48 research outputs found

    Carriage of Neisseria meningitidis Serogroup W135 ST-2881

    Get PDF
    Serogroup W135 ST-2881 meningococci caused a cluster of meningitis cases in Niger in 2003. Of 80 healthy persons in the patients' villages, 28 (35%) carried meningococci; 20 of 21 W135 carrier strains were ST-2881. Ten months later, 5 former carriers were still carriers of W135 ST-2881 strains. The serum bactericidal antibody activity changed according to carrier status

    Ultrasound-enhanced latex immunoagglutination and PCR as complementary methods for non-culture-based confirmation of meningococcal disease

    Get PDF
    Preadmission administration of antibiotics to patients with suspected meningococcal infection has decreased the likelihood of obtaining an isolate and has stimulated development of rapid and reliable non-culture-based diagnostic methods. The sensitivity of the conventional test card latex agglutination test (TCLAT) for detection of capsular polysaccharide has been reported to be suboptimal. In the United Kingdom meningococcal DNA detection by PCR has become readily available and is now used as a first-line investigation. Recently, the performance of latex antigen detection has been markedly improved by ultrasound enhancement. Three tests for laboratory confirmation of meningococcal infection, (i) PCR assays, (ii) TCLAT, and (iii) ultrasound-enhanced latex agglutination test (USELAT), were compared in a retrospective study of 125 specimens (serum, plasma, and cerebrospinal fluid specimens) from 90 patients in whom meningococcal disease was suspected on clinical grounds. Samples were from patients with (i) culture-confirmed meningococcal disease, (ii) culture-negative but PCR-confirmed meningococcal disease, and (iii) clinically suspected but non-laboratory-confirmed meningococcal disease. USELAT was found to be nearly five times more sensitive than TCLAT. Serogroup characterization was obtained by both PCR and USELAT for 44 samples; all results were concordant and agreed with the serogroups determined for the isolates when the serogroups were available. For 12 samples negative by USELAT, the serogroup was determined by PCR; however, for 12 other specimens for which PCR had failed to indicate the serogroup, USELAT gave a result. USELAT is a rapid, low-cost method which can confirm a diagnosis, identify serogroups, and guide appropriate management of meningococcal disease contacts. A complementary non-culture-based confirmation strategy of USELAT for local use supported by a centralized PCR assay service for detection of meningococci would give the benefits of timely information and improved epidemiological data

    Meningococcal disease in North America: Updates from the Global Meningococcal Initiative

    Get PDF
    This review summarizes the recent Global Meningococcal Initiative (GMI) regional meeting, which explored meningococcal disease in North America. Invasive meningococcal disease (IMD) cases are documented through both passive and active surveillance networks. IMD appears to be decreasing in many areas, such as the Dominican Republic (2016: 18 cases; 2021: 2 cases) and Panama (2008: 1 case/100,000; 2021: <0.1 cases/100,000); however, there is notable regional and temporal variation. Outbreaks persist in at-risk subpopulations, such as people experiencing homelessness in the US and migrants in Mexico. The recent emergence of β-lactamase-positive and ciprofloxacin-resistant meningococci in the US is a major concern. While vaccination practices vary across North America, vaccine uptake remains relatively high. Monovalent and multivalent conjugate vaccines (which many countries in North America primarily use) can provide herd protection. However, there is no evidence that group B vaccines reduce meningococcal carriage. The coronavirus pandemic illustrates that following public health crises, enhanced surveillance of disease epidemiology and catch-up vaccine schedules is key. Whole genome sequencing is a key epidemiological tool for identifying IMD strain emergence and the evaluation of vaccine strain coverage. The Global Roadmap on Defeating Meningitis by 2030 remains a focus of the GMI.Medical writing support for the development of this manuscript, under the direction of the authors, was provided Matthew Gunther of Ashfield MedComms, an Inizio company. Medical writing support was funded by Sanofi Pasteur. All authors discussed and agreed to the objectives of this manuscript and con- tributed throughout its production. All authors read and approved the final manuscript.S

    Susceptibility to Invasive Meningococcal Disease: Polymorphism of Complement System Genes and Neisseria meningitidis Factor H Binding Protein

    Get PDF
    Neisseria meningitidis can cause severe infection in humans. Polymorphism of Complement Factor H (CFH) is associated with altered risk of invasive meningococcal disease (IMD). We aimed to find whether polymorphism of other complement genes altered risk and whether variation of N. meningitidis factor H binding protein (fHBP) affected the risk association.We undertook a case-control study with 309 European cases and 5,200 1958 Birth Cohort and National Blood Service cohort controls. We used additive model logistic regression, accepting P<0.05 as significant after correction for multiple testing. The effects of fHBP subfamily on the age at infection and severity of disease was tested using the independent samples median test and Student's T test. The effect of CFH polymorphism on the N. meningitidis fHBP subfamily was investigated by logistic regression and Chi squared test.Rs12085435 A in C8B was associated with odds ratio (OR) of IMD (0.35 [95% CI 0.19-0.67]; P = 0.03 after correction). A CFH haplotype tagged by rs3753396 G was associated with IMD (OR 0.56 [95% CI 0.42-0.76], P = 1.6x10⁻⁴). There was no bacterial load (CtrA cycle threshold) difference associated with carriage of this haplotype. Host CFH haplotype and meningococcal fHBP subfamily were not associated. Individuals infected with meningococci expressing subfamily A fHBP were younger than those with subfamily B fHBP meningococci (median 1 vs 2 years; P = 0.025).The protective CFH haplotype alters odds of IMD without affecting bacterial load for affected heterozygotes. CFH haplotype did not affect the likelihood of infecting meningococci having either fHBP subfamily. The association between C8B rs12085435 and IMD requires independent replication. The CFH association is of interest because it is independent of known functional polymorphisms in CFH. As fHBP-containing vaccines are now in use, relationships between CFH polymorphism and vaccine effectiveness and side-effects may become important

    Immune Response to Meningococcal Serogroup C Conjugate Vaccine in Asplenic Individuals

    No full text
    Asplenic individuals are known to be at increased risk of infection with encapsulated bacteria. Recent United Kingdom recommendations stated that this at-risk group should receive one dose of the meningococcal serogroup C conjugate (MCC) vaccine. However, the immune response of asplenic individuals to MCC vaccine is unknown. The immune response of asplenics (n = 130) to immunization with the MCC vaccine was investigated. Asplenic individuals had a significantly lower geometric mean titer (GMT) (157.8; 95% confidence interval [CI], 94.5 to 263.3) of bactericidal antibody in serum (SBA) than an age-matched control group (n = 48) (1448.2; 95% CI, 751.1 to 2792.0). However, 80% of asplenic individuals achieved the proposed protective SBA titer of ≥8. No differences were observed between the two groups in the serogroup C-specific immunoglobulin G geometric mean concentration. A significant reduction in SBA GMT or the number of responders achieving an SBA titer of ≥8 was observed if the reason for splenectomy was a medical cause or if MCC vaccination occurred <10 years after splenectomy. Individuals (n = 29) who did not achieve an SBA titer of ≥16 were offered a second dose of MCC vaccine. Analysis of the SBA response revealed that 61% (14 of 23) of the individuals who received a second dose achieved a protective titer. In total, 93% of asplenic individuals achieved a titer of ≥8 following MCC vaccination (one or two doses combined). We recommend that, following vaccination of asplenics, either the level of functional antibody should be determined, with a second dose of MCC vaccine offered to nonresponders, or two doses of MCC vaccine should be routinely offered

    Severity of meningococcal disease associated with genomic bacterial load

    No full text
    Background. Diagnostic polymerase chain reaction (PCR) detection of Neisseria meningitidis has enabled accurate quantification of the bacterial load in patients with meningococcal disease. Methods. Quantification of the N. meningitidis DNA level by real time-PCR was conducted on whole-blood samples obtained from patients presenting with meningococcal disease to hospitals throughout England and Wales over a 3-year period. Levels were correlated with clinical outcome, infecting serogroup, and host factors including,interleukin-1 genotype (IL-1).Results. Bacterial loads were available for 1045 patients and were not associated with the age of the patient, delay in sample submission, or administration of antibiotics prior to admission. The median log bacterial load was higher in 95 patients who died (5.29 log10copies/mL; interquartile range, 4.41-6.30 log10copies/mL) than in 950 patients who survived (3.79 log10copies/mL; interquartile range, 2.87-4.71 log10copies/mL). Logistic regression revealed that age (odds ratio, 1.04 per 1-year increase in age) and bacterial load (odds ratio, 2.04 per log10-copies/mL increase) had a statistically significant effect on the risk of death. Infection with N. meningitidis serogroup C was associated with increased risk of death and an increased bacterial load. Also associated with a higher bacterial load were prolonged hospitalization (duration, &gt;10 days); digit, limb, or soft-tissue loss; and requirement of hemodialysis. Carriage of IL-1RN(+2018) was associated with increased mortality (odds ratio, 2.14; P=.07) but not with a higher bacterial load. Conclusions. In meningococcal disease, bacterial load is associated with likelihood of death, development of permanent disease sequelae, and prolonged hospitalization. The bacterial load was relatively higher in patients infected with N. meningitidis serogroup C than in those infected with other serogroups. The effects of age and IL-1 genotype on mortality are independent of a high genomic bacterial load. <br/
    corecore