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Abstract

Background

Neisseria meningitidis can cause severe infection in humans. Polymorphism of Comple-

ment Factor H (CFH) is associated with altered risk of invasive meningococcal disease

(IMD). We aimed to find whether polymorphism of other complement genes altered risk

and whether variation of N.meningitidis factor H binding protein (fHBP) affected the risk

association.

Methods

We undertook a case-control study with 309 European cases and 5,200 1958 Birth Cohort

and National Blood Service cohort controls. We used additive model logistic regression, ac-

cepting P<0.05 as significant after correction for multiple testing. The effects of fHBP sub-

family on the age at infection and severity of disease was tested using the independent

samples median test and Student’s T test. The effect of CFH polymorphism on the N.
meningitidis fHBP subfamily was investigated by logistic regression and Chi squared test.

Results

Rs12085435 A in C8B was associated with odds ratio (OR) of IMD (0.35 [95% CI 0.19–

0.67]; P = 0.03 after correction). A CFH haplotype tagged by rs3753396 G was associated

with IMD (OR 0.56 [95% CI 0.42–0.76], P = 1.6x10−4). There was no bacterial load (CtrA
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cycle threshold) difference associated with carriage of this haplotype. Host CFH haplotype

and meningococcal fHBP subfamily were not associated. Individuals infected with meningo-

cocci expressing subfamily A fHBP were younger than those with subfamily B fHBP menin-

gococci (median 1 vs 2 years; P = 0.025).

Discussion

The protective CFH haplotype alters odds of IMD without affecting bacterial load for affected

heterozygotes. CFH haplotype did not affect the likelihood of infecting meningococci having

either fHBP subfamily. The association between C8B rs12085435 and IMD requires inde-

pendent replication. The CFH association is of interest because it is independent of known

functional polymorphisms in CFH. As fHBP-containing vaccines are now in use, relation-

ships between CFH polymorphism and vaccine effectiveness and side-effects may

become important.

Introduction
The complement system is a fundamental part of the innate immune response. This pathway
harms unprotected surfaces by a powerful positive feedback cycle that injures cells by perforat-
ing them with circular polymers (the membrane attack complex) and by activating further im-
mune response by releasing opsonins and anaphylatoxins [1–3]. Complement activation can
cause harm to both unprotected self and foreign cell surfaces [1,2].

Pathogenic bacteria evade the complement system by mimicking or binding to protective
host proteins [4]. Human complement factor H (CFH) is the major inhibitory regulator of the
complement system. Polymorphism of CFH and the adjacent homologous CFHR1–5 genes is
associated with susceptibility to several inflammatory diseases [5–10]. A genome-wide associa-
tion study of susceptibility to invasive meningococcal disease identified a major risk association
at the CFH and CFHR3 locus [11]. The report noted that the associated variants are in strong
linkage disequilibrium with the minor allele of rs1065489 (D936E) in the CFH gene, but evi-
dence that this is the functional cause is lacking. Unexpectedly, the associated CFH polymor-
phism as one with no known functional effect and is not one associated with other
inflammatory diseases.

Neisseria meningitidis infection causes sepsis and meningitis, with death in approximately
10% of cases [12]. Factor H-binding protein (fHBP) and Neisserial Surface Protein A bind host
CFH to protect N.meningitidis [13–15]; Neisserial fHBP is critical for meningococcal survival
in blood [16]. It binds short consensus repeats 6 and 7 of human CFH, which is a region of
CFH that also binds to self-surface membranes [17]. It may cause its severe systemic effects by
sequestering host CFH, leaving self surfaces unprotected [17,18]. The common CFH Y402H
polymorphism (rs1061170), which is a major risk factor for age-related macular degeneration,
is adjacent to the fHBP binding site, but does not affect binding to fHBP [17].

Factor H binding protein has been a recent focus of interest because it is now a component
of vaccines against serogroup B N.meningitidis [19,20], one of which is already used in out-
break control [21] and is likely to be added to the UK childhood immunisation schedule [22],
which might result in meningococcal disease becoming rare.

Polymorphism of fHBP can be categorized by two different systems of nomenclature.
Fletcher et al. use a system of two subfamilies, A and B [19]. Masignani et al. use a system of
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three variant groups (1, 2 and 3) [20]. Disease severity is associated with polymorphic variation
affecting the five segments that make up the modular structure of fHBP [23–25]. Previous stud-
ies of fHBP sequenced the whole gene from cultured N.meningitidis isolates, and then defined
the subfamily, variant group or modular group using only a small number of sequence features.
Our study is the first to define fHBP type directly using DNA isolated from patient blood. This
may avoid bias due to variation in the success in culturing different strains of N.meningitidis.

The aim of this study was to explore the relationship between invasive meningococcal dis-
ease and variation of the human complement system. We sought to refine the risk association
at the CFH locus and to investigate whether variation of N.meningitidis fHBP affects this asso-
ciation. We explored other variations of the complement system, including terminal pathway
genes where deficiency of proteins has been associated with susceptibility to recurrent menin-
gococcal disease [26–29] and two complement inhibitors to which N.meningitidis binds:
CD46, which encodes membrane cofactor protein, a membrane-bound complement inhibitor
[30,31] and C4 binding protein, which inhibits the classical pathway [32].

Methods

Ethics Statement
The study was approved by the Office for Research Ethics Committees Northern Ireland (part
of the UK National Research Ethics Service; study reference: 10/NIR03/24). Following formal
proposal to its project advisory group, the Health Protection Agency (now part of Public
Health England) provided anonymised residual clinical diagnostic DNA samples from PCR-
confirmed cases of invasive meningococcal disease collected in 2009 and 2010. No identifying
information was provided. Informed consent was not required for these samples because only
anonymised demographic data and residual clinical DNA samples were provided. The Well-
come Trust Case Control Consortium (WTCCC) 1958 Birth Cohort and National Blood Ser-
vice samples were collected with informed consent and used with permission of the WTCCC.

Study Population
The case population characteristics have been described in detail previously [33]. The cases
were 309 European individuals with PCR-confirmed invasive meningococcal disease. We did
not have access to details of the clinical features or demographic details other than age at time
of illness. The N.meningitidis serogroups were: B, 292; C, 3; W, 4; Y 4. The ages ranged between
one month and 73 years, with a median of two years. European ancestry was ascertained by
using an ancestry-informative panel of polymorphisms [34] and cluster analysis, as described
previously [33].

The control population comprised 5,200 individuals with European ancestry from the Unit-
ed Kingdom 1958 Birth Cohort and National Blood Service (NBS) cohort, for whom microar-
ray genome-wide data were provided by the Wellcome Trust Case-Control Consortium
(WTCCC). The WTCCC exclusions were applied, and validated by principal components
analysis, as described previously [33]. The case population does not overlap with any group
tested in the Davila et al. genome-wide association study. The control group is identical to that
used in the genome-wide association study [11]. The median age of NBS participants was 45
years. The 1958 Birth Cohort participants were aged 52 years at the time of genotyping.

Detection of N.meningitidis
Confirmation of invasive meningococcal disease was based on a positive diagnostic Taqman
assay for capsular transfer gene (ctrA) at the Health Protection Agency (now Public Health
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England) Meningococcal Reference Unit using an Applied Biosystems 7700 sequence detection
system, as described previously [35]. The cycle number at which each positive sample was de-
tected was reported. Cycle threshold, which is inversely correlated with bacterial load, has been
used as an indicator of disease severity in other studies [36,37].

Genotyping of CFH Polymorphisms
Six SNPs in CFH were genotyped by SNaPshot primer extension methodology, involving PCR
to amplify sequence fragments containing polymorphisms of interest, ExoSAP-IT to neutralise
unincorporated dNTPs, fluorescent primer extension, further shrimp alkaline phosphatase
clean-up, and analysis on an ABI 3100 genetic analyser. The SNPs genotyped were rs1061170
(Y402H), rs800292 (I62V), rs6677604 (which is in full linkage disequilibrium with the deletion
of CFHR3-CFHR1), rs3753396 (which is in full linkage disequilibrium with rs1065489,
D936E), rs419137, and rs2284664. SNPs were chosen on the basis of our established protocols
for genotyping [8, 38]. Oligonucleotides are shown in S1 Table. Genotype calls were made
using GeneMarker v1.5.1. The control dataset had been genotyped on an Illumina 1.2M duo
SNP microarray. Four core CFH haplotypes were defined using four SNPs (Table 1) based our
previous studies (with the very closely related haplotypes 1 and 2 in our haplotype model [38]
replaced by haplotype A in the present report, defined by rs1061170) [8,38].

Sequenom iPLEX for complement gene polymorphisms
Polymorphisms of complement pathway genes were investigated using the Sequenom iPLEX
platform. PCR and primer extension oligonucleotides were designed using the My Sequenom
Online Tools (Sequenom Inc., San Diego, CA, USA), with a target PCR fragment length of be-
tween 80 and 120 bp and target primer extension oligonucleotide of between 15 and 30 bases,
according to the manufacturer’s protocol. Oligonucleotide sequences are shown in S2 Table.
Shrimp alkaline phosphatase was used to neutralise unincorporated dNTPs after the PCR reac-
tion and the iPLEX Gold resin used for final conditioning after primer extension. The reaction
product was nanodispensed onto an array chip by technical staff in the Queen’s University Bel-
fast Genome Core using the MassARRAY nanodispenser prior to operation of the MassAR-
RAY mass spectrometer. Genotyping was then carried out using TYPER software (Sequenom).
Each SNP cluster plot was inspected individually for quality of clustering and the mass spec-
trometry plot examined for potentially erroneous base calls, which were recalled or set to miss-
ing if a problem was observed. Data were exported from TYPER and converted to PLINK
format using Microsoft Excel 2010.

Genotyping of Neisserial fHBP
Amethod based on the sequence variation described by Pajon et al. [23] was developed and
validated by sequencing fHBP from eight cultured isolates of N.meningitidis. We used a one-
step duplex of two PCR reactions in the same experiment. Subfamily A and B fHBP were

Table 1. CFHHaplotype Definitions.

Haplotype Name rs1061170 rs3753396 rs6677604 rs2284664

A G A G G

B A G G G

C A A A G

D A A G A

doi:10.1371/journal.pone.0120757.t001
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distinguished by detection of a ten-base insertion/deletion polymorphism in module A of the
gene. One pair of primers, one of which was fluorescently Fam-labelled, was used to make a
product of either 157 or 167 bases in length, which was detected on the ABI 3100 Genetic Ana-
lyser. Further distinguishing between variant 2 and variant 3 was by the use of three sequence-
specific primers, all paired with one common, Fam-labelled primer. The three sequence-specif-
ic primers were of different lengths, and bound to the junction between modules C and D, each
of which may have one of two variants. According to Pajon et al., three variants are found, and
therefore, the sequence-specific primers were designed to bind to these combinations of poly-
morphic modules C and D. Oligonucleotide sequences are shown in S3 Table. In addition to
the subfamily and variant classifications of fHBP, the method can determine the most common
modular groups described in Pajon et al. [23]. The rare (<0.5%) groups VII, VIII and IX can-
not each be distinguished from closely related more common modular groups (Table 2).

Statistical Analysis
Assessment for deviation from Hardy Weinberg equilibrium was conducted using the method
of Wigginton et al. [39] as implemented in PLINK v1.07 [40,41]. A P value for deviation of
<0.05 in cases, controls, or overall was considered to be significant.

A minimum genotyping rate per SNP of 90% and minimum genotyping rate per individual
of 90% were used. Association with individual SNPs was assessed by univariate logistic regres-
sion (additive model) in PLINK. Significance for association was accepted at P< 0.05 after
Bonferroni correction for multiple testing in the study of the complement pathway. Correction
for multiple testing was not used for analysis of CFH as this was a replication of a
previous report.

Individuals missing genotypes for any of the four CFH haplotype-tagging SNPs were ex-
cluded from haplotype analysis. Multivariate logistic regression was conducted in SPSS v19 for
case-control status using the number of copies of each CFH haplotype as covariates, omitting
one haplotype (D) as a reference variable to avoid multicollinearity.

Cycle threshold was compared between CFH haplotype B carriers and non-carriers using
Student’s T test in R v3.1.1. Age was compared between fHBP Subfamily A and fHBP Subfami-
ly B using the independent samples median test in SPSS.

Results

CFH
The genotyping rate was 99.7%. No markers deviated significantly from Hardy Weinberg equi-
librium. Two cases failed genotyping entirely, no other individuals were excluded for incom-
plete genotyping and no markers were excluded because of low genotyping.

Rs1061170 G was associated with increased risk (OR 1.26 [95% CI 1.07–1.49], P = 5.3x10–3)
and rs3753396 G was associated with reduced risk (OR 0.56 [95% CI 0.43–0.74], P = 3.0x10–5)
(Table 3). Multivariate logistic regression shows that haplotype B, tagged by rs3753396 G, is
significantly associated with a reduced odds ratio of invasive meningococcal disease (OR 0.56

Table 2. Subfamily, Variant and Modular fHBP groups.

Subfamily Subfamily A Subfamily B

Variant Variant 2 Variant 3 Variant 1

Common Modular Groups III VI II V I IV

Rare Modular Groups not differentiated from above by fHBP test VIII IX VII

doi:10.1371/journal.pone.0120757.t002
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[95% CI 0.42–0.76], P = 1.6x10–4) (Table 4). Haplotype C, which carries the deletion of CFHR3
and CFHR1 [8] was not associated with the phenotype.

The cycle threshold for CtrA in haplotype B carriers was 31.4 and for ‘wild-type’ non-carri-
ers was 31.3.

Factor H-Binding Protein Characteristics in the Case Population
The frequencies of the Neisserial fHBP variants are shown (Table 5). These are similar to those
reported by Pajon et al.[23].

The median age of cases with subfamily A fHBP N.meningitidis was one year and that of
cases with subfamily B fHBP N.meningitidis was two years (independent-samples median test
P = 0.025). The mean cycle threshold for detection of ctrA for cases with subfamily A fHBP N.
meningitidis was 29.7 and that for subfamily B fHBP N.meningitidis was 29.2.

Susceptibility to N.meningitidis with Subfamily A and Subfamily B fHBP
CFHHaplotype B was associated with a statistically significant protective effect against the
rarer subfamily A fHBP-expressing N.meningitidis infection, but was not associated with pro-
tection against the more common subfamily B fHBP-expressing N.meningitidis (Table 6).
However, there was no significant difference between the distribution of fHBP subfamily N.
meningitidis infection in haplotype B heterozygote cases and wild-type homozygote cases
(Pearson chi-square P = 0.11; Table 7).

Complement Pathway
Twenty nine individuals were excluded because of a low genotyping rate, and no SNPs were ex-
cluded because of low genotyping leaving 281 cases and 5,199 controls. The remaining geno-
typing rate was 99.8%. Five SNPs were excluded due to significant deviation from Hardy
Weinberg equilibrium in controls, all of which were in CD46.

One SNP in each of CD46 (rs2796278), C5 (rs17216529), C8A (rs17300936) and C8B
(rs12085435) was associated with the phenotype before correction for multiple testing
(Table 8). The association with rs12085435 in C8B was significant after Bonferroni correction

Table 3. Association betweenCFH SNPs and IMD.

SNP Allele
1

Allele 1 Frequency
in Cases

Allele 1 Frequency
in Controls

Allele
2

Number of
cases

Number of
controls

Odds Ratio (95%
Confidence Interval)

P

rs800292 A 0.26 0.23 G 307 5199 1.16 (0.96–1.40) 0.13

rs1061170 G 0.43 0.38 A 306 5124 1.26 (1.07–1.49) 5.3x10−3

rs6677604 A 0.19 0.20 G 307 5190 0.95 (0.77–1.17) 0.61

rs3753396 G 0.10 0.17 A 304 5196 0.56 (0.43–0.74) 3.0x10−5

rs419137 C 0.15 0.13 A 307 5200 1.22 (0.97–1.53) 0.09

rs2284664 A 0.23 0.21 G 307 5199 1.14 (0.94–1.38) 0.20

doi:10.1371/journal.pone.0120757.t003

Table 4. Additive Model Multivariate Logistic Regression forCFH haplotype and IMD.

Odds Ratio P

Haplotype A (rs1061170 [G]) 1.06 (0.87–1.29) 0.57

Haplotype B (rs3753396 [G]) 0.56 (0.42–0.76) 1.6x10−4

Haplotype C (rs6677604 [A]) 0.89 (0.70–1.15) 0.37

doi:10.1371/journal.pone.0120757.t004
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for 21 tests (P = 0.03), and the other SNP associations were non-significant. Both C8 SNPs
were independently associated with the disease phenotype in multivariate logistic regression
(Table 9).

Discussion
Our study explored the characteristics of the association between meningococcal disease and
CFH polymorphism, the relationship between fHBP subfamily and this association and the ef-
fects of other polymorphisms of complement system genes on disease risk.

Our findings provide further evidence supporting the association between CFH polymor-
phism and invasive meningococcal disease reported by Davila et al. [11] but as we used the
same control group as that study, this is not a full independent replication of the finding. Hap-
lotypic exploration revealed that the association is due to only one haplotype (B), which does
not carry any of the known major functional variants associated with AMD. The haplotypes
that carry deletion of CFHR3-CFHR1 (haplotype C) and Y402H (haplotype A) were not associ-
ated in a multivariate logistic regression. The protective haplotype B was not associated with
any difference in the bacterial load (measured by cycle threshold), suggesting that while disease
risk is altered by carrying this variant, severity of disease is not. There was no significant differ-
ence in age of cases between carriers and non-carriers of haplotype B, suggesting that the pro-
tective mechanism does not affect the age of onset.

Table 5. fHBP Variant Frequencies in the Case Population.

fHBP Module Group Present Study Number (frequency) Pajon[23] Number (frequency)

I/VII 129 (0.52) 126 (0.52)

II/VIII 7 (0.03) 21 (0.09)

III 12 (0.05) 26 (0.11)

IV 54 (0.22) 12 (0.05)

V/IX 24 (0.10) 32 (0.13)

VI 20 (0.08) 25 (0.10)

Total 246 242

fHBP Variant Group

1 183 (0.74) 138 (0.57)

2 32 (0.13) 51 (0.21)

3 31 (0.13) 53 (0.22)

Total 246 242

fHBP Subfamily

A 71 (0.26) 104 (0.43)

B 198 (0.74) 138 (0.57)

Total 269 242

doi:10.1371/journal.pone.0120757.t005

Table 6. Association of CFHHaplotypes with Susceptibility to Invasive Infection withN.meningitidis
expressing Subfamily A and Subfamily B fHBP.

Subfamily A fHBP Subfamily B fHBP

Odds Ratio (95% CI) P Odds Ratio (95% CI) P

Haplotype A [rs1061170 G] 1.31 (0.83–2.05) 0.25 1.03 (0.78–1.36) 0.83

Haplotype B [rs3753396 G] 0.46 (0.22–0.98) 0.046 0.72 (0.50–1.06) 0.09

Haplotype C [rs6677604 A] 0.99 (0.56–1.74) 0.98 0.91 (0.65–1.28) 0.59

doi:10.1371/journal.pone.0120757.t006
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There was no significant difference between the distribution of the fHBP subfamilies in indi-
viduals who have a copy of CFH haplotype B and those who do not, which suggests that CFH
haplotype variation does not alter the risk of infection with meningococci with fHBP subfami-
lies A and B differently.

The patients affected by N.meningitidis with fHBP subfamily A were significantly younger
than those who had infection with N.meningitidis with fHBP subfamily B.

Our investigation of other complement pathway polymorphisms suggests that that a coding
polymorphism in C8Bmay be associated with susceptibility to invasive meningococcal disease.
This is consistent with the observation that terminal complement component deficiencies in-
crease risk of invasive meningococcal disease [42]. This possibility requires replication in an
independent cohort.

Our study is unique in integrating human and bacteriological genomic information to assess
the effects of variation of genes that produce interacting proteins. The most important limita-
tion of this study is the lack of an independent replication group to confirm the association at
C8B. Our study used the same control group as Davila et al. [11], meaning that we have not re-
ported a full independent replication of the association at CFH. We conducted our own labora-
tory experiments to genotype meningococcal disease cases and compared them to controls that

Table 7. Direct Comparison of Subfamily of Haplotype B Heterozygotes and Non-Heterozygotes
(Wild-type).

Subfamily A Subfamily B

Haplotype B Heterozygote 9 42

Wild-type Homozygote 49 120

doi:10.1371/journal.pone.0120757.t007

Table 8. Sequenom iPLEX of Complement Pathway Genes in IMD.

Chromosome Position(NCBI b37) SNP Name Gene Change Allele 1 Cases Controls Allele 2 Odds Ratio (95% CI) P

1 57064136 rs947636 C8A C 0.32 0.29 T 1.15 (0.96–1.38) 0.14

1 57113315 rs652785 C8A Q>K T 0.42 0.38 G 1.19 (1.00–1.41) 0.06

1 57155946 rs17300936 C8A P>L A 0.09 0.13 G 0.67 (0.50–0.89) 6.2x10−3

1 57180072 rs626457 C8B A 0.34 0.33 G 1.04 (0.87–1.25) 0.67

1 57187898 rs12085435 C8B P>L A 0.02 0.05 G 0.35 (0.19–0.67) 1.3x10−3

1 57195072 rs1013579 C8B G>R G 0.03 0.03 A 0.96 (0.58–1.61) 0.89

1 57195099 rs12067507 C8B E>K T 0.04 0.05 C 0.71 (0.46–1.10) 0.13

1 205356059 rs2842704 C4BPA C 0.14 0.14 T 1.03 (0.80–1.32) 0.83

1 205360403 rs4425986 C4BPA C 0.44 0.43 T 1.05 (0.88–1.25) 0.58

1 205364303 rs1126618 C4BPA G>G T 0.17 0.16 C 1.06 (0.84–1.33) 0.61

1 205371523 rs4844573 C4BPA I>T C 0.32 0.35 T 0.90 (0.75–1.08) 0.26

1 205372211 rs4571969 C4BPA T 0.24 0.24 C 1.00 (0.82–1.23) 0.99

1 206022446 rs2796278 CD46 C 0.54 0.49 A 1.25 (1.05–1.48) 0.01

5 39285479 rs155375 C9 T 0.43 0.44 C 0.96 (0.81–1.13) 0.61

5 39400311 rs700233 C9 R>W A 0.37 0.40 G 0.88 (0.74–1.05) 0.16

5 40998620 rs10941528 C7 A 0.23 0.23 G 1.01 (0.83–1.24) 0.90

5 41001075 rs3805221 C7 T 0.23 0.24 C 0.99 (0.81–1.21) 0.89

5 41021361 rs4957361 C7 T 0.35 0.36 C 0.98 (0.82–1.17) 0.79

5 41235716 rs1801033 C6 A>E C 0.35 0.37 A 0.94 (0.79–1.13) 0.52

9 122765747 rs17612 C5 E>D C 0.06 0.08 A 0.74 (0.51–1.06) 0.10

9 122840039 rs17216529 C5 V>I A 0.04 0.07 G 0.55 (0.36–0.84) 5.6x10−3

doi:10.1371/journal.pone.0120757.t008
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were genotyped using a different method, at a different time. This presents risk of a systematic
genotyping error that could result in a false association. Independent replication is therefore
vital. The exploration of the effect of CFH haplotype on disease severity (indicated by CtrA
cycle threshold) and of fHBP on severity and age, are not affected by these limitations because
these are analyses of cases only.

The functional basis for the relationship between CFH polymorphism and susceptibility to
invasive meningococcal disease is not yet understood: It is likely that it relates to the interaction
between CFH or CFH-related proteins and N.meningitidis. As meningococcal disease becomes
less common, the focus of research may change to questions of immunity and vaccination: It
would be most interesting to understand whether vaccine fHBP interacts differently with dif-
ferent variants in host CFH and CFHR proteins following vaccination in humans, and whether
vaccination results in complement activation through transient sequestration of CFH. Costa
et al. recently suggested that fHBP with low affinity for CFH should be explored in future de-
velopment of fHBP-based vaccines to increase immunogenicity and reduce the chance of auto-
antibody formation to CFH [43]. It is conceivable that carriage of the protective CFH
haplotype could influence the effectiveness or side-effects of the vaccine, such as fever, which is
common following meningococcal B vaccination [44].

The association between C8B rs12085435 and risk of meningococcal disease in our study is
in keeping with the effect of inherited terminal complement deficiencies on susceptibility to
meningococcal disease [42]. Independent replication will be key to establishing whether C8B is
a second complement gene associated with meningococcal disease risk.
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