
Research Article Vol. 29, No. 23 / 8 Nov 2021 / Optics Express 38811

Unraveling the physical information of
depolarizers

ALBERT VAN EECKHOUT,1,* JOSE J. GIL,2 ENRIQUE
GARCIA-CAUREL,3 JAVIER GARCÍA ROMERO,1 RAZVIGOR
OSSIKOVSKI,3 IGNACIO SAN JOSÉ,4 IGNACIO MORENO,5 JUAN
CAMPOS,1 AND ANGEL LIZANA1

1Grup d’Òptica, Physics Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
2Department of Applied Physics, University of Zaragoza, Zaragoza, Spain
3LPICM, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
4Instituto Aragonés de Estadística, Gobierno de Aragón, Zaragoza, Spain
5Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández
de Elche, Elche, Spain
*albert.vaneeckhout@uab.cat

Abstract: The link between depolarization measures and physical nature and structure of
material media inducing depolarization is nowadays an open question. This article shows
how the joint use of two complementary sets of depolarizing metrics, namely the Indices of
polarimetric purity and the Components of purity, are sufficient to completely describe the integral
depolarizing properties of a sample. Based on a collection of illustrative and representative
polarimetric configurations, a clear and meaningful physical interpretation of such metrics is
provided, thus extending the current tools and comprehension for the study and analysis of the
depolarizing properties of material media. This study could be of interest to those users dealing
with depolarization or depolarizing samples.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The fundamental understanding of light scattering phenomena is of interest in scientific and
technological fields as diverse as astronomy, remote sensing, metrology and biomedical imaging,
among others [1–13]. In particular, the study of light depolarization processes finds a very wide
scope of applications, for instance, the characterization of gaseous structures in the cosmos [3,4],
remote sensing of diffuse objects [1], and the early diagnosis of diseases [5,8,9].

Some intrinsic structural information of scattering media can be inferred from light depolar-
ization measurements. Such measurements give a macroscopic view of the random scattering
process, connected with the physical properties of materials and with light-matter interactions.
Nowadays, different depolarization metrics are available in the literature [14–25] for the analysis
of the different aspects of scattered light, such as randomness, entropy, or degree of polarization,
among others. However, the link between depolarization measures through different metrics and
the physical properties of the sample involved in such depolarization values is a challenging topic
that is still under investigation.

Commonly, the depolarization properties of scattering media are inspected by using the
so-called depolarization index, P∆ [14]. The depolarization index, P∆, is a generalization of the
degree of polarization (DoP), but instead of characterizing light beams like DoP, P∆ is a measure
of the depolarizing power of a material medium. In particular, P∆ quantifies the randomness of
the processes behind the scattering interactions but does not discriminate their different physical
origins that contribute to the overall depolarization.

To get a more accurate description of the depolarization phenomena, it is necessary to use
a complete set of polarization descriptors rather than just a single parameter. With this aim,
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some authors proposed to combine P∆ with another metric called the overall purity index PI
[22]. PI is a global descriptor of depolarization, like P∆, that exhibits an alternative measure of
the overall depolarization, and which is compatible with P∆. Although the combined use of PI
and P∆ improves the description of the depolarization phenomena, their combined use does not
provide a complete description of the depolarization structure of the medium. Therefore, other
descriptors must be explored to get a more accurate description of the depolarization structure of
the medium.

Under the common assumption of linearity of the polarimetric response of a given medium,
the sixteen elements of the Mueller matrix M encode, in an intricate manner, all information on
the response in question. Therefore, all the physical properties of the sample producing some
kind of polarimetric response cannot be directly described from the M coefficients [26]. To this
aim, some of the multiple Mueller decompositions can be applied.

By means of the arrow decomposition approach [27,28], it has been proven that M can be
factored as the product of three matrices, namely two retarders, which are respectively multiplied
to the right (entry retarder) and to the left (exit retarder) of a depolarizer without retardance that
accumulates the entangled information on polarizance, diattenuation and depolarization. Thus,
the physical information provided by M can be considered as composed of, a) three parameters
that determine the entrance retarder (in general elliptical); b) three parameters that determine the
exit retarder (in general elliptical); c) four angular parameters determining the direction of the
diattenuation and polarizance vectors; d) the M element m00 and e) five remaining parameters
relative to diattenuation D, polarizance P and depolarization [27,28].

In this work, we study in detail two groups of different metrics, the Indices of Polarimetric Purity
(IPP) [20] and the Components of Purity (CP) [21], that are connected to the well-known and
commonly used depolarization index P∆ [14] and which provide together complete information
on the integral depolarization properties of media [27]. Their physical meaning, as well as their
complementary use for the complete analysis of the scattering phenomena, is discussed through
a collection of illustrative and easy to interpret examples.

2. Mathematical description of P∆, CP, and IPP

In the following section, we summarize the main mathematical foundations of P∆, IPP and CP,
which are the metrics inspected in this work. Moreover, we provide a visual and intuitive physical
description for their better understanding. This section also shows the fundamental relation
between the different groups of parameters (IPP and CP) and P∆.

2.1. Depolarization index (P∆)

P∆ can be directly calculated from the elements of the 4× 4 M describing the interaction of light
with the sample [14,29]:

P∆ ≡

⌜⃓⃓⎷
1

3m2
00

⎛⎜⎝
3∑︂

i,j=0
m2

ij − m2
00

⎞⎟⎠ =
⌜⃓⎷

1
3

(︄
1

m2
00

tr(MTM) − 1

)︄
, (1)

where mij is the element at the i-th row and j-th column of M, m00 is interpreted as the mean
intensity transmittance or reflectance of the sample for unpolarized light [29] and tr is the matrix
trace. P∆ is a global measure of the depolarization behavior. Its maximum value, associated with
a non-depolarizing medium, is 1 whereas its minimum value, attained by a totally depolarizing
medium, is 0.

2.2. Components of Purity (CP)

The Components of Purity, CP, is a group of three parameters that arise from the link between
the depolarization properties of scattering media and their dichroism. As a result, two of the
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three CP parameters are the polarizance P (the absolute value of the polarizance vector [26]) and
the diattenuation D (the absolute value of the diattenuation vector [26]).

P =

⌜⃓⃓⃓⃓⎷ 3∑︁
i=1

m2
i0

m2
00

, D =
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m2
0j

m2
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. (2)

From a squared and expanded definition of P∆ [21], we can directly relate P∆ with P and D:
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P∆2 =
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P2 +
1
3

D2 + Ps
2, (4)

where Ps is the third CP parameter defined as [21]:

Ps =

⌜⃓⃓⃓⃓⃓⎷ 3∑︁
i,j=1

m2
ij

3m2
00

(5)

P, D, and Ps are the three CP components. They take values in the range [0,1], but can never be
all three equal to one. The latter follows from the P∆-range limitation (0≤ P∆ ≤1).

The depolarization, which eventually appears in the polarimetric measurement of the optical
response of any physical system, arises from the incoherent composition of the contributions
associated with the dichroic and birefringent elementary effects. Therefore, by analyzing Eq. (4),
we realize that the overall depolarizing properties derived from the incoherent composition of
birefringent effects in the sample are encoded into the Ps parameter. Note that each depolarizer
featuring a given P∆ value, has three values for the CP, so it can be represented in a new
tridimensional space (we label it as the P-D-PS space; see Fig. 1) where P, D and PS are the
coordinates of an orthogonal coordinate system.

Regardless of the depolarization complexity, each existing depolarizer can be represented in
the P-D-PS space (Fig. 1) by using a single point. The coordinates of such point in the P-D-PS
space determine the polarizance-diattenuation (dichroism) and the Ps contributions involved in
the depolarizing process. Importantly, the points in the P-D-PS space related to a constant value
of P∆ lie on the surface of an ellipsoid defined by Eq. (4). The whole ellipsoid cannot be fully
represented because only a portion of it is comprised within the domain of values pertaining
to the P-D-PS space (P2 + D2 ≤ 1 + 3P2

s ) [21]. The latter is of relevant significance because
depolarizers with very different intrinsic origins but leading to the same overall depolarization
(P∆), are clearly discriminated in the P-D-PS space as points located at different positions upon
the same surface. As an example, different surfaces with a constant P∆ are represented in Fig. 1.
It is worth noting that the higher the value of P∆, the larger the area covered by the corresponding
surface (the smallest one corresponds to P∆=0 while the largest one, to P∆=1). Accordingly, the
discriminating potential of the CPs is higher for low depolarizing systems.

A planar representation of this purity figure (Fig. 1) with axes Ps and Pp (Pp being the degree of
polarizance Pp =

√︁
(P2 + D2)/2) was studied in [21,27]. Such representation is characterized for

taking the dichroism information in a unique parameter Pp thus reducing the dimensionality of the
figure. This dimensionality reduction allows the performance of new 3D spaces that includes new
information about the statistical nature of the random processes behind the scattering interactions
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Fig. 1. Representation of the P-D-PS space . Each surface drawn with a different color
corresponds to a different value of P∆.

in the system, e.g., the PI-CP space discussed in Ref. [23]. However, these new spaces lose
the P-D discrimination information and consequently, some M cannot be differentiated. For
example, the forward and reverse M, discussed in the next section 3, cannot be differentiated
when using Pp instead of P and D

2.3. Indices of Polarimetric Purity (IPP)

A complementary view of the depolarization is given by the so-called Indices of Polarimetric
Purity (IPP) whose contributions to overall depolarization are irrespective of the nature of
the polarimetric phenomena involved (unlike those of the CP, which depend on diattenuation,
polarizance, and Ps) but only depend on the relative weights of the incoherent components of the
sample. The IPP are three parameters defined as follows [20]:

Pi ≡
1

m00

i∑︂
k=1

k(λk−1 − λk) (6)

where i= 1,2,3 and λk are the eigenvalues of the covariance matrix H(M) taken in decreasing
order [15,26]. The latter is defined from a linear transformation of the elements of M required
for applying the Spectral Decomposition of M [15,26],

H(M) ≡
1
4

3∑︂
i,j=0

mij(σi ⊗ σ
∗
j ), (7)

where ⊗ denotes the Kronecker product while σ0 is the 2× 2 identity matrix and σi, i= 1,2,3 are
the Pauli matrices.

In order to link IPP parameters with P∆, it is necessary to reformulate Eq. (7) in the following
way:

mij = tr[(σi ⊗ σ
∗
j )H(M)]. (8)
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The properties of the trace help to express P∆ in terms of a combination of the eigenvalues
(λi). For that purpose, we first use Eq. (8) to link the elements mij of M with λi as follows [30]:

3∑︂
i,j=0

m2
ij = 4

3∑︂
i=0
λi

2. (9)

Secondly, from Eq. (7) it is possible to write the trace of H in terms of λi and m00.

tr(H) = m00 =

3∑︂
i=0
λi (10)

The combination of Eqs. (9) and (10) leads to [30]:
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Finally, λi can be substituted in the proceeding expression by the corresponding IPP (Eq. (6))
giving [20]:

P∆2 =
2
3

P1
2 +

2
9

P2
2 +

1
9

P3
2 (12)

Conversely to what happens with the CP, it may occur that more than one IPP is equal to one,
which corresponds to particular points in the corresponding IPP space. In fact, P1 =P2 =P3= 1
corresponds to a non-depolarizing sample, whereas P1 =P2 =P3= 0 represents an ideal perfect
depolarizer. As in the case of CP, the IPP can be represented in a 3D space associating each
parameter with an axis. This visual representation has been previously described in the literature
[20] and corresponds to the IPP space also called Purity Space.

Fig. 2. Representation of the IPP space. Each surface drawn with a different color is
associated with a different value of P∆.
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For the sake of visualization, the IPP space is represented in Fig. 2, where any physically
realizable depolarizer is comprised within a tetrahedron, which is defined by the inherent
constraint obeyed by the IPP: 0 ≤P1 ≤P2 ≤P3 ≤1. As in the case of the P-D-PS space, constant
values of P∆ are represented by surfaces in the IPP space. To go further, it is worth mentioning
that, according to Eq. (12), constant values of P∆ describe the surface of an ellipsoid with P1, P2
and P3 as parameters, limited by the indicated constraint 0 ≤P1 ≤P2 ≤P3 ≤1. Note that, unlike
in the P-D-PS space, in the IPP space the area of the surface does not necessarily decrease as P∆

decreases. In fact, the largest surface is associated with P∆=1/3.

3. Physical interpretation and complementarity of CP and IPP

The above-discussed transformation of a single overall value (P∆) to two mutually complementary
3D spaces allows synthesizing the depolarizing information of the sample to a new basis with
richer physical interpretation, because each new parameter provides specific information on
the sample. In that sense, CP are sensitive to the way in which depolarization is related to
the nature of the polarimetric behavior of the probed medium, resulting from the averaged
effects of diattenuation, polarizance and retardance. Unlike CP, the IPP are insensitive to the
nature of the components integrating M; that is, the IPP do not carry information on specific
diattenuation, polarizance or retardation properties of the medium represented by M [27], but
rather result from the structure of polarimetric randomness of the sample (as in other related
works, with polarimetric randomness we refer to the lack of determinism of the polarimetric
properties exhibited by M), which is determined by the relative weights of the components of the
characteristic decomposition of M [27,29,31]

M = P1 MJ0+(P2 − P1)M1+(P3 − P2)M2 + (1 − P3)M∆0 (13)

where MJ0 is the nondepolarizing component generated by the eigenvector of H associated with
its largest eigenvalue (λ0), while M1, M2 and M∆0 are the depolarizing components generated by
respective equiprobable mixtures of the two, three and four Mueller matrices associated with the
sets of two, three and four eigenvectors of H [27,29,31]. The characteristic decomposition of M
is the Mueller-algebra version of the decomposition of a partially polarized state as an incoherent
combination of a totally polarized state and an unpolarized state, in such a manner that the
depolarizing component of M takes the structured form (P2−P1)M1+(P3−P2)M2+(1−P3)M∆0,
where the two- and three-component depolarizers in Eq. (13) appear combined with the
perfect depolarizer (four-component depolarizer) M∆0 = diag (1, 0, 0, 0) [31]. Note that in the
case of polarized light, the relative weight of the pure component is precisely the degree of
polarization (which does not encompass any information on the degrees of linear or circular
polarization). Similarly, the IPP provide quantitative information on the structure of polarimetric
purity-randomness of the interaction represented by M. Accordingly, the IPP and the CP play
complementary roles in describing the depolarization properties of the probed medium.

In order to examine the complementarity of CP and IPP, it is useful to show the explicit
connection between CP and IPP parameters [27],

3P2
∆
= P2 + D2 + 3Ps

2 = 2P1
2 + 2

3P2
2 + 1

3P3
2 (14)

Equation (14) shows that each one of the six parameters can be calculated from the other
five. It means that the index of spherical purity PS can readily be calculated from the set (P1,
P2, P3, D, P). Note that the three IPP (P1, P2 and P3) [20], provide detailed information on
the structure of polarimetric purity-randomness exhibited by the sample and, together with the
diattenuation D and the polarizance P, complete the above indicated five polarimetrically invariant
parameters of the depolarizer. In addition, it is remarkable that other relevant parameters relative
to depolarization, like the Cloude’s entropy S or the overall purity index PI, can also be calculated
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from the same set (P1, P2, P3, D, P) [22,24,27]. This complementarity of the IPP and the CP
with respect to each other is the reason why they have been chosen in this work among other sets
[24] as being the most meaningful independent representation of the five parameters needed to
fully represent depolarization.

The relation presented in Eq. (14) also implies that for any fixed P, D, PS triplet there is an
infinite number of solutions to Eq. (14) in the form of P1, P2, and P3 triplets. If we define an
abstract space (the IPP space) in which P1, P2, and P3 represent the coordinates of a basis of
three orthogonal vectors, then the solutions of Eq. (14) define the surface of the positive octant of
an ellipsoid in the IPP space. Similarly, for a fixed P1, P2, and P3 triplet, the solutions of Eq. (14)
for P, D, PS define an elliptical surface in the respective abstract P-D-PS space where P, D, and
PS are the respective coordinates.

The latter point means that when polarimetric information is entangled (collapsed) in a point in
either the CP or the IPP spaces, the same information can be in principle considerably expanded
(disentangled) when the same polarimetric data is represented in the complementary space,
i.e., in the IPP or the P-D-PS spaces respectively. Note that for fixed CP or IPP values, P∆

is also fixed. There are two extreme situations that need discussion to provide further insight
into the physical interpretation of polarimetric data; they are characterized by: 1) a group of
depolarizers represented by a single point in the P-D-PS space but by a surface at the IPP
space (different IPP); and vice versa 2) a group of depolarizers represented by a single point in
the IPP space but by a surface in the P-D-PS space (different CP). In the following, different
depolarizing samples accomplishing these two limit situations are simulated to clearly show
which properties of the sample are connected to the CP and to the IPP. We would like to emphasize
that two following discussed cases are the two limiting situations in which either the IPP or
the CP respectively become the ideal basis to represent depolarization effects and eventually
characterize a given sample. In all other cases, both the IPP and CP are two complementary
views of the depolarization process: IPP characterize the statistical structure of randomness of the
depolarizer (this basis can detect depolarization anisotropies of the medium, i.e., if different input
polarizations are differently depolarized) while CP characterize the effect of the polarimetric
properties (diattenuation, polarizance, retardance) on the depolarization process. In general, both
spaces should be used to completely characterize depolarization.

3.1. Simulated depolarizing systems

The following study is performed by conducting a series of simulations based on ad hoc
polarimetric samples, which are essentially synthesized from the combination of non-depolarizing
diattenuators and retarders. The simulations are based on the fact that depolarizers can always be
considered as incoherent combinations of non-depolarizing elements (diattenuators and retarders)
[15,32], thus simplifying the physical interpretation and the comparison between spaces of
observables. Most generally, any depolarizing M can be described as an incoherent sum of
non-depolarizing Mueller matrices Mi [15,29,32]:

M =
∑︂

i
αiMi (15)

where each αi can be interpreted as the relative weight that the corresponding Mi component has
in the sum. In practical experiments, each αi corresponds to the portion of light intensity that
falls on a given part of the sample with respect to the total intensity reaching the sample. Note
that in practical experiments, the measured depolarization also depends on some illumination
and detection properties, such as the illumination bandwidth [33] and the numerical aperture
of the detector [34]. However, the influence of the measuring instrument on the measured
depolarization is beyond the scope of this study and it is not considered in the simulation.
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3.2. Situation I: Depolarizers with identical CP but different IPP

The first case of study is associated with depolarizers without any diattenuation or polarizance
content (P=D=0), for which PS =P∆. According to Eq. (14), such depolarizers, which collapse
into a single point in the P-D-PS space, are represented as separate points in an ellipsoid
associated with the given value of PS. The closer to 1/3 the value of PS, the larger the surface, and
therefore the higher the potential for the IPP in discriminating between such class of non-dichroic
depolarizing samples.

Non-dichroic depolarizers with P=D=0 and PS =P∆ can be constructed, according to Eq. (15),
as follows:

M = α1MAir + α2MH0 + α3MH45 + α4(MH45 · MH0) (16)

where MAir is the M of the air (i.e., the identity matrix) while MH0 and MH45 are respectively,
the M of half wave plates with their fast axis oriented at 0° and 45° with respect to the horizontal
axis of the laboratory reference frame. Different combinations of weights lead to non-dichroic
depolarizers; therefore, it is possible to produce any physically realizable combination of IPP
values. Consequently, Eq. (16) is a generator of depolarizers of the type P=D=0, and PS =P∆.

The following example illustrates the use of the generator from Eq. (16), with the depolarizers
labeled as MA, MB and MC characterized with IPP, CP and P∆ values shown in Table 1 (further
details are given in the Table S1 of the Supplement 1). The positions of the three depolarizers
in either the IPP space and in the P-D-PS space are shown in Fig. 3. Note that, in Table 1, the
three depolarizers present the same value of CP and P∆, but their corresponding IPP values are
significantly different. In the case of non-dichroic depolarizers, MA, MB and MC, the differences
between the corresponding IPP are connected to the polarimetric randomness structure of the
sample that they represent, i.e. the weights of retarders (and air) chosen to build them. This
example shows how IPP are useful to distinguish among different types of anisotropic depolarizers
while CP are not able to discriminate these depolarizers because all the elements are retarders
without any dichroism, an essential characteristic of the P-D-PS space. It is worth noting that
scattering systems with different intrinsic properties (particle’s size, particle’s density, refractive
index, etc.) presents different depolarization anisotropies, so they are described by different
IPP [10–13]. Accordingly, IPP can be used to characterize such dispersion systems effectively,
as proved in the literature [10–13]. In fact, some works showed that the variation of these
intrinsic properties of the system show different trajectories in the IPP space [10,11] so this 3D
representation (Fig. 2) is an ideal tool for the recognition and classification of scattering media.

Table 1. Construction equation and P∆ , IPP and CP values of the A, B, C, D, E, F, G, I, J and J’
depolarizers. MAir: Air, MH0: Half wave plate oriented at 0°, MH45: Half wave plate oriented at 45°,

MP0: Linear polarizer with transmission axis oriented at 0°. All angles are considered with respect
to the horizontal axis of the laboratory reference frame. The superscript T indicates the transpose

matrix.

P1 P2 P3 P∆ P D Ps Depolarizer construction

MA 0 1 1 0.58 0 0 0.58 1/2MAir + 1/2MH0

MB 0.40 0.71 1 0.58 0 0 0.58 3+
√

5
8 MAir + 1/4MH0 +

3−
√

5
8 MH45

MC 0.58 0.58 0.58 0.58 0 0 0.58 3+
√

3
4
√

3
MAir +

√
3−1

4
√

3
(MH0 +MH45 +MH45MH0)

MD 0 1 1 0.58 0.50 0.50 0.41 2/3MP0 + 1/3MH45

ME 0.40 0.71 1 0.58 0.50 0.50 0.41 2/3MP0 + 1/6(MH0 +MH45)

MF 0.58 0.58 0.58 0.58 0.50 0.50 0.41 2/3MP0 +
√

3
9 MH0 +

3−
√

3
18 (MH45 +MH45MH0)

MG 0.33 1 1 0.64 0.33 0.33 0.58 1/2MP0 + 1/2MH45

MI 0.33 1 1 0.64 0.67 0.67 0.33 4/5MP0 + 1/5MH45

MJ 0.33 1 1 0.64 1 0.33 0.19 2/3MP0 + 1/3MP0MH45

MJ
r 0.33 1 1 0.64 0.33 1 0.19 diag(1, 1, 1,−1) · MT

J · diag(1, 1, 1,−1)

https://doi.org/10.6084/m9.figshare.16655290
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Fig. 3. Representation of the connection between the P-D-PS space (inset) and the IPP
space for the case of a group of depolarizers located on a single spot in the P-D-PS space but
distributed over a surface at the IPP space. The particular case of depolarizers accomplishing
PS =P∆= 0.58 is presented as an illustrative example.

Depolarizers satisfying D=P=0 belong to a more general class satisfying the condition D=P
≥0; for which the P-D-PS space does not provide fine discrimination. For a given value of P∆,
such depolarizers have identical CP values but different IPP ones. This more general type of
depolarizers can be constructed through another generator given by Eq. (17). It is similar to the
one from Eq. (16) but with the matrix of a horizontal polarizer MP0 instead of matrix MAir:

M′ = α1MP0 + α2MH0 + α3MH45 + α4(MH45 · MH0) (17)

As an example, we have synthesized three depolarizers with Mueller matrices MD, ME and MF,
characterized by the CP and IPP summarized in Table 1. Note that according to Table 1, these
three examples exhibit equal CP values but different IPP. Therefore, they are seen as equivalent
depolarizers with respect to the CP metrics, but they are well discriminated by using the IPP.

3.3. Situation II: Depolarizers with identical IPP but different CP

Now, we study another subgroup of depolarizers that satisfies the D=P condition but with
different CP values and identical IPP. In contrast to the previously discussed case where the
two studied depolarizers show identical diattenuation-polarizance (i.e., D(Mp)=D(Mq)), in this
new case they are taken so as D(Mp)≠D(Mq). To illustrate this situation, the matrices MA and
MD can be considered. They present the same IPP but they show different CP. In this example,
MA has no dichroic elements while MD is constructed by using a horizontal polarizer as one of
the components (Note that MA and MD represent very different systems). The same situation
can be also reached with matrices MB and MC, to be compared with ME and MF, respectively
(see Table 1). These examples correspond to the limiting case where one of the systems has no
dichroic content, so they satisfy the condition D(Mp)≠D(Mq).

In the previous example, one of the systems in the couple did not have a dichroic component;
however, the latter is not a mandatory condition since, as previously discussed, the same situation,
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(D(Mp)≠D(Mq) can also be observed when considering two depolarizers with non-negligible
but different dichroic content. These types of structures can be synthesized from Eq. (17) with
α2=α4=0 by properly selecting the values of α1 and α3. Note that after normalizing the sum
of the αi weights to 1 (

∑︁
αi = 1), α3 = (1 − α1). Therefore, by modifying the value of α1 it is

possible to build a collection of depolarizers with a-priori different P∆, i.e. with different overall
depolarizing power.

The values for P∆ (Fig. 4(a)), IPP (Fig. 4(a)), and CP (Fig. 4(b)) as respective functions of
α1 are graphically represented in Fig. 4. Figure 4(a) reveals that, by using this construction,
there is an indeterminacy between two possible configurations with equal P∆ due to the presence
of a minimum in the function (see the red horizontal line for the particular case P∆ = 0.64).
This ambiguity is also observed when using the IPP. In fact, the P1 function also presents a
minimum, so that each possible P1 value is always associated with two different depolarizers
(except for the minimum value); these two depolarizers being indistinguishable by means of
P1 alone (see the orange curve in Fig. 4(a)). Therefore, the two parameters P∆ and P1, do not
provide discrimination for this set of depolarizers. In addition, P2 and P3 are always constant
and equal to one.

Fig. 4. Graphic representation of (a)P∆, IPP and (b) CP as a function of α1. The matrices
refer to Eq. (17) with α2=α4= 0 and the red horizontal line represents the particular case
P∆=0.64.

The above-mentioned ambiguity is lifted by using P-D-PS space where P and D curves are not
degenerate but are bijectively valued with respect to α1. Therefore, the P-D-PS space allows
deciding which element (dichroic or birefringent) is more significant in the weighted sum (see
Fig. 4(b), since both P and D parameter functions do not present a minimum and so, there is no
ambiguity between the elements of the depolarizer set).

From all possible depolarizers generated by Eq. (17) with α2=α4=0 we select two particular
ones, MG (α1=0.5) and MI (α1=0.8), with identical P∆ value (P∆=0.64) to be represented in the
P-D-PS space of Fig. 5. Their respective IPP, CP and P∆ values are presented in Table 1 and their
M are given in the Table S1 of the Supplement 1. Note that both depolarizers are represented by
the same point in the IPP space (P1=0.33, P2=1 and P3=1) but lie at different points located on
the surface P∆=0.64 in the P-D-PS space (red and pink points in the P=D plane).

Up to this point, we have discussed a group of depolarizing media satisfying D=P. In the
following, we discuss depolarizing media satisfying D≠P. In order to construct these types
of depolarizers, at least two different dichroic elements are needed. MJ is an example of a

https://doi.org/10.6084/m9.figshare.16655290
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Fig. 5. Representation of the connection between the IPP space and the P-D-PS space for
the case of a group of depolarizers located in a single spot in the IPP space but distributed
over a surface at the P-D-PS space. The particular case of depolarizers having P∆= 0.64 is
presented as an illustrative example.

depolarizer with different D and P values (IPP, CP and P∆ values are shown in Table 1), built
according to another generator given by Eq. (18). It is similar to the one in Eq. (17) but MH0 is
replaced by the non-depolarizing dichroic element MP0·MH45:

M = α1MP0 + α2(MP0 · MH45) + α3MH45 + α4(MH45 · MH0) (18)

The construction of MJ is summarized in Table 1 and its M is provided in the Table S1 of the
Supplement 1.

Given a Mueller matrix MJ, the reverse Mueller matrix MJ
r corresponds to the one obtained

if the original incident and emerging polarizations are interchanged [26,35]. The construction of
MJ

r, together with the corresponding IPP, CP and P∆ values, are reported in Table 1. Note that
MJ and MJ

r have identical P∆ and IPP, but different CP. These two systems are represented in
the P-D-PS space of Fig. 5 by blue and green dots, respectively. We observe that they lie over the
same P∆=0.64 ellipsoid, and they are symmetrically located with respect to the D=P plane. In
fact, the latter observation is not specific to the indicated example but it can be generalized to any
pair of forward-reverse (M and Mr) pairs of depolarizing systems. Therefore, the P-D-PS space
can be divided into two sub-spaces split by the D=P plane, each representing pairs of direct
and reverse depolarizers. Such pairs of depolarizers share identical IPP but can be differentiated
using the P-D-PS space (Fig. 5). Conversely, IPP space has no potential to discriminate between
forward and reverse systems, because their capabilities to depolarize (or polarize) an input beam
are equivalent [36,37].

https://doi.org/10.6084/m9.figshare.16655290
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4. Conclusions

In summary, in this work, we highlighted the usefulness and the physical significance of
considering both the IPP and P-D-PS spaces as complementary tools to completely describe
the integral depolarization properties of material media, this approach providing global and
fundamental information on depolarizers. On one hand, the IPP space provides information
about the type of randomness induced by the sample. Importantly, unlike other depolarization
bases, IPP are able to determine depolarization anisotropies induced by samples, i.e., if different
input polarizations are differently depolarized. On the other hand, the P-D-PS space, which
is sensitive to the effects of dichroism and birefringence involved in the depolarizing process,
brings information about the physical nature and other possible physical properties of the sample,
related to P, D and PS.

As a general approach, when an unknown depolarizing medium must be characterized, the use
of both IPP and P-D-PS spaces together is recommended because, as discussed, they cover two
different and complementary physical properties of depolarizers. Furthermore, the combined use
of the IPP and P-D-PS spaces constitutes a complete description of the depolarizing properties of
the medium, and the use of no additional descriptor is required. Depending on the particular
depolarizing medium under study, one of the two characteristic spaces may lead to better
discrimination, as was shown through the study of a series of limiting cases where only one of the
two spaces was able to discriminate between two differently constructed depolarizers. Moreover,
in the general case where both spaces provide complementary information on depolarization
properties, an observed tendency is that the IPP space provides better discrimination for
depolarizers with values of P∆ ranging between 0.2< P∆<0.6 whereas the P-D-PS space performs
better for depolarizing media with P∆>0.6.

We believe that the methods described in this article constitute a significant step in the physical
interpretation of the polarimetric response of depolarizing systems and provide analytical means
to study depolarization processes. Given the great importance that depolarization measurements
are taking in polarimetric imaging, this study is likewise relevant for the correct interpretation of
the physical mechanisms causing depolarization in different kinds of samples.
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