401 research outputs found

    Predictive Patterns of Glutamine Synthetase Immunohistochemical Staining in CTNNB1-mutated Hepatocellular Adenomas

    Get PDF
    Some hepatocellular adenoma (HCA) subtypes are characterized by different CTNNB1 mutations, leading to different beta-catenin activation levels, hence variable immunostaining patterns of glutamine synthetase (GS) expression, and different risks of malignant transformation. In a retrospective multicentric study of 63 resected inflammatory (n=33) and noninflammatory (n=30) molecularly confirmed CTNNB1-mutated b-(I)HCA, we investigated the predictive potential of 3 known GS patterns as markers for CTNNB1 exon 3, 7/8 mutations. Pattern 1 (diffuse homogenous) allowed recognition of 17/21 exon 3 non-S45 mutated b-(I)HCA. Pattern 2 (diffuse heterogenous) identified all b-(I)HCA harboring exon 3 S45 mutation (20/20). Pattern 3 (focal patchy) distinguished 12/22 b-(I)HCA with exon 7/8 mutations. In exon 3 S45 and 7/8 mutations, both b-HCA and b-IHCA showed a GS(+)/CD34(-) rim with diffuse CD34 positivity in the center of the lesion. Interobserver reproducibility was excellent for exon 3 mutations. Comparative analysis of GS patterns with molecular data showed 83% and 80% sensitivity (b-HCA/b-IHCA) and 100% specificity for exon 3 non-S45. For exon 3 S45, sensitivity was 100% for b-(I)HCA, and specificity 93% and 92% (b-HCA/b-IHCA). For exon 7/8, sensitivity was 55% for both subtypes and specificity 100% and 96% (b-HCA/b-IHCA). Preliminary data from 16 preoperative needle biopsies from the same patients suggest that this panel may also be applicable to small samples. In surgically resected HCA, 2 distinct GS patterns can reliably predict CTNNB1 exon 3 mutations, which are relevant because of the higher risk for malignant transformation. The third pattern, although specific, was less sensitive for the identification of exon 7/8 mutation, but the GS(+)/CD34(-) rim is a valuable aid to indicate either an exon 3 S45 or exon 7/8 mutation

    HNF1α inhibition triggers epithelial-mesenchymal transition in human liver cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocyte Nuclear Factor 1α (HNF1α) is an atypical homeodomain-containing transcription factor that transactivates liver-specific genes including albumin, α-1-antitrypsin and α- and β-fibrinogen. Biallelic inactivating mutations of <it>HNF1A </it>have been frequently identified in hepatocellular adenomas (HCA), rare benign liver tumors usually developed in women under oral contraceptives, and in rare cases of hepatocellular carcinomas developed in non-cirrhotic liver. HNF1α-mutated HCA (H-HCA) are characterized by a marked steatosis and show activation of glycolysis, lipogenesis, translational machinery and mTOR pathway. We studied the consequences of HNF1α silencing in hepatic cell lines, HepG2 and Hep3B and we reproduced most of the deregulations identified in H-HCA.</p> <p>Methods</p> <p>We transfected hepatoma cell lines HepG2 and Hep3B with siRNA targeting HNF1α and obtained a strong inhibition of HNF1α expression. We then looked at the phenotypic changes by microscopy and studied changes in gene expression using qRT-PCR and Western Blot.</p> <p>Results</p> <p>Hepatocytes transfected with HNF1α siRNA underwent severe phenotypic changes with loss of cell-cell contacts and development of migration structures. In HNF1α-inhibited cells, hepatocyte and epithelial markers were diminished and mesenchymal markers were over-expressed. This epithelial-mesenchymal transition (EMT) was related to the up regulation of several EMT transcription factors, in particular <it>SNAIL </it>and <it>SLUG</it>. We also found an overexpression of TGFβ1, an EMT initiator, in both cells transfected with HNF1α siRNA and H-HCA. Moreover, TGFβ1 expression is strongly correlated to HNF1α expression in cell models, suggesting regulation of TGFβ1 expression by HNF1α.</p> <p>Conclusion</p> <p>Our results suggest that HNF1α is not only important for hepatocyte differentiation, but has also a role in the maintenance of epithelial phenotype in hepatocytes.</p

    Hepatocellular adenoma: what is new in 2008

    Get PDF
    Patients (85%) with hepatocellular adenoma (HCA) are women taking oral contraceptives. They can be divided into four subgroups according to their genotype/phenotype features. (1) Hepatocyte nuclear factor 1α (HNF1α) biallelic somatic mutations are observed in 35% of the HCA cases. It occurs in almost all cases in women. HNF1α-mutated HCA are most of the time, highly steatotic, with a lack of expression of liver fatty acid binding protein (LFABP) in immunohistochemistry analyses. Adenomatosis is frequently detected in this context. An HNF1α germline mutation is observed in less than 5% of HCA cases and can be associated with MODY 3 diabetes. (2) An activating β-catenin mutation was found in 10% of HCA. These β-catenin activated HCAs are observed in men and women, and specific risk factors, such as male hormone administration or glycogenosis, are associated with their development. Immunohistochemistry studies show that these HCAs overexpress β-catenin (nuclear and cytoplasmic) and glutamine synthetase. This group of tumours has a higher risk of malignant transformation into hepatocellular carcinoma. (3) Inflammatory HCAs are observed in 40% of the cases, and they are most frequent in women but are also found in men. Lesions are characterised by inflammatory infiltrates, dystrophic arteries, sinusoidal dilatation and ductular reaction. They express serum amyloid A and C-reactive protein. In this group, GGT is frequently elevated, with a biological inflammatory syndrome present. Also, there are more overweight patients in this group. An additional 10% of inflammatory HCAs express β-catenin, and are also at risk of malignant transformation. (4) Currently, less than 10% of HCAs are unclassified. It is hoped that in the near future it will be possible with clinical, biological and imaging data to predict in which of the 2 major groups (HNF1α-mutated HCA and inflammatory HCA) the patient belongs and to propose better guidelines in terms of surveillance and treatment

    Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function

    Get PDF
    Acute-phase proteins (APPs) are an evolutionarily conserved family of proteins produced mainly in the liver in response to infection and inflammation. Despite vast pro- and antiinflammatory properties ascribed to individual APPs, their collective function during infections remains poorly defined. Using a mouse model of polymicrobial sepsis, we show that abrogation of APP production by hepatocyte-specific gp130 deletion, the signaling receptor shared by IL-6 family cytokines, strongly increased mortality despite normal bacterial clearance. Hepatic gp130 signaling through STAT3 was required to control systemic inflammation. Notably, hepatic gp130–STAT3 activation was also essential for mobilization and tissue accumulation of myeloid-derived suppressor cells (MDSCs), a cell population mainly known for antiinflammatory properties in cancer. MDSCs were critical to regulate innate inflammation, and their adoptive transfer efficiently protected gp130-deficient mice from sepsis-associated mortality. The hepatic APPs serum amyloid A and Cxcl1/KC cooperatively promoted MDSC mobilization, accumulation, and survival, and reversed dysregulated inflammation and restored survival of gp130-deficient mice. Thus, gp130-dependent communication between the liver and MDSCs through APPs controls inflammatory responses during infection

    Epigenetic inactivation of TCF2 in ovarian cancer and various cancer cell lines

    Get PDF
    Transcription factor 2 gene (TCF2) encodes hepatocyte nuclear factor 1β (HNF1β), a transcription factor associated with development and metabolism. Mutation of TCF2 has been observed in renal cell cancer, and by screening aberrantly methylated genes, we have now identified TCF2 as a target for epigenetic inactivation in ovarian cancer. TCF2 was methylated in 53% of ovarian cancer cell lines and 26% of primary ovarian cancers, resulting in loss of the gene's expression. TCF2 expression was restored by treating cells with a methyltransferase inhibitor, 5-aza-2′deoxycitidine (5-aza-dC). In addition, chromatin immunoprecipitation showed deacetylation of histone H3 in methylated cells and, when combined with 5-aza-dC, the histone deacetylase inhibitor trichostatin A synergistically induced TCF2 expression. Epigenetic inactivation of TCF2 was also seen in colorectal, gastric and pancreatic cell lines, suggesting general involvement of epigenetic inactivation of TCF2 in tumorigenesis. Restoration of TCF2 expression induced expression of HNF4α, a transcriptional target of HNF1β, indicating that epigenetic silencing of TCF2 leads to alteration of the hepatocyte nuclear factor network in tumours. These results suggest that TCF2 is involved in the development of ovarian cancers and may represent a useful target for their detection and treatment

    Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome wide association studies (GWAS) have identified several genetic variants that are associated with prostate cancer. Most of these variants, like other GWAS association signals, are located in non-coding regions of potential candidate genes, and thus could act at the level of the mRNA transcript.</p> <p>Methods</p> <p>We measured the expression and isoform usage of seven prostate cancer candidate genes in benign and malignant prostate by real-time PCR, and correlated these factors with cancer status and genotype at the GWAS risk variants.</p> <p>Results</p> <p>We determined that levels of <it>LMTK2 </it>transcripts in prostate adenocarcinomas were only 32% of those in benign tissues (p = 3.2 × 10<sup>-7</sup>), and that an independent effect of genotype at variant rs6465657 on <it>LMTK2 </it>expression in benign (n = 39) and malignant tissues (n = 21) was also evident (P = 0.002). We also identified that whilst <it>HNF1B(C) </it>and <it>MSMB2 </it>comprised the predominant isoforms in benign tissues (90% and 98% of total <it>HNF1B </it>or <it>MSMB </it>expression)<it>, HNF1B(B) and MSMB1 </it>were predominant in malignant tissue (95% and 96% of total <it>HNF1B </it>or <it>MSMB </it>expression; P = 1.7 × 10<sup>-7 </sup>and 4 × 10<sup>-4 </sup>respectively), indicating major shifts in isoform usage.</p> <p>Conclusions</p> <p>Our results indicate that the amount or nature of mRNA transcripts expressed from the <it>LMTK2</it>, <it>HNF1B </it>and <it>MSMB </it>candidate genes is altered in prostate cancer, and provides further evidence for a role for these genes in this disorder. The alterations in isoform usage we detect highlights the potential importance of alternative mRNA processing and moderation of mRNA stability as potentially important disease mechanisms.</p
    corecore