101 research outputs found

    Stern-Gerlach experiment with light: separating photons by spin with the method of A. Fresnel

    Get PDF
    In 1822 A. Fresnel described an experiment to separate a beam of light into its right- and left-circular polarization components using chiral interfaces. Fresnel's experiment combined three crystalline quartz prisms of alternating handedness to achieve a visible macroscopic separation between the two circular components. Such quartz polyprisms were rather popular optical components in XIXth century but today remain as very little known optical devices. This work shows the analogy between Fresnel's experiment and Stern-Gerlach experiment from quantum mechanics since both experiments produce selective deflection of particles (photons in case of Fresnel's method) according to their spin angular momentum. We have studied a historical quartz polyprism with eight chiral interfaces producing a large spatial separation of light by spin. We have also constructed a modified Fresnel biprism to produce smaller separations and we have examined the analogy with Stern-Gerlach apparatus for both strong and weak measurements. The polarimetric analysis of a Fresnel polyprism reveals that it acts as a spin angular momentum analyzer

    Snapshot circular dichroism measurements

    Get PDF
    Two coherent waves carrying orthogonal polarizations do not interfere when they superpose, but an interference pattern is generated when the two waves share a common polarization. This well-known principle of coherence and polarization is exploited for the experimental demonstration of a novel method for performing circular dichroism measurements whereby the visibility of the interference fringes is proportional to the circular dichroism of the sample. Our proof-of-concept experiment is based upon an analog of Young's double-slit experiment that continuously modulates the polarization of the probing beam in space, unlike the time modulation used in common circular dichroism measurement techniques. The method demonstrates an accurate and sensitive circular dichroism measurement from a single camera snapshot, making it compatible with real-time spectroscopy

    Anisotropic integral decomposition of depolarizing Mueller matrices

    Get PDF
    We propose a novel, computationally efficient integral decomposition of depolarizing Mueller matrices allowing for the obtainment of a nondepolarizing estimate, as well as for the determination of the elementary polarization properties, in terms of mean values and variancescovariances of their fluctuations, of a weakly anisotropic depolarizing medium. We illustrate the decomposition on experimental examples and compare its performance to those of alternative decomposition

    Sum decomposition of Mueller-matrix images and spectra of beetle cuticles

    No full text
    International audienceSpectral Mueller matrices measured at multiple angles of incidence as well as Mueller matrix images are recorded on the exoskeletons (cuticles) of the scarab beetles Cetonia aurata and Chrysina argenteola. Cetonia aurata is green whereas Chrysina argenteola is gold-colored. When illuminated with natural (unpolarized) light, both species reflect left-handed and near-circularly polarized light originating from helicoidal structures in their cuticles. These structures are referred to as circular Bragg reflectors. For both species the Mueller matrices are found to be nondiagonal depolarizers. The matrices are Cloude decomposed to a sum of non-depolarizing matrices and it is found that the cuticle optical response, in a first approximation can be described as a sum of Mueller matrices from an ideal mirror and an ideal circular polarizer with relative weights determined by the eigenvalues of the covariance matrices of the measured Mueller matrices. The spectral and image decompositions are consistent with each other. A regression-based decomposition of the spectral and image Mueller matrices is also presented whereby the basic optical components are assumed to be a mirror and a circular polarizer as suggested by the Cloude decomposition. The advantage with a regression decomposition compared to a Cloude decomposition is its better stability as the matrices in the decomposition are determined a priori. The origin of the depolarizing features are discussed but from present data it is not possible to conclude whether the two major components, the mirror and the circular polarizer are laterally separated in domains in the cuticle or if the depolarization originates from the intrinsic properties of the helicoidal structure.-matrix characterization of bee-tle cuticle: polarized and unpolarized reflections from representative architectures," Appl. Opt. 49, 4558–4567 (2010).-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson," Phil. Mag. 92, 1583–1599 (2012). 4. H. Arwin, T. Berlind, B. Johs, and K. Järrendahl, "Cuticle structure of the scarab beetle Cetonia aurata analyzed by regression analysis of Mueller-matrix ellipsometric data," Opt. Express 21, 22645–22656 (2013). 5. matrices: how to decompose them?," Phys. Status Solidi A 205, 720–727 (2008). 6. S. R. Cloude, "Group theory and polarization algebra," Optik (Stuttgart) 75, 26–36 (1986). 7. S. R. Cloude and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Trans

    Polarization-Based Histopathology Classification of Ex Vivo Colon Samples Supported by Machine Learning

    Get PDF
    In biophotonics, novel techniques and approaches are being constantly sought to assist medical doctors and to increase both sensitivity and specificity of the existing diagnostic methods. In such context, tissue polarimetry holds promise to become a valuable optical diagnostic technique as it is sensitive to tissue alterations caused by different benign and malignant formations. In our studies, multiple Mueller matrices were recorded for formalin-fixed, human, ex vivo colon specimens containing healthy and tumor zones. The available data were pre-processed to filter noise and experimental errors, and then all Mueller matrices were decomposed to derive polarimetric quantities sensitive to malignant formations in tissues. In addition, the Poincaré sphere representation of the experimental results was implemented. We also used the canonical and natural indices of polarimetric purity depolarization spaces for plotting our experimental data. A feature selection was used to perform a statistical analysis and normalization procedure on the available data, in order to create a polarimetric model for colon cancer assessment with strong predictors. Both unsupervised (principal component analysis) and supervised (logistic regression, random forest, and support vector machines) machine learning algorithms were used to extract particular features from the model and for classification purposes. The results from logistic regression allowed to evaluate the best polarimetric quantities for tumor detection, while the use of random forest yielded the highest accuracy values. Attention was paid to the correlation between the predictors in the model as well as both losses and relative risk of misclassification. Apart from the mathematical interpretation of the polarimetric quantities, the presented polarimetric model was able to support the physical interpretation of the results from previous studies and relate the latter to the samples’ health condition, respectively

    Impact of corpus callosum fiber tract crossing on polarimetric images of human brain histological sections: ex vivo studies in transmission configuration.

    Get PDF
    SIGNIFICANCE Imaging Mueller polarimetry is capable to trace in-plane orientation of brain fiber tracts by detecting the optical anisotropy of white matter of healthy brain. Brain tumor cells grow chaotically and destroy this anisotropy. Hence, the drop in scalar retardance values and randomization of the azimuth of the optical axis could serve as the optical marker for brain tumor zone delineation. AIM The presence of underlying crossing fibers can also affect the values of scalar retardance and the azimuth of the optical axis. We studied and analyzed the impact of fiber crossing on the polarimetric images of thin histological sections of brain corpus callosum. APPROACH We used the transmission Mueller microscope for imaging of two-layered stacks of thin sections of corpus callosum tissue to mimic the overlapping brain fiber tracts with different fiber orientations. The decomposition of the measured Mueller matrices was performed with differential and Lu-Chipman algorithms and completed by the statistical analysis of the maps of scalar retardance, azimuth of the optical axis, and depolarization. RESULTS Our results indicate the sensitivity of Mueller polarimetry to different spatial arrangement of brain fiber tracts as seen in the maps of scalar retardance and azimuth of optical axis of two-layered stacks of corpus callosum sections The depolarization varies slightly () with the orientation of the optical axes in both corpus callosum stripes, but its value increases by 2.5 to 3 times with the stack thickness. CONCLUSIONS The crossing brain fiber tracts measured in transmission induce the drop in values of scalar retardance and randomization of the azimuth of the optical axis at optical path length of . It suggests that the presence of nerve fibers crossing within the depth of few microns will be also detected in polarimetric maps of brain white matter measured in reflection configuration

    Polarization and depolarization metrics as optical markers in support to histopathology of ex vivo colon tissue

    Get PDF
    Tissue polarimetry holds great promise to improve the effectiveness of conventional cancer diagnostics and staging, being a fast, minimally invasive, and low-cost optical technique. We introduce an enhanced diagnostic method for ex vivo colon specimens assessment by utilizing Stokes and Mueller matrix polarimetry. The proposed method makes use of experimental Mueller matrices, measured from healthy and tumor zones of a colon specimen, as input data for post-processing algorithms that include physical realisability filtering, symmetric decomposition and estimation of various polarization and depolarization metrics for colon specimen diagnostics. We validated our results with the gold standard histological diagnostics provided by pathologists. It was found that the Stokes-Mueller matrix polarimetry, combined with the appropriate filtering, decomposition algorithms and polarization/depolarization metrics calculations provides relevant optical markers of the colon tissue pathological conditions (healthy versus cancer), as confirmed by histopathology analysis. This approach potentially provides physicians with valuable and complementary information that holds promises in helping with the diagnostics of colon tissue specimens

    Unraveling the physical information of depolarizers

    Get PDF
    The link between depolarization measures and physical nature and structure of material media inducing depolarization is nowadays an open question. This article shows how the joint use of two complementary sets of depolarizing metrics, namely the Indices of polarimetric purity and the Components of purity, are sufficient to completely describe the integral depolarizing properties of a sample. Based on a collection of illustrative and representative polarimetric configurations, a clear and meaningful physical interpretation of such metrics is provided, thus extending the current tools and comprehension for the study and analysis of the depolarizing properties of material media. This study could be of interest to those users dealing with depolarization or depolarizing samples
    corecore