611 research outputs found

    Time evolution of the Partridge-Barton Model

    Full text link
    The time evolution of the Partridge-Barton model in the presence of the pleiotropic constraint and deleterious somatic mutations is exactly solved for arbitrary fecundity in the context of a matricial formalism. Analytical expressions for the time dependence of the mean survival probabilities are derived. Using the fact that the asymptotic behavior for large time tt is controlled by the largest matrix eigenvalue, we obtain the steady state values for the mean survival probabilities and the Malthusian growth exponent. The mean age of the population exhibits a t1t^{-1} power law decayment. Some Monte Carlo simulations were also performed and they corroborated our theoretical results.Comment: 10 pages, Latex, 1 postscript figure, published in Phys. Rev. E 61, 5664 (2000

    Alternative Lengthening of Telomeres Is Characterized by High Rates of Telomeric Exchange

    Get PDF
    Abstract Telomere maintenance activity is a hallmark of cancer. In some telomerase-negative tumors, telomeres become lengthened by alternative lengthening of telomeres (ALT), a recombination-mediated DNA replication process in which telomeres use other telomeric DNA as a copy template. Using chromosome orientation fluorescence in situ hybridization, we found that postreplicative exchange events involving a telomere and another TTAGGG-repeat tract occur at remarkably high frequencies in ALT cells (range 28–280/100 metaphases) and rarely or never in non-ALT cells, including cell lines with very long telomeres. Like the ALT phenotype itself, the telomeric exchanges were not suppressed when telomerase was activated in ALT cells. These exchanges are telomere specific because there was no correlation with sister chromatid exchange rates at interstitial locations, and they were not observed in non-ALT Bloom syndrome cells with very high sister chromatid exchange rates

    Stanniocalcin2, but Not Stanniocalcin1, Responds to Hypoxia in a HIF1-Dependent Manner in the Retina

    Full text link
    The quest for neuroprotective factors that can prevent or slow down the progression of retinal degeneration is still ongoing. Acute hypoxic stress has been shown to provide transient protection against subsequent damage in the retina. Stanniocalcins – STC1 and STC2 – are secreted glycoproteins that are hypoxia-regulated and were shown to be cytoprotective in various in vitro studies. Hence, we investigated the expression of stanniocalcins in the normal, degenerating and hypoxic retina. We show that the expression of Stc1 and Stc2 in the retina was detectable as early as postnatal day 10 and persisted during aging. Retinal expression of Stc2, but not Stc1, was induced in mice in an in vivo model of acute hypoxia and a genetic model of chronic hypoxia. Furthermore, we show that HIF1, not HIF2, is responsible for regulating Stc2 in cells with the molecular response to hypoxia activated due to the absence of von Hippel Lindau protein. Surprisingly, Stc2 was not normally expressed in photoreceptors but in the inner retina, as shown by laser capture microdissection and immunofluorescence data. The expression of both Stc1 and Stc2 remained unchanged in the degenerative retina with an almost complete loss of photoreceptors, confirming their expression in the inner retina. However, the absence of either Stc1 or Stc2 had no effect on retinal architecture, as was evident from retinal morphology of the respective knockout mice. Taken together our data provides evidence for the differential regulation of STC1 and STC2 in the retina and the prospect of investigating STC2 as a retinal neuroprotective factor

    Exact Solution of an Evolutionary Model without Ageing

    Full text link
    We introduce an age-structured asexual population model containing all the relevant features of evolutionary ageing theories. Beneficial as well as deleterious mutations, heredity and arbitrary fecundity are present and managed by natural selection. An exact solution without ageing is found. We show that fertility is associated with generalized forms of the Fibonacci sequence, while mutations and natural selection are merged into an integral equation which is solved by Fourier series. Average survival probabilities and Malthusian growth exponents are calculated indicating that the system may exhibit mutational meltdown. The relevance of the model in the context of fissile reproduction groups as many protozoa and coelenterates is discussed.Comment: LaTeX file, 15 pages, 2 ps figures, to appear in Phys. Rev.

    Overall asthma control achieved with budesonide/formoterol maintenance and reliever therapy for patients on different treatment steps

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adjusting medication for uncontrolled asthma involves selecting one of several options from the same or a higher treatment step outlined in asthma guidelines. We examined the relative benefit of introducing budesonide/formoterol (BUD/FORM) maintenance and reliever therapy (Symbicort SMART<sup>® </sup>Turbuhaler<sup>®</sup>) in patients previously prescribed treatments from Global Initiative for Asthma (GINA) Steps 2, 3 or 4.</p> <p>Methods</p> <p>This is a <it>post hoc </it>analysis of the results of five large clinical trials (>12000 patients) comparing BUD/FORM maintenance and reliever therapy with other treatments categorised by treatment step at study entry. Both current clinical asthma control during the last week of treatment and exacerbations during the study were examined.</p> <p>Results</p> <p>At each GINA treatment step, the proportion of patients achieving target levels of current clinical control were similar or higher with BUD/FORM maintenance and reliever therapy compared with the same or a higher fixed maintenance dose of inhaled corticosteroid/long-acting β<sub>2</sub>-agonist (ICS/LABA) (plus short-acting β<sub>2</sub>-agonist [SABA] as reliever), and rates of exacerbations were lower at all treatment steps in BUD/FORM maintenance and reliever therapy versus same maintenance dose ICS/LABA (P < 0.01) and at treatment Step 4 versus higher maintenance dose ICS/LABA (P < 0.001). BUD/FORM maintenance and reliever therapy also achieved significantly higher rates of current clinical control and significantly lower exacerbation rates at most treatment steps compared with a higher maintenance dose ICS + SABA (Steps 2-4 for control and Steps 3 and 4 for exacerbations). With all treatments, the proportion of patients achieving current clinical control was lower with increasing treatment steps.</p> <p>Conclusions</p> <p>BUD/FORM maintenance and reliever therapy may be a preferable option for patients on Steps 2 to 4 of asthma guidelines requiring a more effective treatment and, compared with other fixed dose alternatives, is most effective in the higher treatment steps.</p

    Control of telomere length by a trimming mechanism that involves generation of t-circles

    Get PDF
    Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric circles (t-circles). Telomeric DNA was observed in promyelocytic leukemia bodies, but no intertelomeric copying or telomere exchange events were identified, and there was no increase in telomere dysfunction-induced foci. These data indicate that human cells possess a mechanism to negatively regulate telomere length by trimming telomeric DNA from the chromosome ends, most likely by t-loop resolution to form t-circles. Additionally, these results indicate that some phenotypic characteristics attributed to alternative lengthening of telomeres (ALT) result from increased mean telomere length, rather than from the ALT mechanism itself

    MicroRNA-296 is enriched in cancer cells and downregulates p21WAF1 mRNA expression via interaction with its 3′ untranslated region

    Get PDF
    MicroRNAs (miRNAs) are a class of noncoding small RNAs that act as negative regulators of gene expression. To identify miRNAs that may regulate human cell immortalization and carcinogenesis, we performed comparative miRNA array profiling of human normal and SV40-T antigen immortalized cells. We found that miR-296 was upregulated in immortalized cells that also had activation of telomerase. By an independent experiment on genomic analysis of cancer cells we found that chromosome region (20q13.32), where miR-296 is located, was amplified in 28/36 cell lines, and most of these showed enriched miR-296 expression. Overexpression of miR-296 in human cancer cells, with and without telomerase activity, had no effect on their telomerase function. Instead, it suppressed p53 function that is frequently downregulated during human cell immortalization and carcinogenesis. By monitoring the activity of a luciferase reporter connected to p53 and p21WAF1 (p21) untranslated regions (UTRs), we demonstrate that miR-296 interacts with the p21-3′UTR, and the Hu binding site of p21-3′UTR was identified as a potential miR-296 target site. We demonstrate for the first time that miR-296 is frequently upregulated during immortalization of human cells and contributes to carcinogenesis by downregulation of p53-p21WAF1 pathway

    Extreme Telomere Length Dimorphism in the Tasmanian Devil and Related Marsupials Suggests Parental Control of Telomere Length

    Get PDF
    Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago. © 2012 Bender et al
    corecore