart of the Computer Program

### 2.3 LOCALLY IMPLICIT APPROXIMATIONS

For large problems, it is not possible to solve the global (linearized) equations by direct methods. An efficient iterative method of solution has been formulated and it is known as the locally implicit method ${ }^{(7)}$. This is based on a modified Gauss-Seidel iteration technique with a symmetric inner iteration.

The linearized equations (18) for an element $j$ can be written in the form

$$
\begin{equation*}
L_{j} \Delta U_{j}=\operatorname{Res}\left(U^{n}\right)+\sum_{K \neq j} L_{k} \Delta U_{k}+Q \tag{19}
\end{equation*}
$$

where $\Delta U_{j}=U_{j}^{n+1}-U_{j}^{n}$ and the summation on the right hand side of (19) is limited to the elements surrounding the element $j$, with which the finite element equations over the element $j$ are coupled with. Equations (19) are solved by an iteration

$$
\begin{equation*}
L M_{j} \delta \Delta U_{j}=\operatorname{Res}\left(U^{n}\right)+\sum_{k \neq j} L_{k} \Delta U_{k}^{()}-L_{j} \Delta U_{j}^{(m)}+Q \tag{20}
\end{equation*}
$$

where $\Delta U_{j}^{m+1}=\Delta U_{j}^{(m)}+\delta \Delta U_{j}, L M_{j}$ is a modification to the matrix $L_{j}$ so as to achieve stability and rapid convergence of the iteration process. $\Delta U_{k}^{()}$. denotes either $\Delta U_{k}^{(m+1)}$ or $\Delta U_{k}^{(m)}$ depending on the latest available iterates for $\Delta U_{k}$. The iteration process of the equation (20) is carried out starting at a different corner of the computational space for each iteration. Eight such iterations complete one symmetric modified Gauss-Seidel iteration per time step for 3 -dimensional problems. This is a stable process with fast convergence properties in a local sense. It amounts to solving the equations (15) implicitly in a local sense for each node. It is not necessary to achieve full convergence at each time step if we need only the steady state solution. One symmetric sweep per time step is adequate. This process has been tested over a variety of model equations such as the 3 -dimensional Poisson equation and one dimensional Burger's equation. The same procedure has also been shown to work for two dimensional Euler equations with finite volume discretizations and artificial dissipation terms.

## 3. REFERENCES

1. Chang, L. C., Kwak, D., Dao, S. C., and Rosen, R., "A Three-Dimensional Incompressible Flow Simulation Method and Its Application to the Space Shuttle Main Engine, Part 1 - Laminar Flow", AIAA-85-0175, AIAA 23rd Aerospace Sciences Meeting, Reno, January 1985.
2. Spradley, L. W., "Application of Computational Methods to Internal and External Fluid Flows", Proceedings of a Workshop on Computational Fluid Dynamics in Aerospace Design, UTSI, Tullahoma, TN, June 1985.
3. Mukherjee, T., Przekwas, A. J., Tam, L. T., Holland, R. L. and Costes, N. C., "A Multidomain Global-Model Analysis of SSME, Workshop on Computational Fluid Dynamics, NASA Marshall Space Flight Center, Huntsville, AL, April 1986.
4. Rhie, J., "A General Purpose Navier-Stokes Solver for Internal Propulsion System Flows", AIAA-86-0207, Aerospace Sciences Meeting, January 1986.
5. Reddy, K. C. and J. S. Steinhoff, (eds.), Computational Fluid Dynamics, proceedings - of a workshop held at The University of Tennessee Space Institute, Tullahoma, TN, March 12-16, 1984.
6. Reddy, J. N., An Introduction to the Finite Element Method, McGraw-Hill, New York, 1984.
7. Reddy, K. C., "A Locally Implicit Scheme for Elliptic Problems", A Workshop on Computational Fluid Dynamics, NASA Marshall Space Flight Center, Huntsville, AL, April 1986.

## Appendix I

## Finite Element equations for Navier-Stokes Equations

Variational formulation over an element for the Navier-Stokes equations in nonconservation form:

$$
\begin{align*}
& 0= \int_{\Omega^{e}} w_{1}\left[\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+w \frac{\partial \rho}{\partial z}+\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)\right] d V \\
& 0=\int_{\Omega^{e}}\{ \left\{w_{2} \frac{\partial u}{\partial t}+w_{2} \rho\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)-p \frac{\partial w_{2}}{\partial x}+2 \mu \frac{\partial w_{2}}{\partial x}+2 \mu \frac{\partial w_{2}}{\partial x} \frac{\partial u}{\partial x}\right. \\
&\left.+\mu \frac{\partial w_{2}}{\partial y}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)+\mu \frac{\partial w_{2}}{\partial z}\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)-\lambda \frac{\partial w_{2}}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)\right\} d V \\
& \quad-\oint_{\Gamma^{e}} t_{x} w_{2} d s \\
& 0=\int_{\Omega^{e}}\left\{\begin{array}{l}
\rho w_{3} \frac{\partial v}{\partial t}+w_{3} \rho\left(u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right)-p \frac{\partial w_{3}}{\partial y}+\mu \frac{\partial w_{3}}{\partial x}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \\
\\
\end{array} \quad+2 \mu \frac{\partial w_{3}}{\partial y} \frac{\partial v}{\partial y}+\mu \frac{\partial w_{3}}{\partial z}\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)-\lambda \frac{\partial w_{3}}{\partial y}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)\right\} d V \\
& \quad \oint_{\Gamma^{e}} t_{y} w_{3} d s
\end{align*}
$$

$$
\begin{align*}
0=\int_{\Omega^{e}}\left\{\rho w_{4}\right. & \frac{\partial w}{\partial t}+w_{4} \rho\left(u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right)-p \frac{\partial w_{4}}{\partial z}+\mu \frac{\partial w_{4}}{\partial x}\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right) \\
+ & \left.\mu \frac{\partial w_{4}}{\partial y}\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)+2 \mu \frac{\partial w_{4}}{\partial z} \frac{\partial w}{\partial z}-\lambda \frac{\partial w_{4}}{\partial z}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}-\frac{\partial w}{\partial z}\right)\right\} d V \\
& -\oint_{\Gamma^{e}} t_{z} w_{4} d s \tag{4}
\end{align*}
$$

$$
0=\int_{\Omega^{e}}\left\{\rho c_{v} w_{5} \frac{\partial T}{\partial t}+\rho c_{v} w_{5}\left(u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}+w \frac{\partial T}{\partial z}\right)-w_{5} \rho Q\right.
$$

$$
+k_{x} \frac{\partial w_{5}}{\partial x} \frac{\partial T}{\partial x}+k_{y} \frac{\partial w_{5}}{\partial y} \frac{\partial T}{\partial y}-k_{z} \frac{\partial w_{5}}{\partial z} \frac{\partial T}{\partial z}+w_{5} p\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)
$$

$$
-w_{5}\left(\frac{\partial u}{\partial x} \tau_{x x}+\frac{\partial u}{\partial y} \tau_{x y}+\frac{\partial u}{\partial z} \tau_{x z}+\frac{\partial v}{\partial x} \tau_{x y}+\frac{\partial v}{\partial y} \tau_{y y}+\frac{\partial v}{\partial z} \tau_{y z}\right.
$$

$$
\left.\left.+\frac{\partial w}{\partial x} \tau_{x z}+\frac{\partial w}{\partial y} \tau_{y z}+\frac{\partial w}{\partial z} \tau_{z z}\right)\right\} d V
$$

$$
\begin{equation*}
-\oint_{\Gamma^{e}} q w_{5} d s \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
t_{x}=\sigma_{x} n_{x}+\sigma_{x y} n_{y}+\sigma_{x z} n_{z}, \quad t_{y}=\sigma_{x y} n_{x}+\sigma_{y} n_{y}+\sigma_{z y} n_{z} \\
t_{z}=\sigma_{x z} n_{x}+\sigma_{y z} n_{y}+\sigma_{z} n_{z}, \quad q=K_{x} \frac{\partial T}{\partial x} n_{x}+K_{y} \frac{\partial T}{\partial y} n_{y}+K_{z} \frac{\partial T}{\partial z} n_{z}
\end{gathered}
$$

## FINITE ELEMENT FORMULATION

Let $\rho=\sum_{j=1}^{n} \rho_{j} \psi_{j}(x, y, z), \quad u=\sum_{j=1}^{n} U_{j} \psi_{j}(x, y, z), \quad$ etc.

Equations (1) - (5) can be formulated as

$$
\begin{aligned}
{\left[M^{1}\right]\{\dot{\rho}\}+\left[K^{1}\right]\{\rho\} } & =\left\{F^{1}\right\} \\
{\left[M^{2}\right]\{\dot{U}\}+\left[K^{2}\right]\{U\} } & =\left\{F^{2}\right\} \\
{\left[M^{2}\right]\{\dot{V}\}+\left[K^{3}\right]\{V\} } & =\left\{F^{3}\right\} \\
{\left[M^{2}\right]\{\dot{W}\}+\left[K^{4}\right]\{W\} } & =\left\{F^{4}\right\} \\
{\left[M^{3}\right]\{\dot{T}\}+\left[K^{5}\right]\{T\} } & =\left\{F^{5}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{i j}^{1}= \int_{\Omega^{e}} \psi_{i} \psi_{j} d V, K_{i j}^{1}=\int_{\Omega^{e}} \psi_{i}\left(u \frac{\partial \psi_{j}}{\partial x}+v \frac{\partial \psi_{j}}{\partial y}+w \frac{\partial \psi_{j}}{\partial z}\right) d V \\
& F_{i}^{1}=-\int_{\Omega^{e}} \rho \psi_{i}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right) d V \\
& M_{i j}^{2}=\int_{\Omega^{e}} \rho \psi_{i} \psi_{j} d V, \quad K_{i j}^{2}=\int_{\Omega^{e}}\left[\rho \psi_{i}\left(u \frac{\partial \psi_{j}}{\partial x}+v \frac{\partial \psi_{j}}{\partial y}+w \frac{\partial \psi_{j}}{\partial x}\right)+2 \mu \frac{\partial \psi_{i}}{\partial x} \frac{\partial \psi_{j}}{\partial x}\right. \\
&\left.\quad+\mu \frac{\partial \psi_{i}}{\partial y} \frac{\partial \psi_{j}}{\partial y}+\mu \frac{\partial \psi_{i}}{\partial z} \frac{\partial \psi_{j}}{\partial z}-\lambda \frac{\partial \psi_{i}}{\partial x} \frac{\partial \psi_{j}}{\partial x}\right] d V
\end{aligned}
$$

$$
\begin{aligned}
& F_{i}^{2}=\int_{\Omega^{e}}\left[p \frac{\partial \psi_{i}}{\partial x}-\mu\left(\frac{\partial \psi_{i}}{\partial y} \frac{\partial v}{\partial x}+\frac{\partial \psi_{i}}{\partial z} \frac{\partial w}{\partial x}\right)+\lambda \frac{\partial \psi_{i}}{\partial x}\left(\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)\right] d V \\
& +\oint_{\Gamma^{e}} t_{x} \psi_{i} d s \\
& K_{i j}^{3}=\int_{\Omega^{e}}\left[\rho \psi_{i}\left(u \frac{\partial \psi_{j}}{\partial x}+v \frac{\partial \psi_{j}}{\partial y}+w \frac{\partial \psi_{j}}{\partial x}\right)+\mu\left(\frac{\partial \psi_{i}}{\partial x} \frac{\partial \psi_{j}}{\partial x}+2 \frac{\partial \psi_{i}}{\partial y} \frac{\partial \psi_{j}}{\partial y}+\frac{\partial \psi_{i}}{\partial z} \frac{\partial \psi_{j}}{\partial z}\right)\right. \\
& \left.-\lambda \frac{\partial \psi_{i}}{\partial y} \frac{\partial \psi_{j}}{\partial y}\right] d V \\
& F_{i}^{3}=\int_{\Omega^{e}}\left[p \frac{\partial \psi_{i}}{\partial y}+\mu\left(\frac{\partial \psi_{i}}{\partial x} \frac{\partial u}{\partial y}+\frac{\partial \psi_{i}}{\partial z} \frac{\partial w}{\partial y}\right)-\lambda \frac{\partial \psi_{i}}{\partial y}\left(\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}\right)\right] d V \\
& -\oint_{\Gamma^{e}} t_{y} \psi_{i} d s \\
& K_{i j}^{4}=\int_{\Omega^{e}}\left[\psi_{i} \rho\left(u \frac{\partial \psi_{i}}{\partial x}+v \frac{\partial \psi_{i}}{\partial y}+w \frac{\partial \psi_{i}}{\partial z}\right)+\mu\left(\frac{\partial \psi_{i}}{\partial x} \frac{\partial \psi_{j}}{\partial x}+\frac{\partial \psi_{i}}{\partial y} \frac{\partial \psi_{j}}{\partial y}+2 \frac{\partial \psi_{i}}{\partial z} \frac{\partial \psi_{j}}{\partial z}\right)\right. \\
& \left.-\lambda \frac{\partial \psi_{i}}{\partial z} \frac{\partial \psi_{j}}{\partial z}\right] d V \\
& F_{i}^{4}=\int_{\Omega^{e}}\left[p \frac{\partial \psi_{i}}{\partial z}+\mu\left(\frac{\partial \psi_{i}}{\partial x} \frac{\partial u}{\partial z}+\frac{\partial \psi_{i}}{\partial y} \frac{\partial v}{\partial z}\right)-\lambda \frac{\partial \psi_{i}}{\partial z}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right] d V \\
& -\oint_{\Gamma^{e}} t_{z} \psi_{i} d s \\
& K_{i j}^{5}=\int_{\Omega^{e}}\left[\rho c_{v} \psi_{i}\left(u \frac{\partial \psi_{j}}{\partial x}+v \frac{\partial \dot{\psi}_{j}}{\partial y}+w \frac{\partial \psi_{j}}{\partial z}\right)+K_{x} \frac{\partial \psi_{i}}{\partial x} \frac{\partial \psi_{j}}{\partial x}+K_{y} \frac{\partial \psi_{i}}{\partial y} \frac{\partial \psi_{j}}{\partial y}\right. \\
& \left.+K_{z} \frac{\partial \psi_{i}}{\partial z} \frac{\partial \psi_{j}}{\partial z}\right] d V \\
& F_{i}^{\mathbf{5}}=\int_{\Omega^{e}}\left[\psi_{i} \rho Q-\psi_{i} p\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}-\frac{\partial w}{\partial z}\right)+\psi_{i}\left(\frac{\partial u}{\partial x} \tau_{x x}+\cdots\right)\right] d V \\
& +\oint_{\Gamma^{*}} q \psi_{i} d s \\
& M_{i j}^{3}=\int_{\Omega^{e}} \rho c_{v} \psi_{i} \psi_{j} d V
\end{aligned}
$$

## ALTERNATIVE (CONSERVATION) FORM OF EQUATIONS

$$
\text { Let } \begin{aligned}
& \vec{V}=\rho \vec{v} \quad(U=\rho u, \quad V=\rho v, \quad W=\rho w) \\
& E=\rho \epsilon, \quad \vec{f}=\overrightarrow{0}, \quad Q=0
\end{aligned}
$$

The governing equations are

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}(\rho v)+\frac{\partial}{\partial z}(\rho w) & =0 \\
\frac{\partial U}{\partial t}+\frac{\partial}{\partial x}(U u)+\frac{\partial}{\partial y}(U v)+\frac{\partial}{\partial z}(U w) & =-\frac{\partial p}{\partial x}+\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}+\frac{\partial \sigma_{x z}}{\partial z} \\
\frac{\partial V}{\partial t}+\frac{\partial}{\partial x}(V u)+\frac{\partial}{\partial y}(V v)+\frac{\partial}{\partial z}(V w) & =-\frac{\partial p}{\partial y}+\frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \sigma_{y z}}{\partial z} \\
\frac{\partial W}{\partial t}+\frac{\partial}{\partial x}(W u)+\frac{\partial}{\partial y}(W v)+\frac{\partial}{\partial z}(W w) & =-\frac{\partial p}{\partial z}+\frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z} \\
\frac{\partial E}{\partial t}+\frac{\partial}{\partial x}(u E)+\frac{\partial}{\partial y}(v E)+\frac{\partial}{\partial z}(w E) & =-\vec{\nabla} \cdot \vec{q}+\vec{\sigma}: \vec{D}
\end{aligned}
$$

The finite-element equations are

$$
\begin{aligned}
{[M \mid\{\dot{\rho}\}+[K]\{\rho\}} & =\left\{F^{1}\right\} \\
{[M]\{\dot{U}\}+[K]\{U\} } & =\left\{F^{2}\right\} \\
{[M]\{\dot{V}\}+[K]\{V\} } & =\left\{F^{3}\right\} \\
{[M]\{\dot{W}\}+[K]\{W\} } & =\left\{F^{4}\right\} \\
{[M]\{\dot{E}\}+[K]\{E\} } & =\left\{F^{5}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{i j}=\int_{\Omega^{e}} \psi_{i} \psi_{j} d V, K_{i j}=\int_{\Omega^{e}} \psi_{i}\left[\frac{\partial}{\partial x}\left(u \psi_{j}\right)+\frac{\partial}{\partial y}\left(v \psi_{j}\right)+\frac{\partial}{\partial z}\left(w \psi_{j}\right)\right] d V \\
&=\int_{\Omega^{e}} \psi_{i}\left[u \frac{\partial \psi_{j}}{\partial x}+v \frac{\partial \psi_{j}}{\partial y}+w \frac{\partial \psi_{j}}{\partial z}+\psi_{j}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)\right] d V \\
& F_{i}^{1}=0, \quad F_{i}^{2}=\int_{\Omega^{e}} \psi_{i}\left[-\frac{\partial p}{\partial x}+\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}+\frac{\partial \sigma_{x z}}{\partial z}\right] d V \\
& F_{i}^{3}=\int_{\Omega^{e}} \psi_{i}\left[-\frac{\partial p}{\partial y}+\frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \sigma_{y z}}{\partial z}\right] d V \\
& F_{i}^{4}=\int_{\Omega^{e}} \psi_{i}\left[-\frac{\partial p}{\partial z}+\frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}\right] d V \\
& \cdot \\
& F_{i}^{5}=\int_{\Omega^{e}}(-\vec{\nabla} \cdot \vec{q}+\vec{\sigma}: \vec{D}) \psi_{i} d V
\end{aligned}
$$

This formulation is a natural extension of the finite element model for inviscid flows and is applicable for compressible viscous flows from low subsonic to supersonic flows with suitable addition of stabilizing terms (artificial viscosity). For highly viscous, low Mach number internal flows there is no need for the addition of artificial viscosity. . This formulation is coded in the computer program COMPR3D and is listed in Appendix II.


 3HL ONIN甘ヨNOO SNOII甘กOJ IN THREE－DIMENSIONAL THE PROGRAM IS UNDER DEVELOPMENT BY J．N．REDDY， 505 CRANWELL CIRCLE，BLACKSBURG．


## S

## $E S$

 SOLUTION MAXIMUM NUMBR OF ITERATIONS ALLOWED FOR CONVERGENCE IN THE NONLINEAR（N－S EQUATIONS）ANAYYSIS；IT ALSO FULL BAND WIDTH OF＇GSTIF＇FOR VELOCITIES COLUMN DIMENSION OF GSTIF IN THE DIMENSION STATEMENT
DEGREES OF FREEDOM AT EACH NODE（RHO，U，V，W，E） NUMBER OF ELEMENTS IN THE MESH



[^0]
READ 600, TITLE
READ 610 , AMU, CV,
READ 620 IEL, NPE
IF(IMESH.EQ.I)GOT

if the domain is nonrectangular, read the mesh information

## READ 620, NEM, NNM



| FOR NONLINEAR ANALYSIS (I.E., THE SOLUTION OF THE NAVIER-STOKES EQUATIONS), READ THE NUMBER OF INCREMENTS OF THE REYNALDS NUMBER (NRENLD), THE ARRAY OF THE INCREMENTS (DRE(I)), THE ALLOWABLE PERCENTAGE OF ERROR (TLR) BETWEEN THE VELOCITY VECTORS OF TWO CONSECUTIVE ITERATIONS, AND THE ACCELERATION PARAMETER (BETA). |
| :---: |
| ```4 5 ~ N R E N L D = 1 IF(ITMAX.LE.I)GOTO 50 READ 620, NRENLD READ 610, (DRE(I),I=1,NRENLD) READ 610, TLR,BETA``` |

[^1]


vou


$\begin{array}{ll} & \text { ELXYZ }(I, 1)=X(N I) \\ & \text { ELXYZ }(I, 2)=Y(N I) \\ 470 & \text { ELXYZ（I，3）}=Z(N I) \\ 480 & \text { CALLSTRS3D（NPE，} \\ 490 & \text { PRINT } 740\end{array}$

CALL STRS3D（NPE，ELXYZ，V，AMU，IEL，CV，R）
PRINT 740


055
0
0

## 



## SUBROUTINE STF3D(IEL,NPE,AMU,IT,THETA,ITEM,DT)

$\dot{P} \dot{R} \dot{O} \dot{G} \dot{R} \dot{A} \dot{M}$ ' $\dot{S} \dot{T} \dot{F} \dot{3} \dot{D} ;$ Gं SOURCE VECTOR 'ELF' FOR THE LINEAR (EIGHT-NODE) ISOPARAMETRIC
PRISM ELEMENT.

1028
$N x$
$d 028$
$x$
$y 008$
$x$
$x$
$x$
$x$
$\omega$ .
0
NGP1=IEL
INITIALIZE THE ARRAYS, SX, SY, ETC. (FOR PENALTY TERMS)

COMPUTE THE COEFFICIENT MATRICES FOR EACH VARIABLE
$145 \mathrm{DO} 300 \mathrm{NI}=1, \mathrm{NGP}$
-2
CONST $=D E T * W T(N I, N G P) * W T(N J, N G P) * W T(N K, N G P)$
PHO $=0.0$

# ${ }^{\prime \prime}$ <br> IV $=$ 



$150 \operatorname{DIV}=\operatorname{DIV}+V(I ; 2) * \operatorname{GDSF}(1, I)+V(I, 3) * \operatorname{GDSF}(2, I)+V(I, 4) * \operatorname{GDSF}(3, I)$
DO 300 NK $=1$, NGP
XI $=$ GAUSS(NI, NGP)
TTA $=$ GAUSS(NJ, NGP)
ZETA $=$ GAUSS(NK, NGP
CALL SHP3D(NPE, DET,
CONST $=$ DET*WT(NI, NGP)
RHO $=0.0$
$T=0.0$
$1=$

## SCI

## EQ.0)RETURN

## $600 \begin{aligned} & \operatorname{ELF}(I)=E L F(I)+(S(I, J)-D T * T H E T A \\ & \operatorname{STIFSTIF}(I, J)=S(I, J)+D T * T H E T A * S T I F(I, J)\end{aligned}$

SND
 OF $P=$ PRESSURE AT THE CURRENT GAUSS POIN

## DIVQ $=$ DIVERGENCE OF THE FLUX

DISPN = DISSIPATION, SIGMA:STRAIN RATE

CALCULATE STRESSES AND PRESSURE
USE PROPER CONSTITUTIVE LAWS TO COMPUTE THE TEMPERATURE AND
PRESSURE
CALL STATE (XI, ETA, P, DPX, DPY, DPZ, DIVQ, V, CA, R)
SIGMA1 $=-P+A M U *(4.0 \times$ SUM1-2.0×(SUM2+SUM3)) $/ 3.0$
SIGMA2 $=-P+A M U *(4.0 \times$ SUM2-2.0*(SUM1+SUM3)) 3.0
SIGMA2 = -P+AMU*(4.0*SUM2-2.0*(SUM1+SUM2)) 3.0
SGMA12=AMU*SUM12
SGAR
$\underset{x}{ } \mathrm{IF}(\mathrm{NDOF} . E Q .3) \operatorname{ELF}(I)=E L F(I)+S F(I) *(-D P Y+S G M A 12 X+S G M A 26+S G M A 23 Z) *$ w
IF(NDOF.EQ.4)ELF(I) =ELF(I)+SF(I)x(-DPZ+SGMA13X+SGMA23Y+SGMA3Z)*



## CALCULATE STRAIN－RATES

USE PROPER CONSTITUTIVE LAWS TO COMPUTE THE TEMPERATURE AND
$T=C V 天 R H O$
$P=R H O X R × T$
S



으웅
HiN
$\begin{aligned} & \text { SIGMA1 }=-p+1 \\ & \text { SIGMA2 }=-p+1\end{aligned}$
aかめのい

> SUBROUTINE INVDET ( $A, B, D E T$ )
> PRINT 200, $X, Y, Z$, SIGMA1, SIGMA2,SIGMA3, SGMA12,SGMA13, SGMA23,P
> CONTINUE






GENERATE THE CONNECTIVITY MATRIX，＇NOD＇

$\stackrel{-}{-1}$
DO $80 \mathrm{~K}=1, N P Z$

> 甚总
> UUO
> BEGINS ELIMINATION OF THE LOWER LEFT




[^0]:    ：NUMBER OF EQUATIONS IN THE MODEL（＝NNM）
    －HALF BAND WIDTH OF GSTIF＇FOR VELOCITIES NUMBER OF NODES IN THE MESH NRENLD．．．NUMBER OF REYNALDS NUMBERS FOR WHICH THE SOLUTION IS NSBC．．．．．．．NUMBER OF SPECIFIED BOUNDARY CONDITIONS（ESS．B．C．）

[^1]:    READ THE NUMBER OF TIME STEPS (NTIME), THE TIME STEP (DT) AND
    THE PARAMETER (THETA) IN THE TIME-APPROXIMATION FOR UNSTEADY
    CASE. ZERO INITIAL CONDITIONS ON THE VELOCITY ARE ASSUMED.

