267 research outputs found

    A study of the characteristic based split scheme (CBS), considering the incorporation of 'speed up' techniques.

    Get PDF
    The scope of this dissertation centers on the application of the Characteristic Based SpHt (CBS) algorithm to the governing equations of compressible flow, represented by the conservation form of the Navier Stokes equations. It is proposed that the inherent stability of split algorithm alongside the explicit nature of the CBS scheme utilised in this dissertation will produce accurate results. To study the robustness and accuracy of the CBS scheme, various unstructured and hybrid meshes have been used. The method has been extended to three dimensions and the code parallelised to accelerate the solution. In addition to laminar compressible flows, at various Mach numbers, the code has been extended to incorporate RANS based turbulence modeling. The performance of the CBS scheme is established by studying a variety of flow problems. The problems considered include test cases of an inviscid, viscous and turbulent nature for flows past both two dimensional and three dimensional solid geometries. Computed results are compared to those published in literature. In addition the use and benefits of artificial diffusion, shock capturing and structured viscous layers are discussed at relevant points of this dissertation

    Ploidy Reductions in Murine Fusion-Derived Hepatocytes

    Get PDF
    We previously showed that fusion between hepatocytes lacking a crucial liver enzyme, fumarylacetoacetate hydrolase (FAH), and wild-type blood cells resulted in hepatocyte reprogramming. FAH expression was restored in hybrid hepatocytes and, upon in vivo expansion, ameliorated the effects of FAH deficiency. Here, we show that fusion-derived polyploid hepatocytes can undergo ploidy reductions to generate daughter cells with one-half chromosomal content. Fusion hybrids are, by definition, at least tetraploid. We demonstrate reduction to diploid chromosome content by multiple methods. First, cytogenetic analysis of fusion-derived hepatocytes reveals a population of diploid cells. Secondly, we demonstrate marker segregation using ß-galactosidase and the Y-chromosome. Approximately 2–5% of fusion-derived FAH-positive nodules were negative for one or more markers, as expected during ploidy reduction. Next, using a reporter system in which ß-galactosidase is expressed exclusively in fusion-derived hepatocytes, we identify a subpopulation of diploid cells expressing ß-galactosidase and FAH. Finally, we track marker segregation specifically in fusion-derived hepatocytes with diploid DNA content. Hemizygous markers were lost by ≥50% of Fah-positive cells. Since fusion-derived hepatocytes are minimally tetraploid, the existence of diploid hepatocytes demonstrates that fusion-derived cells can undergo ploidy reduction. Moreover, the high degree of marker loss in diploid daughter cells suggests that chromosomes/markers are lost in a non-random fashion. Thus, we propose that ploidy reductions lead to the generation of genetically diverse daughter cells with about 50% reduction in nuclear content. The generation of such daughter cells increases liver diversity, which may increase the likelihood of oncogenesis

    Rationale and design of two randomized sham-controlled trials of catheter-based renal denervation in subjects with uncontrolled hypertension in the absence (SPYRAL HTN-OFF MED Pivotal) and presence (SPYRAL HTN-ON MED Expansion) of antihypertensive medications: a novel approach using Bayesian design.

    Get PDF
    BACKGROUND: The SPYRAL HTN clinical trial program was initiated with two 80-patient pilot studies, SPYRAL HTN-OFF MED and SPYRAL HTN-ON MED, which provided biological proof of principle that renal denervation has a blood pressure-lowering effect versus sham controls for subjects with uncontrolled hypertension in the absence or presence of antihypertensive medications, respectively. TRIAL DESIGN: Two multicenter, prospective, randomized, sham-controlled trials have been designed to evaluate the safety and efficacy of catheter-based renal denervation for the reduction of blood pressure in subjects with hypertension in the absence (SPYRAL HTN-OFF MED Pivotal) or presence (SPYRAL HTN-ON MED Expansion) of antihypertensive medications. The primary efficacy endpoint is baseline-adjusted change from baseline in 24-h ambulatory systolic blood pressure. The primary safety endpoint is incidence of major adverse events at 1 month after randomization (or 6 months in cases of new renal artery stenosis). Both trials utilize a Bayesian design to allow for prespecified interim analyses to take place, and thus, the final sample sizes are dependent on whether enrollment is stopped at the first or second interim analysis. SPYRAL HTN-OFF MED Pivotal will enroll up to 300 subjects and SPYRAL HTN-ON MED Expansion will enroll up to 221 subjects. A novel Bayesian power prior approach will leverage historical information from the pilot studies, with a degree of discounting determined by the level of agreement with data from the prospectively powered studies. CONCLUSIONS: The Bayesian paradigm represents a novel and promising approach in device-based hypertension trials. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02439749 (SPYRAL HTN-OFF MED Pivotal) and NCT02439775 (SPYRAL HTN-ON MED Expansion)

    Rationale and design of two randomized sham-controlled trials of catheter-based renal denervation in subjects with uncontrolled hypertension in the absence (SPYRAL HTN-OFF MED Pivotal) and presence (SPYRAL HTN-ON MED Expansion) of antihypertensive medications: a novel approach using Bayesian design.

    Get PDF
    BACKGROUND: The SPYRAL HTN clinical trial program was initiated with two 80-patient pilot studies, SPYRAL HTN-OFF MED and SPYRAL HTN-ON MED, which provided biological proof of principle that renal denervation has a blood pressure-lowering effect versus sham controls for subjects with uncontrolled hypertension in the absence or presence of antihypertensive medications, respectively. TRIAL DESIGN: Two multicenter, prospective, randomized, sham-controlled trials have been designed to evaluate the safety and efficacy of catheter-based renal denervation for the reduction of blood pressure in subjects with hypertension in the absence (SPYRAL HTN-OFF MED Pivotal) or presence (SPYRAL HTN-ON MED Expansion) of antihypertensive medications. The primary efficacy endpoint is baseline-adjusted change from baseline in 24-h ambulatory systolic blood pressure. The primary safety endpoint is incidence of major adverse events at 1 month after randomization (or 6 months in cases of new renal artery stenosis). Both trials utilize a Bayesian design to allow for prespecified interim analyses to take place, and thus, the final sample sizes are dependent on whether enrollment is stopped at the first or second interim analysis. SPYRAL HTN-OFF MED Pivotal will enroll up to 300 subjects and SPYRAL HTN-ON MED Expansion will enroll up to 221 subjects. A novel Bayesian power prior approach will leverage historical information from the pilot studies, with a degree of discounting determined by the level of agreement with data from the prospectively powered studies. CONCLUSIONS: The Bayesian paradigm represents a novel and promising approach in device-based hypertension trials. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02439749 (SPYRAL HTN-OFF MED Pivotal) and NCT02439775 (SPYRAL HTN-ON MED Expansion)

    Rationale and design of two randomized sham-controlled trials of catheter-based renal denervation in subjects with uncontrolled hypertension in the absence (SPYRAL HTN-OFF MED Pivotal) and presence (SPYRAL HTN-ON MED Expansion) of antihypertensive medications: a novel approach using Bayesian design

    Get PDF
    Background The SPYRAL HTN clinical trial program was initiated with two 80-patient pilot studies, SPYRAL HTN-OFF MED and SPYRAL HTN-ON MED, which provided biological proof of principle that renal denervation has a blood pressure-lowering effect versus sham controls for subjects with uncontrolled hypertension in the absence or presence of antihypertensive medications, respectively. Trial design Two multicenter, prospective, randomized, sham-controlled trials have been designed to evaluate the safety and efficacy of catheter-based renal denervation for the reduction of blood pressure in subjects with hypertension in the absence (SPYRAL HTN-OFF MED Pivotal) or presence (SPYRAL HTN-ON MED Expansion) of antihypertensive medications. The primary efficacy endpoint is baseline-adjusted change from baseline in 24-h ambulatory systolic blood pressure. The primary safety endpoint is incidence of major adverse events at 1 month after randomization (or 6 months in cases of new renal artery stenosis). Both trials utilize a Bayesian design to allow for prespecified interim analyses to take place, and thus, the final sample sizes are dependent on whether enrollment is stopped at the first or second interim analysis. SPYRAL HTN-OFF MED Pivotal will enroll up to 300 subjects and SPYRAL HTN-ON MED Expansion will enroll up to 221 subjects. A novel Bayesian power prior approach will leverage historical information from the pilot studies, with a degree of discounting determined by the level of agreement with data from the prospectively powered studies. Conclusions The Bayesian paradigm represents a novel and promising approach in device-based hypertension trials. Clinical trial registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT02439749 (SPYRAL HTN-OFF MED Pivotal) and NCT02439775 (SPYRAL HTN-ON MED Expansion)

    Learned Value Magnifies Salience-Based Attentional Capture

    Get PDF
    Visual attention is captured by physically salient stimuli (termed salience-based attentional capture), and by otherwise task-irrelevant stimuli that contain goal-related features (termed contingent attentional capture). Recently, we reported that physically nonsalient stimuli associated with value through reward learning also capture attention involuntarily (Anderson, Laurent, & Yantis, PNAS, 2011). Although it is known that physical salience and goal-relatedness both influence attentional priority, it is unknown whether or how attentional capture by a salient stimulus is modulated by its associated value. Here we show that a physically salient, task-irrelevant distractor previously associated with a large reward slows visual search more than an equally salient distractor previously associated with a smaller reward. This magnification of salience-based attentional capture by learned value extinguishes over several hundred trials. These findings reveal a broad influence of learned value on involuntary attentional capture

    Dissociable Effects of Reward on Attentional Learning: From Passive Associations to Active Monitoring

    Get PDF
    Visual selective attention (VSA) is the cognitive function that regulates ongoing processing of retinal input in order for selected representations to gain privileged access to perceptual awareness and guide behavior, facilitating analysis of currently relevant information while suppressing the less relevant input. Recent findings indicate that the deployment of VSA is shaped according to past outcomes. Targets whose selection has led to rewarding outcomes become relatively easier to select in the future, and distracters that have been ignored with higher gains are more easily discarded. Although outcomes (monetary rewards) were completely predetermined in our prior studies, participants were told that higher rewards would follow more efficient responses. In a new experiment we have eliminated the illusory link between performance and outcomes by informing subjects that rewards were randomly assigned. This trivial yet crucial manipulation led to strikingly different results. Items that were associated more frequently with higher gains became more difficult to ignore, regardless of the role (target or distracter) they played when differential rewards were delivered. Therefore, VSA is shaped by two distinct reward-related learning mechanisms: one requiring active monitoring of performance and outcome, and a second one detecting the sheer association between objects in the environment (whether attended or ignored) and the more-or-less rewarding events that accompany them

    In vivo partial cellular reprogramming enhances liver plasticity and regeneration.

    Full text link
    Mammals have limited regenerative capacity, whereas some vertebrates, like fish and salamanders, are able to regenerate their organs efficiently. The regeneration in these species depends on cell dedifferentiation followed by proliferation. We generate a mouse model that enables the inducible expression of the four Yamanaka factors (Oct-3/4, Sox2, Klf4, and c-Myc, or 4F) specifically in hepatocytes. Transient in vivo 4F expression induces partial reprogramming of adult hepatocytes to a progenitor state and concomitantly increases cell proliferation. This is indicated by reduced expression of differentiated hepatic-lineage markers, an increase in markers of proliferation and chromatin modifiers, global changes in DNA accessibility, and an acquisition of liver stem and progenitor cell markers. Functionally, short-term expression of 4F enhances liver regenerative capacity through topoisomerase2-mediated partial reprogramming. Our results reveal that liver-specific 4F expression in vivo induces cellular plasticity and counteracts liver failure, suggesting that partial reprogramming may represent an avenue for enhancing tissue regeneration
    • …
    corecore