26 research outputs found
Flow sorting in aquatic ecology
Flow sorting can be a very helpful tool in revealing phytoplankton and bacterial community structure and elaborating specific physiological parameters of isolated species. Droplet sorting has been the most common technique. Despite the high optical and hydro-dynamic stress for the cells to be sorted, many species grow in culture subsequent to sorting. To date, flow sorting has been applied to post-incubation separation in natural water samples to account for group-specific physiological parameters (radiotracer-uptake rates), to the production of clonal or non-clonal cultures from mixtures, to the isolaton of cell groups from natural assemblages for molecular analyses, and for taxonomic identification of sorted cells by microscopy. The application of cell sorting from natural water samples from the Wadden Sea, including different cryptophytes, cyanobacteria and diatoms, is shown, as well as the establishment of laboratory cultures from field samples. The optional use of a red laser to account for phycocyanine-rich cells is also discussed.No disponibl
Human impacts and their interactions in the Baltic Sea region
Coastal environments, in particular heavily populated semi-enclosed marginal seas and coasts like the Baltic Sea region, are strongly affected by human activities. A multitude of human impacts, including climate change, affect the different compartments of the environment, and these effects interact with each other. As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region, and their interrelations. Some are naturally occurring and modified by human activities (i.e. climate change, coastal processes, hypoxia, acidification, submarine groundwater discharges, marine ecosystems, non-indigenous species, land use and land cover), some are completely human-induced (i.e. agriculture, aquaculture, fisheries, river regulations, offshore wind farms, shipping, chemical contamination, dumped warfare agents, marine litter and microplastics, tourism, and coastal management), and they are all interrelated to different degrees. We present a general description and analysis of the state of knowledge on these interrelations. Our main insight is that climate change has an overarching, integrating impact on all of the other factors and can be interpreted as a background effect, which has different implications for the other factors. Impacts on the environment and the human sphere can be roughly allocated to anthropogenic drivers such as food production, energy production, transport, industry and economy. The findings from this inventory of available information and analysis of the different factors and their interactions in the Baltic Sea region can largely be transferred to other comparable marginal and coastal seas in the world
Climate change in the Baltic Sea region : a summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins.Peer reviewe