26 research outputs found

    Experimental study of laser detected magnetic resonance based on atomic alignment

    Get PDF
    We present an experimental study of the spectra produced by optical/radio-frequency double resonance in which resonant linearly polarized laser light is used in the optical pumping and detection processes. We show that the experimental spectra obtained for cesium are in excellent agreement with a very general theoretical model developed in our group and we investigate the limitations of this model. Finally, the results are discussed in view of their use in the study of relaxation processes in aligned alkali vapors.Comment: 8 pages, 9 figures. Submitted to Phys. Rev. A. Related to physics/060523

    Experimental study of laser-detected magnetic resonance based on atomic alignment

    Get PDF
    We present an experimental study of the spectra produced by optical–radio-frequency double resonance in which resonant linearly polarized laser light is used in the optical pumping and detection processes. We show that the experimental spectra obtained for cesium are in excellent agreement with a very general theoretical model developed in our group [Weis, Bison, and Pazgalev, Phys. Rev. A 74, 033401 (2006)] and we investigate the limitations of this model. Finally, the results are discussed in view of their use in the study of relaxation processes in aligned alkali-metal vapors

    Towards a new measurement of the neutron electric dipole moment

    Get PDF
    Precision measurements of particle electric dipole moments (EDMs) provide extremely sensitive means to search for non-standard mechanisms of T (or CP) violation. For the neutron EDM, the upper limit has been reduced by eight orders of magnitude in 50 years thereby excluding several CP violation scenarios. We report here on a new effort aiming at improving the neutron EDM limit by two orders of magnitude, down to a level of 3 × 10⁻ÂČ⁞ e·cm. The two central elements of the approach are the use of the higher densities which will be available at the new dedicated spallation UCN source at the Paul Scherrer Institute, and the optimization of the in-vacuum Ramsey resonance technique, with storage chambers at room temperature, to reach new limits of sensitivity

    Direct experimental limit on Neutron–Mirror-Neutron oscillations

    Get PDF
    In case a mirror world with a copy of our ordinary particle spectrum would exist, the neutron n and its degenerate partner, the mirror neutron nâ€Č, could potentially mix and undergo nnâ€Č oscillations. The interaction of an ordinary magnetic field with the ordinary neutron would lift the degeneracy between the mirror partners, diminish the nâ€Č amplitude in the n wave function and, thus, suppress its observability. We report an experimental comparison of ultracold neutron storage in a trap with and without superimposed magnetic field. No influence of the magnetic field is found and, assuming negligible mirror magnetic fields, a limit on the oscillation time τnnâ€Č>103 s (95% C.L.) is derived

    Species-specific tree growth responses to 9 years of CO(2) enrichment at the alpine treeline

    No full text
    1. Using experimental atmospheric CO(2) enrichment, we tested for tree growth stimulation at the high-elevation treeline, where there is overwhelming evidence that low temperature inhibits growth despite an adequate carbon supply. We exposed Larix decidua (European larch) and Pin us mugo ssp. uncinata (mountain pine) to 9 years of free-air CO(2) enrichment (FACE) in an in situ experiment at treeline in the Swiss Alps (2180 m a.s.l.). 2. Accounting for pre-treatment vigour of individual trees, tree ring increments throughout the experimental period were larger in Larix growing under elevated CO(2) but not in Pinus. The magnitude of the CO(2) response in Larix ring width varied over time, with a significant stimulation occurring in treatment years 3-7 (marginal in year 6). 3. After 9 years of treatment, leaf canopy cover, stem basal area and total new shoot production were overall greater in Larix trees growing under elevated CO(2), whereas Pinus showed no such cumulative growth response. The Larix ring width response in years 3-7 could have caused the cumulative CO(2) effect on tree size even if no further stimulation occurred, so it remains unclear if responsiveness was sustained over the longer term. 4. Larix ring width was stimulated more by elevated CO(2) in years with relatively high spring temperatures and an early snowmelt date, suggesting that temperatures were less limiting in these years and greater benefit was gained from extra carbon assimilated under elevated CO(2). The magnitude of CO(2) stimulation was also larger after relatively high temperatures and high solar radiation in the preceding growing season, perhaps reflecting gains due to larger carbon reserves. 5. Synthesis. Contrasting above-ground growth responses of two treeline tree species to elevated CO(2) concentrations suggest that Larix will have a competitive advantage over less responsive species, such as co-occurring Pinus, under future CO(2) concentrations. Stimulation of Larix growt might be especially pronounced in a future warmer climate
    corecore