64 research outputs found

    Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube

    Get PDF
    The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2×1051-2×1054 erg. © 2017 American Physical Society

    Measurements of the t(t)Overbar charge asymmetry using the dilepton decay channel in pp collisions at root s=7 TeV

    Get PDF
    The tt¯ charge asymmetry in proton-proton collisions at s√ = 7 TeV is measured using the dilepton decay channel (ee, e μ , or μμ ). The data correspond to a total integrated luminosity of 5.0 fb −1 , collected by the CMS experiment at the LHC. The tt and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be A C = −0 . 010 ± 0 . 017 (stat . ) ± 0 . 008 (syst . ) and AlepC = 0 . 009 ± 0 . 010 (stat . ) ± 0 . 006 (syst . ). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the tt¯ system. All measurements are consistent with the expectations of the standard model

    Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s=13TeV

    Get PDF
    A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb−1. The search is sensitive to resonances with masses between 1.3 and 6TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z′ and W′ resonances with masses below 4.8TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb. © 2023 The Author(s

    Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run

    Get PDF
    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fα,Θ(f)<(0.1-56)×10-8 erg cm-2 s-1 Hz-1(f/25 Hz)α-1 depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω(f,Θ)<(0.39-7.6)×10-8 sr-1(f/25 Hz)α depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0<(6.7,5.5, and 7.0)×10-25, respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case. © 2017 Published by the American Physical Society

    Search for a heavy composite Majorana neutrino in events with dilepton signatures from proton-proton collisions at √s=13 Tev

    Get PDF
    Results are presented of a search for a heavy Majorana neutrino N ⠃ decaying into two same-flavor leptons ⠃ (electrons or muons) and a quark-pair jet. A model is considered in which the N ⠃ is an excited neutrino in a compositeness scenario. The analysis is performed using a sample of proton-proton collisions at & RADIC;s = 13 TeV recorded by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 138 fb-1. The data are found to be in agreement with the standard model prediction. For the process in which the N ⠃ is produced in association with a lepton, followed by the decay of the N ⠃ to a same-flavor lepton and a quark pair, an upper limit at 95% confidence level on the product of the cross section and branching fraction is obtained as a function of the N ⠃ mass mN ⠃ and the compositeness scale ⠄. For this model the data exclude the existence of Ne (N & mu;) for mN ⠃ below 6.0 (6.1) TeV, at the limit where mN ⠃ is equal to ⠄. For mN ⠃ N 1 TeV, values of ⠄ less than 20 (23) TeV are excluded. These results represent a considerable improvement in sensitivity, covering a larger parameter space than previous searches in pp collisions at 13 TeV.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3

    Search for the associated production of the Higgs boson with a top-quark pair

    Get PDF
    A search for the standard model Higgs boson produced in association with a top-quark pair t t ¯ H (tt¯H) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb &#8722;1 and 19.7 fb &#8722;1 collected in pp collisions at center-of-mass energies of 7 TeV and 8 TeV respectively. The search is based on the following signatures of the Higgs boson decay: H &#8594; hadrons, H &#8594; photons, and H &#8594; leptons. The results are characterized by an observed t t ¯ H tt¯H signal strength relative to the standard model cross section, &#956; = &#963;/&#963; SM ,under the assumption that the Higgs boson decays as expected in the standard model. The best fit value is &#956; = 2.8 ± 1.0 for a Higgs boson mass of 125.6 GeV

    Measurement of prompt Jψ\psi pair production in pp collisions at \sqrt s = 7 Tev

    Get PDF
    Production of prompt J/ &#968; meson pairs in proton-proton collisions at s s&#8730; = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb &#8722;1 . The two J/ &#968; mesons are fully reconstructed via their decays into &#956; + &#956; &#8722; pairs. This observation provides for the first time access to the high-transverse-momentum region of J/ &#968; pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/ &#968; transverse momentum ( p T J/ &#968; ) and rapidity (| y J/ &#968; |): | y J/ &#968; | 6.5 GeV/ c ; 1.2 4.5 GeV/ c . The total cross section, assuming unpolarized prompt J/ &#968; pair production is 1.49 ± 0.07 (stat) ±0.13 (syst) nb. Different assumptions about the J/ &#968; polarization imply modifications to the cross section ranging from &#8722;31% to +27%
    corecore