225 research outputs found

    Diet Quality and Micronutrient Intake in Long-Term Weight Loss Maintainers

    Get PDF
    Objective: This study’s purpose was to examine dietary quality, macronutrient intake, and micronutrient adequacy among long term weight loss maintainers (WLM) in a commercial weight management program. Methods: Participants were 1,207 WLM in WW (formerly Weight Watchers) who had maintained a 9.1 kg or greater weight loss (29.7 kg on average) for 3.4 years, and had an average BMI of 28.3 kg/m2. A control group of weight stable adults with obesity (Controls; N=102) had a BMI of 41.1 kg/m2 and 2.3 kg or less weight change over the previous five years. Results: WLM vs. Controls had a 10.1 point higher HEI-2015 score (70.2 [69.7 - 70.7] vs 60.1 [58.4 - 61.8], respectively; p=0.0001) in analyses that adjusted for group difference in demographic factors. WLM versus Controls had a significantly higher average percentage of calories from carbohydrates (50.3% [49.7 - 50.8] vs 46.7% [44.8 - 48.7], respectively; p=0.0001) and protein (18.2% [18.0-18.5] vs 15.9% [15.1-16.6], respectively; p=0.0001) and lower percentage of calories from fat (32.3% [31.9-32.8] vs 37.4% [35.8-38.9], respectively; p=0.0001). Examining micronutrients, WLM had significantly higher odds for meeting the EAR for copper (OR=5.8 [2.6-13.1]; p=0.0001), magnesium (OR=2.9 [1.8-4.7]; p=0.0001), potassium (OR=4.7 [1.4-16.5]; p=0.015), vitamin A (OR=2.8 [1.7-4.8]; p=0.0001), thiamin (OR=2.3 [1.3-4.1]; p=0.003), riboflavin (OR=6.5 [2.2-19.3]; p=0.001), vitamin B6 (OR=2.91 [1.6-5.2]; p=0.0001), vitamin C (OR=5.0 [2.8-8.8]; p=0.0001), folate (OR=2.2 [1.3-3.7]; p=0.003), and vitamin E (OR=1.8 [1.1-2.8]; p=0.014) and didn’t differ in calcium (OR=1.15 [0.7-1.7]; p=0.823), iron (OR=1.9 [0.8-4.6]; p=0.151), phosphorus (OR=2.0 [0.9-4.5]; p=0.101), selenium (OR=1.6 [0.6-3.8]; p=0.332), zinc (OR=1.7 [0.9-3.0]; p=0.095), niacin (B3) (OR=1.9 [0.8-4.1]; p=0.136), vitamin B12 (OR=1.2 [0.5-2.8]; p=0.625), and vitamin D (OR=1.5 [0.9-2.4]; p=0.09). Conclusions In a widely available commercial program, WLM consumed a healthier and more micronutrient rich diet than adults who were weight stable with obesity. Future research is needed to examine whether improved micronutrient status among WLM reduces risk of chronic disease

    The effects of transport of 18-day old hatching eggs on physiology and behaviour of slow growing broiler chicken

    Get PDF
    Incubation and hatching commonly takes places at hatcheries, separate from the grow-out facilities where broiler chicks are raised. This means that chicks are sorted and transported immediately after hatch, during which time they typically do not have access to feed and water, and are subjected to transport stress. Recently, innovative housing systems are being developed in which fertilised eggs are transported on embryonic day 18 (E18) from the hatchery to the grow-out facility, where they hatch on day 21. In chicken, the hypothalamic– pituitary–adrenal (HPA)-axis becomes functional around embryonic day 14–16. It is therefore conceivable that transport of eggs at E18 may lead to a stress response in the chick embryo. Exposure to prenatal stress may affect the coping capacity of the individual and negatively impact its further development. We investigated whether prolonged transport on E18 has effects on the development of a slow growing broiler chicken strain (Hubbard JA257). E18 eggs were transported for either 41 min (short transport, ST) or 219 min (long transport, LT). Transportation significantly increased embryonic heart rate after ST. This increase continued during an intermediate measure at 120 min. The increased embryonic HR then remained high at measurement immediately following LT. We did not find effects of prolonged transport on behavioural parameters measured in the juvenile chicken in the tonic immobility and open field test. Concentrations of feather corticosterone as well as faecal corticosterone metabolites did not differ on postnatal day 36. We showed that transport leads to an autonomic stress response in chicken embryos at E18, but that this elevation had no further effects on other indicators of prenatal stress. Nevertheless, our results emphasise that transport of incubated eggs should be as refined as possible to minimise the exposure to stress

    Sensitive Period for a Multimodal Response in Human Visual Motion Area

    Get PDF
    The middle temporal complex (MT/MST) is a brain region specialized for the perception of motion in the visual modality [ [1], [2], [3] and [4]]. However, this specialization is modified by visual experience: after long-standing blindness, MT/MST responds to sound [5]. Recent evidence also suggests that the auditory response of MT/MST is selective for motion [ [6] and [7]]. The developmental time course of this plasticity is not known. To test for a sensitive period in MT/MST development, we used fMRI to compare MT/MST function in congenitally blind, late-blind, and sighted adults. MT/MST responded to sound in congenitally blind adults, but not in late-blind or sighted adults, and not in an individual who lost his vision between ages of 2 and 3 years. All blind adults had reduced functional connectivity between MT/MST and other visual regions. Functional connectivity was increased between MT/MST and lateral prefrontal areas in congenitally blind relative to sighted and late-blind adults. These data suggest that early blindness affects the function of feedback projections from prefrontal cortex to MT/MST. We conclude that there is a sensitive period for visual specialization in MT/MST. During typical development, early visual experience either maintains or creates a vision-dominated response. Once established, this response profile is not altered by long-standing blindness.David and Lucille Packard FoundationNational Center for Research Resources: Harvard-Thorndike General Clinical Research Center at Beth Israel Deaconess Medical Center (NCRR MO1 RR01032)Harvard Clinical and Translational Science Center (UL1 RR025758)National Institutes of Health (U.S.) (grant K24 RR018875)National Institutes of Health (U.S.) (grant RO1-EY12091

    Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass

    Get PDF
    Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.Fil: Daleo, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Chaneton, Enrique Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Iribarne, Oscar Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Tognetti, Pedro Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Bruschetti, Carlos Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: MacDougall, Andrew S.. University Of Guelph. Department Of Integrative Biology.; CanadáFil: Pascual, Jesus Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Sankaran, Mahesh. University of Leeds; Reino Unido. Tata Institute of Fundamental Research; IndiaFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Wang, Shaopeng. Peking University; ChinaFil: Bagchi, Sumanta. Indian Institute of Science; IndiaFil: Brudvig, Lars A.. Michigan State University; Estados UnidosFil: Catford, Jane A.. University of Melbourne; Australia. Kings College London (kcl);Fil: Dickman, Chris R.. The University Of Sydney; AustraliaFil: Dickson, Tymothy L.. University of Nebraska; Estados UnidosFil: Donohue, Ian. Trinity College Dublin; Reino UnidoFil: Eisenhauer, Nico. Universitat Leipzig; Alemania. German Centre for Integrative Biodiversity Research; AlemaniaFil: Gruner, Daniel S.. University of Maryland; Estados UnidosFil: Haider, Sylvia. German Centre for Integrative Biodiversity Research; Alemania. Martin Luther University Halle-Wittenberg; Alemania. Leuphana University of Lüneburg; AlemaniaFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Knops, Johannes M. H.. Xi’an Jiaotong-Liverpool University; ChinaFil: Lekberg, Ylva. University of Montana; Estados UnidosFil: McCulley, Rebecca L.. University of Kentucky; Estados UnidosFil: Moore, Joslin L.. University of Melbourne; Australia. Monash University; Australia. Arthur Rylah Institute for Environmental Research; AustraliaFil: Mortensen, Brent. Benedictine College; Estados UnidosFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria; Argentina. Universidad Nacional de la Patagonia Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rocca, Camila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentin

    Diverse values of nature for sustainability

    Get PDF
    Twenty-five years since foundational publications on valuing ecosystem services for human well-being(1,2), addressing the global biodiversity crisis(3) still implies confronting barriers to incorporating nature's diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever(4). Notwithstanding agreements to incorporate nature's values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)(5) and the UN Sustainable Development Goals(6), predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature(7). Arguably, a 'values crisis' underpins the intertwined crises of biodiversity loss and climate change(8), pandemic emergence(9) and socio-environmental injustices(10). On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature's diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions(7,11). Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures

    Diverse values of nature for sustainability

    Get PDF
    Twenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature’s diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature’s values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a ‘values crisis’ underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature’s diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures

    The burden of unintentional drowning : global, regional and national estimates of mortality from the Global Burden of Disease 2017 Study

    Get PDF
    Background Drowning is a leading cause of injury-related mortality globally. Unintentional drowning (International Classification of Diseases (ICD) 10 codes W65-74 and ICD9 E910) is one of the 30 mutually exclusive and collectively exhaustive causes of injury-related mortality in the Global Burden of Disease (GBD) study. This study's objective is to describe unintentional drowning using GBD estimates from 1990 to 2017. Methods Unintentional drowning from GBD 2017 was estimated for cause-specific mortality and years of life lost (YLLs), age, sex, country, region, Socio-demographic Index (SDI) quintile, and trends from 1990 to 2017. GBD 2017 used standard GBD methods for estimating mortality from drowning. Results Globally, unintentional drowning mortality decreased by 44.5% between 1990 and 2017, from 531 956 (uncertainty interval (UI): 484 107 to 572 854) to 295 210 (284 493 to 306 187) deaths. Global age-standardised mortality rates decreased 57.4%, from 9.3 (8.5 to 10.0) in 1990 to 4.0 (3.8 to 4.1) per 100 000 per annum in 2017. Unintentional drowning-associated mortality was generally higher in children, males and in low-SDI to middle-SDI countries. China, India, Pakistan and Bangladesh accounted for 51.2% of all drowning deaths in 2017. Oceania was the region with the highest rate of age-standardised YLLs in 2017, with 45 434 (40 850 to 50 539) YLLs per 100 000 across both sexes. Conclusions There has been a decline in global drowning rates. This study shows that the decline was not consistent across countries. The results reinforce the need for continued and improved policy, prevention and research efforts, with a focus on low- and middle-income countries.Peer reviewe
    corecore