72 research outputs found

    Characterization of an electron conduit between bacteria and the extracellular environment

    Get PDF
    A number of species of Gram-negative bacteria can use insoluble minerals of Fe(III) and Mn(IV) as extracellular respiratory electron acceptors. In some species of Shewanella, deca-heme electron transfer proteins lie at the extracellular face of the outer membrane (OM), where they can interact with insoluble substrates. To reduce extracellular substrates, these redox proteins must be charged by the inner membrane/periplasmic electron transfer system. Here, we present a spectro-potentiometric characterization of a trans-OM icosa-heme complex, MtrCAB, and demonstrate its capacity to move electrons across a lipid bilayer after incorporation into proteoliposomes. We also show that a stable MtrAB subcomplex can assemble in the absence of MtrC; an MtrBC subcomplex is not assembled in the absence of MtrA; and MtrA is only associated to the membrane in cells when MtrB is present. We propose a model for the modular organization of the MtrCAB complex in which MtrC is an extracellular element that mediates electron transfer to extracellular substrates and MtrB is a trans-OM spanning ß-barrel protein that serves as a sheath, within which MtrA and MtrC exchange electrons. We have identified the MtrAB module in a range of bacterial phyla, suggesting that it is widely used in electron exchange with the extracellular environment

    Complete Genome Sequences of Cluster A Mycobacteriophages BobSwaget, Fred313, KADY, Lokk, MyraDee, Stagni, and StepMih

    Get PDF
    Seven mycobacteriophages from distinct geographical locations were isolated, using Mycobacterium smegmatis mc2155 as the host, and then purified and sequenced. All of the genomes are related to cluster A mycobacteriophages, BobSwaget and Lokk in subcluster A2; Fred313, KADY, Stagni, and StepMih in subcluster A3; and MyraDee in subcluster A18, the first phage to be assigned to that subcluster

    Antigen presentation deficiency, mesenchymal differentiation, and resistance to immunotherapy in the murine syngeneic CT2A tumor model

    Get PDF
    BackgroundThe GL261 and CT2A syngeneic tumor lines are frequently used as immunocompetent orthotopic mouse models of human glioblastoma (huGBM) but demonstrate distinct differences in their responses to immunotherapy.MethodsTo decipher the cell-intrinsic mechanisms that drive immunotherapy resistance in CT2A-luc and to define the aspects of human cancer biology that these lines can best model, we systematically compared their characteristics using whole exome and transcriptome sequencing, and protein analysis through immunohistochemistry, Western blot, flow cytometry, immunopeptidomics, and phosphopeptidomics.ResultsThe transcriptional profiles of GL261-luc2 and CT2A-luc tumors resembled those of some huGBMs, despite neither line sharing the essential genetic or histologic features of huGBM. Both models exhibited striking hypermutation, with clonal hotspot mutations in RAS genes (Kras p.G12C in GL261-luc2 and Nras p.Q61L in CT2A-luc). CT2A-luc distinctly displayed mesenchymal differentiation, upregulated angiogenesis, and multiple defects in antigen presentation machinery (e.g. Tap1 p.Y488C and Psmb8 p.A275P mutations) and interferon response pathways (e.g. copy number losses of loci including IFN genes and reduced phosphorylation of JAK/STAT pathway members). The defect in MHC class I expression could be overcome in CT2A-luc by interferon-γ treatment, which may underlie the modest efficacy of some immunotherapy combinations. Additionally, CT2A-luc demonstrated substantial baseline secretion of the CCL-2, CCL-5, and CCL-22 chemokines, which play important roles as myeloid chemoattractants.ConclusionAlthough the clinical contexts that can be modeled by GL261 and CT2A for huGBM are limited, CT2A may be an informative model of immunotherapy resistance due to its deficits in antigen presentation machinery and interferon response pathways

    Elevated plasma levels of cardiac troponin-I predict left ventricular systolic dysfunction in patients with myotonic dystrophy type 1:A multicentre cohort follow-up study

    Get PDF
    Objective: High sensitivity plasma cardiac troponin-I (cTnI) is emerging as a strong predictor of cardiac events in a variety of settings. We have explored its utility in patients with myotonic dystrophy type 1 (DM1). Methods: 117 patients with DM1 were recruited from routine outpatient clinics across three health boards. A single measurement of cTnI was made using the ARCHITECT STAT Troponin I assay. Demographic, ECG, echocardiographic and other clinical data were obtained from electronic medical records. Follow up was for a mean of 23 months. Results: Fifty five females and 62 males (mean age 47.7 years) were included. Complete data were available for ECG in 107, echocardiography in 53. Muscle Impairment Rating Scale score was recorded for all patients. A highly significant excess (p = 0.0007) of DM1 patients presented with cTnI levels greater than the 99th centile of the range usually observed in the general population (9 patients; 7.6%). Three patients with elevated troponin were found to have left ventricular systolic dysfunction (LVSD), compared with four of those with normal range cTnI (33.3% versus 3.7%; p = 0.001). Sixty two patients had a cTnI level < 5ng/L, of whom only one had documented evidence of LVSD. Elevated cTnI was not predictive of severe conduction abnormalities on ECG, or presence of a cardiac device, nor did cTnI level correlate with muscle strength expressed by Muscle Impairment Rating Scale score. Conclusions: Plasma cTnI is highly elevated in some ambulatory patients with DM1 and shows promise as a tool to aid cardiac risk stratification, possibly by detecting myocardial involvement. Further studies with larger patient numbers are warranted to assess its utility in this setting

    Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems

    Get PDF
    While a diverse array of phosphorus (P)-adsorbent materials is currently available for application to freshwater aquatic systems, selection of the most appropriate P-adsorbents remains problematic. In particular, there has to be a close correspondence between attributes of the P-adsorbent, its field performance, and the management goals for treatment. These management goals may vary from a rapid reduction in dissolved P to address seasonal enrichments from internal loading, targeting external fluxes due to anthropogenic sources, or long term inactivation of internal P inventories contained within bottom sediments. It also remains a challenge to develop new methods and materials that are ecologically benign and cost-effective. We draw on evidence in the literature and the authors’ personal experiences in the field, to summarise the attributes of a range of P-adsorbent materials. We offer 'guiding principles' to support practical use of existing materials and outline key development needs for new materials

    Standardized Definitions for Bioprosthetic Valve Dysfunction Following Aortic or Mitral Valve Replacement: JACC State-of-the-Art Review.

    Full text link
    peer reviewedBioprosthetic valve dysfunction (BVD) and bioprosthetic valve failure (BVF) may be caused by structural or nonstructural valve dysfunction. Both surgical and transcatheter bioprosthetic valves have limited durability because of structural valve deterioration. The main objective of this summary of experts participating in a virtual workshop was to propose standardized definitions for nonstructural and structural BVD and BVF following aortic or mitral biological valve replacement with the goal of facilitating research reporting and implementation of these terms in clinical practice. Definitions of structural BVF, based on valve reintervention or death, underestimate the true incidence of BVF. However, definitions solely based on the presence of high transprosthetic gradient at a given echocardiogram during follow-up overestimate the incidence of structural BVD and BVF. Definitions of aortic or mitral structural BVD must therefore include the confirmation by imaging of permanent structural changes to the leaflets alongside evidence of deterioration in valve hemodynamic function at echocardiography follow-up
    corecore